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The physical pattern of the problem consists of an infinite horizontal composite layer, in the
presence of uniform heat source/sink in both the layers enclosed by upper adiabatic, lower
isothermal boundaries and continuity of heat and heat flux at the interface. The problem of non-
Darcian-Benard-magneto-surface tension driven convection is investigated on this composite layer
which is subjected to uniform and nonuniform temperature gradients. The eigenvalue, thermal
Marangoni number in the closed form is obtained for lower surface rigid, upper surface free with
surface tension and with the continuity of normal and tangential stresses and continuity of normal,
tangential velocity boundary conditions at the interface. The influence of various parameters on the
Marangoni number against thermal ratio is discussed. It is observed that the heat absorption in the
fluid layer and the applied magnetic field play an important role in controlling non-Darcian-Benard-
magneto-surface tension driven convection.
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INTRODUCTION

In many situations particularly in geophysics and astrophysics,
in works involving crystal growth, maintaining a uniform
temperature gradient is a challenge where the occurrence of non-
uniform temperature gradients is common. While the instabilities of
a fluid in the presence of such gradients is of practical importance,
this issue is not given much attention. Furthermore, the occurrence of
composite layers is also a reality with not much attention is given. In
the study of instabilities, the occurrence of heat absorption and/or
heat rejection is common and plays an important role in the
convective instabilities. The convective instabilities in the presence
of heat source/sink has been widely studied by Rionero and
Straughan (1990), Rao and Wang (1991), Rees and Pop (1995),
Parthiban and Patil (1997), Khalili and Shivakumara (1998), Herron
(2001), Khalili et al. (2002), Sankar et al. (2006), Joshi et al. (2006),
Vadasz (2008), Nouri-Borujerdi ez al. (2008), Grosnan et al. (2009),
Cookey et al. (2010), and Jawdat and Hashim (2010).

Sankar et al. (2011a, 2011b) studied the natural convection
flows in a vertical annulus filled with a fluid-saturated porous
medium when the inner wall is subjected to discrete heating and
effect of magnetic field on the combined buoyancy and surface
tension driven convection in a cylindrical annular enclosure.
Bhadauria (2012) investigated double diffusive convection in a
saturated anisotropic porous layer with internal heat source. Sankar et
al. (2013) studied the natural convection in a vertical annulus filled
with a fluid-saturated porous medium, and with internal heat
generation subject to a discrete heating from the inner wall. In a

recent study, Siddheshwar and Vanishree (2018) have obtained
Lorenz and Ginzburg Landau equations for thermal convection in a
high porosity medium with heat source. Analysis of fully developed
mixed convection in open-ended annuli with viscous dissipation
studied by Girish ef al. (2019). They obtained an excellent agreement
between analytical and numerical solutions under limiting conditions.

The idea of using magnetic field to suppress the instabilities has
been first introduced by Utech and Fleming (1966) and Chedzey and
Hurle (1966) and some recent works on magneto convective
instabilities in single fluid/porous layers with different types of fluids
along with heat source/sink. Ahmed Kadhim Hussein et al. (2016)
examined the laminar steady magneto hydrodynamic natural
convection in an inclined T-shaped enclosure filled with nanofluids
subjected to a uniform heat source numerically by using the finite
difference method. The flow of an incompressible Magneto
hydrodynamic nanoliquid induced due to unsteady contracting
cylinder with uniform heat generation/absorption is investigated
numerically through the help of RKF-45 technique by Ramesh et al.
(2018). Fagbade et al. (2018) analyzed MHD natural convection flow
of viscoelastic fluid over an accelerating permeable surface with
thermal radiation and heat source or sink by spectral homotopy
analysis approach and they found that an increase in thermal
radiation parameter of the flow produces significant increase in the
thermal condition of the fluid temperature.

