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Abstract 
 
The physical pattern of the problem consists of an infinite horizontal composite layer, in the 
presence of uniform heat source/sink in both the layers enclosed by upper adiabatic, lower 
isothermal boundaries and continuity of heat and heat flux at the interface. The problem of non-
Darcian-Benard-magneto-surface tension driven convection is investigated on this composite layer 
which is subjected to uniform and nonuniform temperature gradients. The eigenvalue, thermal 
Marangoni number in the closed form is obtained for lower surface rigid, upper surface free with 
surface tension and with the continuity of normal and tangential stresses and continuity of normal, 
tangential velocity boundary conditions at the interface. The influence of various parameters on the 
Marangoni number against thermal ratio is discussed.  It is observed that the heat absorption in the 
fluid layer and the applied magnetic field play an important role in controlling non-Darcian-Benard-
magneto-surface tension driven convection. 
 
Keywords: Heat source (sink), thermal ratio, exact method, temperature gradients, adiabatic and 
isothermal boundaries, magnetic field. 
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INTRODUCTION 
 

In many situations particularly in geophysics and astrophysics, 
in works involving crystal growth, maintaining a uniform 
temperature gradient is a challenge where the occurrence of non-
uniform temperature gradients is common.  While the instabilities of 
a fluid in the presence of such gradients is of practical importance, 
this issue is not given much attention. Furthermore, the occurrence of 
composite layers is also a reality with not much attention is given. In 
the study of instabilities, the occurrence of heat absorption and/or 
heat rejection is common and plays an important role in the 
convective instabilities. The convective instabilities in the presence 
of heat source/sink has been widely studied by Rionero and 
Straughan (1990), Rao and Wang (1991), Rees and Pop (1995), 
Parthiban and Patil (1997), Khalili and Shivakumara (1998), Herron 
(2001), Khalili et al. (2002), Sankar et al. (2006), Joshi et al. (2006),  
Vadasz (2008), Nouri-Borujerdi et al. (2008), Grosnan et al. (2009),  
Cookey et al. (2010), and Jawdat and Hashim (2010).  

Sankar et al. (2011a, 2011b) studied the natural convection 
flows in a vertical annulus filled with a fluid-saturated porous 
medium when the inner wall is subjected to discrete heating and 
effect of magnetic field on the combined buoyancy and surface 
tension driven convection in a cylindrical annular enclosure. 
Bhadauria (2012) investigated double diffusive convection in a 
saturated anisotropic porous layer with internal heat source. Sankar et 
al. (2013) studied the natural convection in a vertical annulus filled 
with a fluid-saturated porous medium, and with internal heat 
generation subject to a discrete heating from the inner wall. In a 

recent study, Siddheshwar and Vanishree (2018) have obtained 
Lorenz and Ginzburg Landau equations for thermal convection in a 
high porosity medium with heat source. Analysis of fully developed 
mixed convection in open-ended annuli with viscous dissipation 
studied by Girish et al. (2019). They obtained an excellent agreement 
between analytical and numerical solutions under limiting conditions. 

The idea of using magnetic field to suppress the instabilities has 
been first introduced by Utech and Fleming (1966) and Chedzey and 
Hurle (1966) and some recent works on magneto convective 
instabilities in single fluid/porous layers with different types of fluids 
along with heat source/sink. Ahmed Kadhim Hussein et al. (2016) 
examined the laminar steady magneto hydrodynamic natural 
convection in an inclined T-shaped enclosure filled with nanofluids 
subjected to a uniform heat source numerically by using the finite 
difference method. The flow of an incompressible Magneto 
hydrodynamic nanoliquid induced due to unsteady contracting 
cylinder with uniform heat generation/absorption is investigated 
numerically through the help of RKF-45 technique by Ramesh et al. 
(2018). Fagbade et al. (2018) analyzed MHD natural convection flow 
of viscoelastic fluid over an accelerating permeable surface with 
thermal radiation and heat source or sink by spectral homotopy 
analysis approach and they found that an increase in thermal 
radiation parameter of the flow produces significant increase in the 
thermal condition of the fluid temperature.  

