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Abstract 
 
The problem of Benard double diffusive Marangoni convection is investigated in a horizontally infinite 
composite layer system enclosed by adiabatic boundaries for Darcy model. This composite layer is 
subjected to three temperature gradients with constant heat sources in both the layers. The lower 
boundary of the porous region is rigid and upper boundary of the fluid region is free with Marangoni 
effects. The Eigenvalue problem of a system of ordinary differential equations is solved in closed form 
for the Thermal Marangoni number, which happens to be the Eigen value. The three different 
temperature profiles considered are linear, parabolic and inverted parabolic profiles with the 
corresponding thermal Marangoni numbers are obtained. The impact of the porous parameter, 
modified internal Rayleigh number, solute Marangoni number, solute diffusivity ratio and the diffusivity 
ratio on Darcy-Benard double diffusive Marangoni convection are investigated in detail. 
 
Keywords: Darcy model, Adiabatic boundaries, Depth ratio, Composite layer, Heat source and Three 
profiles. 
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INTRODUCTION 
 
       Double diffusive convection is a convection which is 
amalgamation of two density gradients diffusing at different rates, 
acting on a system.  Double diffusion convection plays a significant 
role in many natural processes and has a lot of engineering 
applications. Double diffusive convection exists in sea water, the 
mantle flow in the Earth’s crust as well as many engineering and 
physical problems. For example, contaminant transport in saturated 
soils, food processing, spread of toxins and furthermore appears in the 
modeling of solar ponds. The problems of double diffusive convection 
in single fluid /porous /composite layers / temperature gradients / heat 
source/sink are investigated by some authors. Bennacer et al. (2003) 
have analyzed numerically thermosolutal natural convection in an 
enclosure filled with fluid and two saturated porous layers. Chen and 
Cho Lik Chen (2010) have examined the stability of convection in a 
horizontal double-diffusive fluid layer driven by the combined effects 
of buoyancy and surface tension using linear stability analysis. 
Gangadharaiah and Suma (2013) considered Bernard-Marangoni 
convection in a fluid layer overlying a layer of an anisotropic porous 
layer with deformable free surface using regular perturbation 
technique. Double-diffusive convection in vertical annuluses with 
contradicting temperature and concentration gradients is of essential 
intrigue and viable significance examined by Sheng Chen et al. (2014) 
using lattice Boltzmann model. Saleem et al. (2014) investigated the 
double diffusive Marangoni convection flow of viscous 
incompressible electrically conducting fluid in a square cavity is 
studied using successive over relaxation technique. Sumithra (2014) 
studied the double diffusive magneto Marangoni convection in a 
composite layer using perturbation technique.  Double-diffusive 
natural convection in vertical square enclosures induced by opposite 

horizontal temperature and concentration gradients is studied 
numerically by Massimo Corcione et al. (2015). Norazam Arbin et al. 
(2016) have studied the double diffusive Marangoni convection in the 
presence of entropy generation numerically using finite difference 
method. They showed that the heat and mass transfer have similar 
patterns as the Marangoni number increased. Akil J. Harfash., Fahad 
K. Nashmi (2017) studied the double-diffusive convection in the 
presence of heat sink/source which is linear in the vertical coordinate 
in the opposite direction to gravity by considering a horizontal fluid 
layer. The onset of double-diffusive convection in a superposed fluid 
and porous layer under high-frequency and small-amplitude vibrations 
has been experimented by Tatyana and Ekaterina (2018). Kanchana et 
al. (2020) studied the Kuppers-Lortz instability in rotating Rayleigh-
Benard convection bounded by rigid/free isothermal boundaries. They 
show that alumina nanoparticles in water and alumina and copper in 
water have the same effect. For the composite layer, Sumithra et al. 
(2020) and Vanishree et al. (2020) are obtained the closed form 
solution for the eigenvalue problem in the presence of constant heat 
source.  
In this article, the problem of Benard double diffusive Marangoni 
convection is investigated in a horizontally infinite composite layer 
system enclosed by adiabatic boundaries for the Darcy model. The 
Eigen value problem of a system of ordinary differential equations is 
solved in closed form for the thermal Marangoni number. The impact 
of different parameters is discussed in detail. 
 