In their study, Sharma et al. (2018) aimed to investigate the
effects of heat generation/absorption on MHD mixed convective
stagnation point flow along a vertical stretching sheet in the presence
of external magnetic field obtained solution by using R-K fourth
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order scheme and shooting technique. The following year, Om
Prakash Keshri e al. (2019) has investigated the effect of internal
heat source on magneto stationary convection of couple stress fluid
under magnetic field modulation analytically and used weakly
nonlinear theory to obtain heat transfer. They found that the couple
stress parameter and magnetic Prandtl number destabilize and the
Chandrasekhar number has stabilizing effect. The influence of heat
source/sink and hall current on MHD flow between vertical alternate
conducting walls is studied by Dileep Kumar ef al. (2020). Naveen
and Singh (2020) obtained solutions in closed form of Bessel and
modified Bessel functions of order zero for the hydromagnetic
natural convective flow between concentric cylinders with heat
source/sink. Sumithra et al. (2020) have demonstrated the study of
Marangoni convection along with the presence of heat sources in
both fluid and porous layers of the composite layer. Sumithra and
Manjunatha (2020) discussed Benard Magneto Marangoni
convection in flow past a densely packed porous layer along with
heat sources in both the layers.

The problem of non-Darcian-Benard-magneto-surface tension
driven convection is investigated on this composite layer which is
subjected to uniform and nonuniform temperature gradients using
Brinkman model. Here, an infinite horizontal composite layer in the
presence of uniform heat source/sink in both the layers enclosed by
upper adiabatic, lower isothermal boundaries is considered. A closed
form solution is obtained for the eigenvalue, thermal Marangoni
number for upper surface free, with surface tension effects and the
lower surface rigid, and with the continuity of normal and tangential
stresses and continuity of normal, tangential velocity boundary
conditions at the interface. The weightage of diverse parameters on
the Marangoni number against thermal ratio is presented.

Mathematical formulation

Consider a horizontal single component, electrically conducting
fluid saturated isotropic sparsely packed porous layer of thickness
d, underlying a single component fluid layer of thickness d with an

imposed magnetic field intensity H, in the vertical z-direction and
with heat sources ¢, and ¢, respectively. The lower surface of the
porous layer rigid and the upper surface of the fluid layer is free with
surface tension effects depending on temperature. A Cartesian
coordinate system is chosen with the origin at the interface between
porous and fluid layers and the z-axis, vertically upwards.

Region (1) Single component

Free fluid layer

1= : z ==d

l L

Region (2) Single component fluid
Rigid saturated porous layer

Figure 1. Physical configuration of the problem.

The basic equations for fluid and porous layer respectively
governing such a system are

V.3-0 )
V-H=0 2
(T s o

%+(E;’~V)T=W2T+¢ )
a@—szxg}xH+vmV21~—1 5)
Vm 'qm :0 (6)
v, H=0 (7
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p0|:g at 52 (qm m)qm:| m= m qu
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Where q:(u’v’w)7 H’ p[)7 la P:p+ £ > ﬂ? ’ul” Ta K,
1 c
V,=——, o, &, M,, K, A:M, C,, vemzv—"‘ are
u,c (P,C,), €

namely the velocity vector, the magnetic field, the fluid density, the
time, the total pressure, the fluid viscosity, the magnetic
permeability, the temperature of the fluid, the thermal diffusivity of
the fluid, the magnetic viscosity, the electrical conductivity, the
porosity, the effective viscosity of the fluid in the porous layer, the
permeability of the porous medium, the ratio of heat capacities, the
specific heat, the effective magnetic viscosity, respectively, and the
subscripts ‘m” and ‘f” refer to the porous and fluid layer, respectively.

Under the steady state condition, we seek the form in fluid and
porous layer as

[w,v,w,P,T,H |=[0,0,0,B,(2),7,(2), Hy(2) | (11)

|:um,vm,wm,P T

m3>=m?