In their study, Sharma et al. (2018) aimed to investigate the 
effects of heat generation/absorption on MHD mixed convective 
stagnation point flow along a vertical stretching sheet in the presence 
of external magnetic field obtained solution by using R-K fourth 
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order scheme and shooting technique. The following year, Om 
Prakash Keshri et al. (2019) has investigated the effect of internal 
heat source on magneto stationary convection of couple stress fluid 
under magnetic field modulation analytically and used weakly 
nonlinear theory to obtain heat transfer. They found that the couple 
stress parameter and magnetic Prandtl number destabilize and the 
Chandrasekhar number has stabilizing effect. The influence of heat 
source/sink and hall current on MHD flow between vertical alternate 
conducting walls   is studied by Dileep Kumar et al. (2020). Naveen 
and Singh (2020) obtained solutions in closed form of Bessel and 
modified Bessel functions of order zero for the hydromagnetic 
natural convective flow between concentric cylinders with heat 
source/sink. Sumithra et al. (2020) have demonstrated the study of 
Marangoni convection along with the presence of heat sources in 
both fluid and porous layers of the composite layer.  Sumithra and 
Manjunatha (2020) discussed Benard Magneto Marangoni 
convection in flow past a densely packed porous layer along with 
heat sources in both the layers.    

The problem of non-Darcian-Benard-magneto-surface tension 
driven convection is investigated on this composite layer which is 
subjected to uniform and nonuniform temperature gradients using 
Brinkman model.  Here, an infinite horizontal composite layer in the 
presence of uniform heat source/sink in both the layers enclosed by 
upper adiabatic, lower isothermal boundaries is considered. A closed 
form solution is obtained for the eigenvalue, thermal Marangoni 
number   for upper surface free, with surface tension effects and the 
lower surface rigid, and with the continuity of normal and tangential 
stresses and continuity of normal, tangential velocity boundary 
conditions at the interface. The weightage of diverse parameters on 
the Marangoni number against thermal ratio is presented. 

Mathematical formulation 
Consider a horizontal single component, electrically conducting 

fluid saturated isotropic sparsely packed porous layer of thickness 
md underlying a single component fluid layer of thickness d  with an 

imposed magnetic field intensity 0H  in the vertical z-direction and 
with heat sources mφ  and φ , respectively. The lower surface of the 
porous layer rigid and the upper surface of the fluid layer is free with 
surface tension effects depending on temperature. A Cartesian 
coordinate system is chosen with the origin at the interface between 
porous and fluid layers and the z-axis, vertically upwards. 

 

 
The basic equations for fluid and porous layer respectively 
governing such a system are 

0q∇ ⋅ =
                      (1) 

0H∇ ⋅ =


               (2) 

( ) ( )2
0 p

q q q P q H H
t

ρ µ µ∂ + ⋅∇ = −∇ + ∇ + ⋅∇ ∂ 

                  (3) 

( ) 2T q T T
t

κ φ∂
+ ⋅∇ = ∇ +

∂
                                (4) 

2
m

H q H H
t

ν∂
= ∇× × + ∇

∂


                                              (5) 

0m mq∇ ⋅ =


                (6) 

0m H∇ ⋅ =


                              (7) 

( )0 2

1 1m
m m m m m m

q q q P q
t K

µρ
ε ε
∂ + ⋅∇ = −∇ − ∂ 


    

                                        ( )2
m m p mq H Hµ µ+ ∇ + ⋅∇

             (8)                    

( ) 2m
m m m m m m m

TA q T T
t

κ φ∂
+ ⋅∇ = ∇ +

∂
                             (9) 

2
m m em m

H q H H
t

ε ν∂
= ∇ × × + ∇

∂


                 (10) 

where ( ), ,q u v w=
 , H


, 0ρ , t , 

2

2
pH

P p
µ

= + , µ , pµ , T , κ , 

1
m

p

ν
µ σ

= , σ , ε , mµ , K , 0

0

( )
( )

p m

p f

C
A

C
ρ
ρ

= , pC , m
em

νν
ε

=  are 

namely the velocity vector, the magnetic field, the fluid density, the 
time, the total pressure, the fluid viscosity, the magnetic 
permeability, the temperature of the fluid, the thermal diffusivity of 
the fluid, the magnetic viscosity, the electrical conductivity, the 
porosity, the effective viscosity of the fluid in the porous layer, the 
permeability of the porous medium, the ratio of heat capacities, the 
specific heat, the effective magnetic viscosity, respectively, and the 
subscripts ‘m’ and ‘f’ refer to the porous and fluid layer, respectively. 