MATHEMATICAL FORMULATION 
 
The composite layer system under investigation is shown in Fig. 1.  A 
horizontal densely packed porous layer of thickness  underlying a md
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two component fluid layer of thickness  with heat constant sources 
 and  respectively. The lower surface of the porous layer rigid 

and the upper surface of the fluid layer is free with surface tension 
effects depending on both temperature and concentration. Both the 
boundaries are kept at different constant temperatures and salinities. 
We introduce Cartesian co-ordinate system at the interface between 
porous and fluid layer and the z-axis directing vertically upwards. 

 

 
 

Figure 1. Physical configuration of problem. 
 
The governing equations for the physical situation considered under 
microgravity condition:  
 
Fluid layer: 

                                                                                              (1) 

                                                     (2) 

                               (3) 

                                                                      (4) 

Porous layer: 

                                                                                         (5) 

                               (6) 

                                               (7) 

                                                    (8) 

 
Here, , , ,  , , , , , , ,  are referring 

to the velocity vector,  the fluid density, the fluid viscosity, the 
pressure, the temperature, the thermal diffusivity of the fluid, the 
solute diffusivity of the fluid, the concentration, the permeability of 
the porous medium, the ratio of heat capacities and the porosity, 
respectively, and the subscript 'm' refer to the quantities in porous 
layer. 

 

The basic state is quiescent, have the following solutions 
 
Fluid layer: 

                                           (9) 
 
Porous layer: 
 

                      (10) 
 
The temperature distribution in the basic state are obtained by 
 

                      (11) 

 

                   (12) 

 
The concentration distributions in the basic state are obtained by 
 

                                          (13) 

 

                           (14) 

 
where 
 

is the interface temperature,  

 is the interface concentration,  

 are the temperature gradients in fluid & porous layer 

with  and  , respectively. 

To investigate the stability of the basic state, infinitesimal 
disturbances are superimposed on fluid and porous layer, respectively. 
 

            (15) 
 

                             (16) 

 
Following the standard linear stability analysis procedure and noting 
that the principle of exchange of stability holds (Sumithra et al.,2020), 
we arrive at the following stability equations: 
 

                                                                         (17) 
 

                                  (18) 
 

              (19) 
 

             (20) 
 

          (21) 
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Here, , ,  are known as the 

modified internal Rayleigh number, the internal Rayleigh number, the 

diffusivity ratios for fluid layer, respectively, and , 

,  are referring to the modified internal 

Rayleigh number, the internal Rayleigh number, and  the diffusivity 
ratio for porous layer, respectively.  are the vertical 
velocities,  &  are the temperature distributions and 

are the concentration distributions in fluid and porous 
layers, respectively.  and  are the horizontal wave numbers. 
Since the horizontal wave numbers must be the same for the 

composite layers, so that we have  and hence . 

where  is the depth ratio. 

 
BOUNDARY CONDITIONS 
      The following boundary conditions are used to solve the equations 
(17) to (22) and they are 
 

                                                 (23) 
 
The velocity boundary conditions are  
 

                   (24) 

 
The temperature distribution boundary conditions are     
 

           (25) 
 
  The salinity distribution boundary conditions are  
 

          (26) 
 
where 
 

, , , , ,

, ,  and  are 

respectively the solute diffusivity ratio, the thermal ratio, the viscosity 
ratio, the effective viscosity of the fluid in the porous layer, the 
thermal Marangoni number,  the  solute  Marangoni number,  the 
surface tension, the Darcy number, and  the porous parameter. 
 
SOLUTION BY EXACT TECHNIQUE 

 The solutions of   and  are obtained from 
equations (17) and (20), as follows 

 
           (27) 

 
                                    (28) 

 

where  are determined using (24) we get, 

 

 

Linear temperature profile 
The linear temperature profile of the form, 
 
                                                               (29) 
 
introducing (29) in to (18) and (21), we get the  and  as 
follows 
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 where  are determined using (25) we get, 
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 From (19) and (22), we get   and  as, 
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where  are determined using (26) we get, 

 

 

 

   

Using (23), for the linear temperature profile we get the thermal 
Marangoni number as follows 

                                       (34) 

 
where 
   

 

 

 

 
  

 

 
Parabolic temperature profile  
The parabolic temperature profile of the form, 
 

                                                        (35) 
 
introducing (35) in to (18) and (21), we get the  and  as 
follows 
 

                                        (36) 
 

                    (37) 
 
where  are determined (25) we get, 
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Using (23), for the parabolic temperature profile we get the thermal 
Marangoni number as follows 
 

                                      (38) 

where 

 

 
Inverted Parabolic Temperature Profile 
The inverted parabolic temperature profile of the form, 
 