Fl] =[0,0,0,P,,(z,).T,, (2,), Hy(2,)]

n

(12)

The temperature distributions 7,(z) and T7,,(z,) are found to be

~0z(z—d) (T, -T,))h(z
1 ()= "2, LR

+T, 0<z<d

(13)

— T,-T))h
7, ()= 2l tds) (L= TIhG) 7y oo o (14
2k, d,
dd d d) . .
where T = wd, T, + ,dT, +— (0, +0d) is the interface

xd, +x,d Z(Kdm + K'md)

temperature at z=z,=0 and h(z) and 4, (z,)are the non-

1
dimensional temperature gradients with Jh(z)dzzl and
0

1
.[hm (z,)dz, =1 in fluid and porous layer respectively and subscript
0

‘b’ denote the basic state.
We superimpose infinitesimal disturbances on the basic state for
fluid and porous layer, respectively

[.P.T,H | =[0,B,(2),T,(2), Hy(2)] +[ 7, P',0, H'] (15)

(G BT, H | =[0.8, (2,00 T, (2,0, Ho 2,0+ G, P16, H'] - (16)

where the primed quantities are the perturbed ones over their
equilibrium counterparts. Now introducing (15) and (16) are
substituted into the (1) to (10) and are linearized in the usual manner.
Next, the pressure term is eliminated from (3) and (8) by taking curl
twice on these two equations and only the vertical component is
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. . . . . . d?
retained. The variables are then non- dimensionalized usingd ,— ,
K

K . . .

E T,-T, and H, as the units of length, time, velocity,
d2

temperature and the magnetic field in the fluid layer and d, ,—,
Kﬂl

K, . - L

d—”’, T,-T, as the corresponding characteristic quantities in the

porous layer.
The dimensionless equations (after neglecting the primes) are:

1 oVw _, oV’ H

— =V*'w+Qr z 17
Pr ot Sl {an
90 29 4 wh(z)+ R, FEZDW (18)
o 2T, -T,)

OH , =al+r/mV2Hz (19)

ot 0z

povViw. o, ) 5 oV:iH

5. = - = ﬂﬂ Vmwm - Vmwm + ﬂ Qmem . - (20)
Prm ot 52”1

4% i (2, + V20, 4 Ry ot e @

o 2T - Ty)
R 22)
ot oz
Hld?
where, for fluid layer, Pr=2, Q= AT =
K HKT ‘ K
, = ———— are namely, the Prandtl number, the Chandrasekhar
d(T,~T,)

number, the diffusivity ratio and the internal Rayleigh number

&V

. K
respectively. For the porous layer, Pr, ===, £°= 7 =Da,p,

m

Hyd, R
/} — Mo , Qm — Hptto G, :diz , T, = Vem , le — im are
H HIS,T K, d,(T,=Ty)
namely, the Prandtl number, the Darcy number, the porous
parameter, the viscosity ratio, the Chandrasekhar number, the
diffusivity ratio of fluid in porous layer and the internal Rayleigh

2 2
number respectively with R, = gd_ and R, = uly, .
K Knl

Introducing the normal mode expansion procedure for both
layers in the form

w W(z)

0 |= G)(z) f(x,y)e”' (23)
_H H(z)
[w, w.(z,)

0, 1=10,(z,) | f(x,.,)e™" (24)
_H H(zm)

with V2f+a’f =0 andV}, f, +a.f, =0, where a and a, are the

2m
non-dimensional horizontal wave numbers, n and n, are the

frequencies. Since the dimensional horizontal wave numbers must be

the same for the fluid and porous layers, we must have 32 Z’” and
~ ~od, .
hencea, =da whered = 7’” is the depth ratio, W(z) and

W, (z,)are the dimensionless vertical velocities in fluid and porous
O(z) and O,(z,)
distributions in fluid and porous layers, respectively.

layer, respectively, are the temperature

Introducing (23) & (24) into the (17) to (22) and obtained for
0<z<land -1<z, <0, respectively

[1)2—aZ+Plj(D2 ~a®W =-Qt,D(D* —a*)H 25)
. _

(D* =@ +n)O(2)+ [ h(z) + R; 2z~ 1) [ (2) =0 (26)
[rﬁn(Dz—az)+nJH+DW:0 Q7

2 2N A Lﬂz_ 2 2 _
(D, —a,)iaf" + Pr. 1(D,, —a,)W, 28)

-0,7,,8°D, (D, —a,)H(z,)

(D, -a,’ +4n,)0,(z,)

(29)
+[h,(z,) + Ri, 22, + D) W, (z,) =0

(7, (D2~a2)+n,e |H(z,)+ DW, =0 (30)
R and R; R
2T, -T,)

where R; = R =—Tn

AT -Ty)
We assume that the principle of exchange stability to be valid for
present problem, so we taken =n, =0 and eliminating the magnetic
field in equations (25) and (28) using equations (27) and (30), we get
in 0<z<land -1<z, <0, respectively.

(D* ~a*) W(z)=0DW(2) G1)
(D* - a*)O(z) + [ h(z) + R; 2z =)W (z) = 0 (32)
(D2 -a2)iB* ~1|(D} = a2 )W, (z,) = B, DI, (=,) (33)
(D, ~a,7)®,(z,) +[h,(z,) + R;, (22, + DIV, (z,) =0 (34)

Boundary conditions
The boundary conditions are non-dimensionalized and then
subjected to normal mode expansion and are

D*W (1) + M a’0(1) =0,
w(1)=0,W,(-1)=0, D,W,(~1)=0,
TW(0)=w,(0), TdDW (0) = D, W, (0),
Td’(D* +a* )W (0)= (D}, +a., )W, (0) ,
7d* B> (D*W (0) - 3a*DW (0)) =—D, W, (0)
+ 4p* (DM, (0)-3a,D,W,(0)

DO(1)=0, 0(0) =10, (0), DO)=D,0,(0),0,(-)=0  (35)
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. T-T, |
where 7' = ———— is the thermal ratio and
0 tu
do, (I, ~T,)d . :
——————"—is the thermal Marangoni number.
or UK

Method of solution
The resulting eigenvalue problem solved exactly, the vertical

velocities for fluid and porous layer W(z) and W, (z,) are found

using the velocity boundary conditions (35),

W (z) = 4 [coshSz + a,sinhSz + a,cosh z + assinh{ z | (36)
W, ()= 4 {a4cosh77mz,n +agsinhn, z, + a6c?shl///nznl} 37)
+a,sinhy,z,
where
5_\/@+\1Q+4a2 g_\/é—w
= ,C= 5
E+VE -4F E2—4F E—-~NE*-4F
2 9
_ 24P, +1+Q B’ Fe ap’a; +a,
B e
al:_(a(, +a7 +§17)’a2:a655+§6’ 3_(& +a75”)’
5 5
a,=a,0,+68,, a; =a,6,, +a,0,;, a5 = O = 0o ,
525521 _524522
a,= 523524 _526521 , 51 — fpﬂc?}(é‘} _3[125) ,
524522 - 525521
8, =Tfd" (¢ =3d°). &, = af*(n, ~3a;m,) =1,
~ 2 2 _]2(772 +a? )]
5, = i’ —3a? I ﬁ[(‘//m"'am) T 4]
AT Td*($* +a’) - i1 (), +a)
o 2 _ 2 2 R .
LU GRS F SO S S
d ({7 +a) - a(n, +a,)
8 =0, 7%a Oy =—6, + 1435, 2 6, =0,— Vs >
M UM UM
512:1[” élé‘wj 513_ Tdé/é‘“ ‘/’m],
UM 0, um J,
3, =sinh5+@sinhg , O =0;coshg, 6= Susinhe Smhg
5, S,
8, =08,cosh¢ +coshS, S = %05 , 8 = %l +6,, Oy = —51(235‘7
14 14 14

0, =06gcoshn —0J,sinhn, +coshy, , §,, =—0,,sinhn, —sinhy, ,
0,, = 0,y sinhn, — &, coshn,,

0,, =-1,0,8inhn, — 06,1, coshn, —y, sinhy, ,

0,5 =-1,0,,coshn +y, coshy, , 6, =n,0,sinhn, +0J,mn, coshn,

Linear Temperature Profile
For linear temperature profile,

h(z)=1and h,(z,)=1 (38)