                                     
(39) 
 
introducing (39) in to (18) and (21), we get the  and  as 
follows 
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where  are determined using (25) we get, 

 

 

 

 

 

 
Using (23), for the inverted parabolic temperature profile we get the 
thermal Marangoni number as follows 
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RESULTS AND DISCUSSION 
 

Double diffusive Marangoni convection, produced by unstable 
density distribution with the surface tension effect, in a two-layer 
system is studied in the presence of constant heat source/sink. The 
Mathematica software is used to perform numerical calculations and 
to draw the graphs. The fluids are immiscible so that surface tension 
plays an important role. The effect of thermal Marangoni number 
versus the depth ratio , of the fluid layer for different parameters are 
drawn. The three different temperature profiles considered are linear, 
parabolic and inverted parabolic profiles with the corresponding 
thermal Marangoni numbers are  and . Figures 2 to 7 

depict the effect of   and   on  and   
respectively for fixed values of 

 and . 

Fig. 2(a, b, c) are the plots of , and  versus , for 
different values of the porous parameter  . From these figures, it is 
clear that the effect of  is to stabilize the system. Physically this 
implies that the increase in permeability gives extra space for the fluid 
movement thereby delaying the convection. It can be seen that 

, and  increase with  for all the three temperature 
profiles. One more observation that can be drawn from these figures is 
that the increase in depth ratio  , indicating the dominance of the 
porous layer, beyond the equal depths of both the layers, increase   
more rapidly. Moreover, one can observe that greater stability can be 
achieved by considering the inverted parabolic profile when the 
porous layer is dominant over the fluid layer. 
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The effect of modified internal Rayleigh number  on thermal 
Marangoni numbers is seen in the Fig. 3(a, b, c), for the three 
temperature profiles. These figures indicate the	stabilizing	nature	of 

 (i.e., as    increases,   and   increases). This 

delays the onset of convection. Physically increase in  implies the 
increase in the strength of heat source. This increases the thermal 
Marangoni number. This effect is observed irrespective of the 
temperature profiles. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2  Versus  for different values of  

 
(a) 

 
(b) 

*
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(c) 

Fig. 3  Versus  for different values of   

 
(a) 

 
(b) 

 
(c) 

Fig. 4  Versus  for different values of   
 

The plots of thermal Marangoni numbers  and  for 
different solute Marangoni number  are displayed in Fig. 4(a, b, 
c). The thermal Marangoni numbers  and  decreases with 
increase in  for linear, parabolic and inverted parabolic profiles. 
This helps in fastening convection. Thus, the system is destabilized. 
We see that the liquid convective movement is more predominant in 
the porous region. 
 

 
(a) 

M d̂ *
ImR
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(b) 

 
(c) 

Fig. 5  Versus  for different values of   

The effect of solute diffusivity ratio  of the fluid, in fluid layer 
is depicted graphically in the Fig. 5(a, b, c) for the three profiles 
respectively. It is observed that the effect of  is to increase the 
thermal Marangoni numbers  and  irrespective of the 

temperature profiles. This suggests that  stabilizes the system. 
 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6  Versus  for different values of   
Increase in the solute thermal diffusivity ratio  of the fluid, in 

fluid layer, increases  and  for all the three temperature 
profiles which is shown in Fig. 6(a, b, c). Thus, the effect of  is to 
stabilize the system. 
 

M d̂ Ŝ

Ŝ

Ŝ
1 2,M M 3M

Ŝ
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t
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t
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(a) 

 
(b) 

 
(c) 

Fig. 7  Versus  for different values of   

 
Fig. 7(a, b, c) depict the effect of  solute thermal diffusivity ratio 
 of the fluid, in the porous region, on the thermal Marangoni 

numbers  and for the three profiles, respectively. From 

the figures it is clear that the effect of  is to decrease the values of 

 and , this helps to quicken the onset of convection and 
hence the system is destabilized. 
 
CONCLUSIONS 
 
i. Inverted parabolic temperature profile can be utilized in the 

situations where convection needs to be augmented, parabolic 
for moderate convection and linear profile where the 
convection needs to be delayed. 

ii. Thermal Marangoni number increases rapidly in the porous 
layer dominant composite layer. 

iii. Solute and thermal diffusivity parameters can be effectively 
used to control the convection 

iv. By adjusting the strength of the heat source, onset convection 
can be augmented or delayed. 
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