Introducing (38) into (32) & (34), using the temperature boundary
conditions, we get ©(z) and ®, (z,,) as

O(z) =4 [c1 coshaz + c,sinhaz + g, (z)] 39)

0,.(z,)=4 [63 cosha,z, +c,sinha,z, +g]m(zm)]

where g,(z) = 4[8,; — 0y + 6y — 5515
8in(2,) = A6y =65, + 8, =5,

0, = %(cosh 0z+a,sinhoz),

Oy = (522{7%2)2((11 coshdz +sinhoz) ,

0y = %(a2 cosh{z+a,sinh{z),

Oy = (53{7%2)2((13 cosh{z+a,sinh(z),

8, = %(% coshn,z, +assinhz,z,),
0y, = %(ds coshn,z, +a,sinhny, z ),
Oy = %(a6 coshy, z, +a,sinhy, z, ),
Oy = (;?7'"1//’:‘)((17 coshy,z, +agsinhy, z, ),

2R’

Tm >

E =R, -1, E,=-2R,, E,, =—R}, -1, E

2m =
- 1
o =Te;+ Ay - Ay, ¢, =—(ca, + A, - A),
a
— AA +AA, c = AAy — A A
s Ly )
AgAp + AgA, A0y = AjpAg
A =045+ 0y + 0y, + 0],

= M(qI coshd +sinhJ),

Oys

(&
2
S =| 2~ 29Es |\ osho+asinhs),
(6 ) (67 -a)
0y, = w(a3cosh§+azsmh§)
(¢’ -a")
538:[ ZEZ —- 20°E, J(azcosh§+a3smh§)
(¢ -a") (¢*-a’)
A2 :f‘[ flmaétz _ 2'E2‘2m’7m;152 + Elm 6 _ ZE;Zml//mzaé] s
(1, =a,) (1,-a,) W,-a,) (¥,-a,)
A= E  20qkE, N aF  20Ea,

—a —a —a —a

T -d) (0-d) (C-d) (C-a)

__E,a, n E,as, 2,E,,4,
O, —a,) (1,-a,) (1,-a,)
E, a4 + E,av, 2y nE a5

W,-a,) W,-a,) W,-a,)

A o Eda+E, 2E,5” L E¢a,+aE, 2E,(a,

5 B

( 2_a2) (52_a2)2 (gZ_aZ) (éaz_az)z
A¢ =cosha,, A, =sinha,, Ay=—{6,y =3, +J, =],

m>

4 400 2

400 =

Em -E m 1
= m(% coshn, —assinh7,),
2F :
Sy = ﬂ(as coshzy, —a,sinh7,),
(1, -a,)’
_Ew-Ey h inh
=2 (agcoshy,, —a,sinhy,),
W, -a,)
2F :
Sy = 2*"I/”‘(% coshy, —agsinhy,),

w)-a)
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A, =Tasinha, A, = h
TN B a,.ncos “ 54 _[ 2E4 TN 226: £, j(azcosh§+a3smh§)
A, =A, = (A, —A))asinha — (A, — A;)cosha ¢*-a’) (7 -a’)
) ) A= fw[ E;a 4 _ 2E,,1,45 + E;,.a4 _ 2E,V.9 ]
The thermal Marangoni number for this model from (35) as 13 R -a>) P-d2) W:-a*) wWr-a)’
follows m m m m m m m m
E, 20a,E, a,E; 2(E,a,
5 . s ) 14252 BN et T2 e
Y _ 67 (coshoz +a;sinh 5z) + ¢*(a, cosh 'z + a;sinh ¢ z)] @1 (0°-a’) (0°-a’) (& -a) (& -a)
1 az(cl cosha +c,sinha+ A, +A,) __Eua + £y, 2n,E,,4,
T o-a) -a)t
Where _ E4ma6 + E3ma7l//m Zl/lran4ma6
150~ % 3 2 _ 2y 2 2327
BB L5 20E, i W, -a,) W,-a,) W,-a,)
| 7( 57 _qncosho T a sin )= 67 gty (4 coshd +sinho) A _Eda+E, 25 Eda+afF, 2E(a
16 B
) E +E2 h h 2§E2 h l h ( Z_aZ) (52_a2)2 (gZ_aZ) (;2_(12)2
P (C )(az coshé + aysinhd) - (§ az)z (a; coshe + 4 Sinh ) Ay, =cosha,, A =sinha, , Ay =6 =05+ 05, — 551
E, —E,, .
s = (737; —ag) (a,coshn, —agsinh7n,),
Parabolic temperature profile 2E
For parabolic temperature profile, 6 = %(a5 cosh7, —a,sinhp, ),
77))1 m
h(z) =2zand b, (z,) =2z, “2) S5 = ES”; — L (agcoshy,, —a;sinhy,, ),
v, -a,)
Introducing (42) into (32) & (34), using the temperature boundary 2 E4m‘/’m )
conditions, we get ©(z) and O, (z,,) as 58 = W2 -a’y 7(a;coshy, —agsinhy, ),
0(z) =4 [c5 coshaz + cgsinhaz + g, (z)] 43) Ay = Tasin ha, A, =a, cosha,

A, =A,—(A;—A)asinha - (A — A, )cosha
0,(z,)=4 [(27 cosha,z, +cesinha,z, + g,,(z, )] (44) 2 . . 8 S 10

The thermal Marangoni number for this model from (35) as follows
where £ (Z) = A1[543 - 544 + 645 - é‘46] >

20, (2,) = A8, — By + O — 61 » I —[6%(cosh 8z + a, sinh 62) + > (a, cosh { z + a, sinh £ z)]
2= ) .
a“(cscosha+cgsinha+ A, +A,)

S =BT EZ (cosh 62+ aysinh62), ; ° P

(6% -a%) (45)

25E, A
=4 E, + 20E, .
S & —d’) (a,cosh 6z +sinhéz) , A, = ﬁ(cosh& +a,sinh &) — (25742)2(01 cosh § +sinh &)
a

E,+E;z

045 = 7(4, )(azcosh§z+a ,sinh{z), A, = %(azcoshg+a3smh{)—@ZgiEtz“z)z(a3cosh§+azsinh§)
2E .

Sy = M(% cosh{z+a,sinh(z),

E, +E, z ) Inverted parabolic temperature profile
0y = (777"7)'" (a,coshn,z, +agsinhz,z.), For inverted parabolic temperature profile,
5y = (M%(as coshn,z, +a,sinhy, z ), h(z)=2(1-z)and h,(z,)=2(1-z,) (46)

77771 m

E, +E . Introducing (46) into (32) & (34), using the temperature boundary

) # h h
Yo wli-ad) (a,coshy, 2, +aysinhy, z,). conditions, we get ©(z)and ©,,(z,) as
— 2E4my/m
0 7 m=m =76 m=m z) = A | ¢, coshaz + ¢, sinhaz + g,(z
1) —(‘// 2) ~(a,coshy, z, +agsinhy,z,), 0(2) = 4 [c, cosh  sinh () (47)
E,=R;, E,=-2(1+R)), E, =—-R., -1, E, =—2(1+R,) ,
z,)=A4|c, cosha,z, +c,sinha,z +g, (z
G)m m Al 11 h m<m 12 h m<m 3m\“m 48

Al‘)AZI + AZZAIS

e =Te; + A - Ay, ¢ = 7(08am TA5=Ay), ¢ =
a ApAy +A5A

where g,(z) = 4[5 — 5 + I, — 5] 5
— A2OA19 - AzzAw

Cg s Ay =8, + 65, + 65 + 64,1,
—AjgAy, _§ZIA17 gzm(zm) = A1[663 - 564 + 665 - 666] >
(E,+E,)
O = ﬁ(ﬂ coshd +sinhd), 5y = (l;f_iE"’zz)(cosh 8z +a,sinh 87) ,
-a
E 25°E,
Sy = [(52 _“ g - o 2) ](cosh&-s— a,sinh o), S = w?fiE;z)z(al coshoz +sinhdz) ,
E.+E,
S ((47))5((13 coshd +a,sinhg), Sy = %(g2 cosh{z+a,sinh(z),
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O = _2E ~(aycosh{z +a,sinh(z),

¢ -a)y
O = %(% coshn, z, +assinhn,z,),
2E; .
Soy = ﬁ(‘h coshn,z, +a,sinhny,z ),
Ogs = %(% coshy,z, +a,sinhy,z, ),
2F
Sos = ﬁ(% coshy,z, +assinhy, z, ),
E;=R/ -2, E,=2-2R;, E;, =—2-R; -1, E,, =2-2R; ,
N 1
Co =Te; + 8y, = Ay, ¢ :Z(Clzam +A%—Ay),
c. = AsAy + A58y _ AsAy = AyAy
11 12
AyAs, + AA;, =M A —ALA,,
=04 + 04 + 5 +0,],
7 (E;LiE)é(a1 coshd +sinh o),
(6% =a”)
2
5y = [(52& 5 (5225 Eg)2 ](cosh5 +a,sinh o),
—-a —-a
E.+E;
Ogo = ((;—7))5(‘1; coshd +a,sinh{),
O :{(ngﬁ 5 - (;f Es 2y ](a2 cosh{ +aysinhd),
—-a —-a
L . B R s
E; 20a,E, a,E; 20 Ea,
e S Iy~ S vty S A S s
(6°-a) (6°=a’) (& -a) (& =a)
_ Bt | Esan,  2m,E.a
26 260
,=a,) (1,-a,) (1,-a,)
__Fats | Enaw,  2,E.a
T owama) a-a) wa-a)
A o Eda+E; 2E5° L Ega+aE 2E(a,
T -d) (@ -a) (Ced) (Ced)
Ay =cosha,, A,y =sinha, , Ay =—[5, —0,+05,;,-5,],
E, -E .
7= ﬁ(% cosh7,, —agsinhz,)
S, = #(g5 coshn, —a,sinh7, ),
E 6m :
73 = m(% coshy,, —a;sinhy, ),
2F .
S, = ﬁ(% coshy, —agsinhy,),

A, =Tasinha, A,, =a, cosha,

A=A, — (A, —A,)asinha— (A, —A,,)cosha

The thermal Marangoni number for this model from (35) as follows

—[6%(cosh &z + a, sinh 5z) + ¢ (a, cosh { z + a, sinh £ 2)]

M, = : .
a“(cycosha+c sinha+ A+ Ag)

3

(49)

E,+ 20E .
s ﬁ(coshé‘ +a,sinh §) — ﬁ(al coshd +sinh 6)
Aﬁzb(azcosh§+a3smh§) 2B, 5 (a;cosh ¢ +a,sinh &)
(¢ —a) (¢ -a?)

RESULTS AND DISCUSSION

The eigenvalue, thermal Marangoni number M for non-Darcian-
Benard-magneto-surface tension driven convection is obtained as an

expression of the diverse parameters, which ared ,a and a,,pB,
T, f,Rand R
wavenumbers, the porous parameter, the thermal ratio, viscosity
ratio, the internal Rayleigh numbers for fluid and porous layers and

the Chandrasekhar number respectively. The curves of thermal
Marangoni number M are drawn as a function of the thermal ratio

QO namely, the depth ratio, the horizontal

Tm >

T. By observing the graphs in Figures 2-6, it is evident that, for

smaller values of T, the thermal Marangoni number M falls till

some value of T, again thermal Marangoni rises as the value of
thermal ratio rises. The weightage of the horizontal wave number « ,
the porous parameter [, the Chandrasekhar number Q, the viscosity
ratio /i, the internal Rayleigh number R, on non-Darcian-Benard-

Magneto-Surface tension driven convection is explained in the
upcoming graphs where with the variation of one parameter with the
accompanying parameters are fixed as 9=10, ¢=1, f=0.1,
a=25,d=25, i=25, R,=-3and R, =

Fig.2a-2c explain the variation of the horizontal wave number
a on the value of thermal Marangoni number M for the values of
a=1.5, 2.0 and 2.5, for linear, parabolic and inverted parabolic
temperature profiles respectively. From the curves, it is
understandable that for smaller values of thermal ratio there is no
much effect of this parameter on thermal Marangoni number. For
larger values of thermal ratio, there is considerable effect of this
parameter on thermal Marangoni number. For a fixed value of
thermal ratio, the thermal Marangoni number reduces with an
augment in the value of a . So, the system becomes firm for smaller
values of the horizontal wave number. Analogous effects are seen for
both uniform and non-uniform temperature profiles.

Fig.3a-3c discuss the importance of £, the porous parameter on
the thermal Marangoni number and it is for f=1.1, 1.2 and 1.3. The
curves are diverging radically for all the temperature profiles, which
means that the role of the porous parameter is most important for
larger values of thermal ratio. For fixed value of thermal ratio, a
boost in the value of S, boosts the Marangoni number. Hence, the
system can be stabilized by boosting the value of S . Boosting the
value of porous parameter is nothing but boosting permeability. Even
though there is more permeability for the fluid in the porous layer,
the system still tends to be stable which is quite interesting and may
be due to influence of vertical magnetic field.

The role of Chandrasekhar number Q is discussed in Fig. 4a-4c
for the three temperature profiles for values of Q0= 10, 15 and 20.
The hugely diverging curves for all the three profiles show the
prominence of Q for larger thermal ratio values. For a fixed thermal
ratio, an enhance in the value of Q, enhances the thermal Marangoni
number, hence the non-Darcian-Benard-magneto-surface tension
driven convection can be preponed by decreasing the value of Q and
hence the system can be destabilized. This is physically reasonable as

the application of magnetic field stabilizes non-Darcian-Benard-
magneto-surface tension driven convection.
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Fig. 2a-2c Thermal Marangoni number M versus thermal ratio 7 for

different values of horizontal wave number a
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The effects of the viscosity ratio 2z on the thermal Marangoni
number is shown in the Fig. Sa-5c, for all the three temperature
profiles. The curves are diverging for larger values of thermal ratio,
which indicates that the effect of z is effectual only for the higher
values of thermal ratio and an enhance in the value of viscosity ratio
[t , decreases the thermal Marangoni number M hence, the system
can be stabilized by choosing smaller values of viscosity ratio i .

R,on the
Marangoni number is explained for all the three temperature profiles
depicted the Fig. 6a-6¢ for R,=-3, -4 and -5. Analogous effects are

observed for the three profiles. The curves are slightly diverging
indicating its prominence for composite layers with larger values of

thermal ratio T . Decreasing the values of R,, the Marangoni

The importance of internal Rayleigh number

number increases, hence the non-Darcy-Benard-magneto-surface
tension driven convection can be delayed by decreasing the values of
R, . That is, heat absorption in the fluid layer favors stability of the

system.

CONCLUSIONS
Following conclusions are drawn from this study:

i. The effects of the physical parameters considered in the study
is similar to both uniform and non-uniform (parabolic and
inverted parabolic) temperature gradients.

il. The inverted parabolic temperature gradient is the exceedingly
stable when compared to that of linear and parabolic
temperature gradients.

ii. Non-Darcy-Benard-magneto-surface tension driven convection
can be deferred by increasing the values of porous parameter
and Chandrasekhar number.

iv. Non-Darcy-Benard-magneto-surface tension driven convection
can be preponed by choosing larger values of the horizontal
wavenumber a and viscosity ratio /i .

V. The presence of heat sink in the fluid layer postpones non-
Darcy-Benard-magneto-surface tension driven convection
whereas there is no effect of internal Rayleigh number R on

the same.
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