Under the steady state condition, we seek the form in fluid and 
porous layer as 

( ) ( ) 0, , , , , 0,0,0, , , ( )b bu v w P T H P z T z H z  =    


                             (11) 

[ ]0, , , , , 0,0,0, ( ), ( ), ( )m m m m m mb m mb m mu v w P T H P z T z H z  = 


              (12) 

The temperature distributions ( )bT z  and ( )mb mT z  are found to be 

( ) ( )0
0

( )( )
2

u
b

T T h zQz z dT z T
dκ

−− −
= + +  0 z d≤ ≤                        (13) 

( ) ( )0
0

( )( )
2

l m mm m m m
mb m

m m

T T h zQ z z dT z T
dκ

−− +
= + + 0m md z− ≤ ≤   (14) 

where ( )
( )0 2

m m mm u m l

m m m m

dd Q d Qdd T dTT
d d d d

κ κ
κ κ κ κ

++
= +

+ +
is the  interface 

temperature at 0mz z= =   and ( )h z  and ( )m mh z are the non-

dimensional temperature gradients with ( )
1

0

1h z dz =∫  and  

( )
1

0

1m m mh z dz =∫  in fluid and porous layer respectively and  subscript 

‘b’ denote the basic state. 
We superimpose infinitesimal disturbances on the basic state for 

fluid and porous layer, respectively 

[ ]0, , , 0, ( ), ( ), ( ) , , ,b bq P T H P z T z H z q P Hθ   ′ ′ ′= +   
                         (15) 

[ ]0, , , 0, ( ), ( ), ( ) , , ,m m m mb m mb m m m m mq P T H P z T z H z q P Hθ   ′ ′ ′= +   
      (16) 

where the primed quantities are the perturbed ones over their 
equilibrium counterparts. Now introducing (15) and (16) are 
substituted into the (1) to (10) and are linearized in the usual manner.  
Next, the pressure term is eliminated from (3) and (8) by taking curl 
twice on these two equations and only the vertical component is 
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retained.  The variables are then non- dimensionalized using d ,
2d
κ

, 

d
κ , 0 uT T−  and 0H   as the units of length, time, velocity, 

temperature and the magnetic field in the fluid layer and md ,
2
m

m

d
κ

, 

m

md
κ , 0lT T−   as the corresponding characteristic quantities in the 

porous layer. 
The dimensionless equations (after neglecting the primes) are: 
 

2 2
41

Pr
z

fm
w Hw Q

t z
τ∂∇ ∂∇

= ∇ +
∂ ∂

            (17) 

2

0

(2 1)( )
2( )I

u

z wwh z R
t T T
θ θ∂ −
= ∇ + +

∂ −
            (18) 

2z
fm z

H w H
t z

τ∂ ∂
= + ∇

∂ ∂
             (19) 

2 2 2
2 4 2 2ˆ

Pr
m m m zm

m m m m m mm
m m

w Hw w Q
t z

β µβ β τ∂∇ ∂∇
= ∇ −∇ +

∂ ∂
          (20) 

2
Im

0

(2 1)( )
2( )

m m m
m m m m m

l

z wA w h z R
t T T
θ θ∂ +

= +∇ +
∂ −

           (21) 

2zm m
mm m zm

H w H
t z

ε τ∂ ∂
= + ∇

∂ ∂
             (22) 

where, for fluid layer, Pr ν
κ

= , 
2 2
0p

fm

H d
Q

µ
µκτ

= , mv
fm

ντ
κ

= , 

0( )
i

I
u

RR
d T T

=
−

are namely, the Prandtl number,  the Chandrasekhar 

number,  the diffusivity ratio and the internal Rayleigh number 

respectively.  For the porous layer, Pr m
m

m

εν
κ

= , 2
2
m

K Da
d

β = = , β , 

ˆ mµµ
µ

= , 
2 2
0 2ˆp m

m
m mm

H d
Q Q d

µ
ε

µκ τ
= = , em

mm
m

ντ
κ

= , Im
0( )

im

m l

RR
d T T

=
−

 are 

namely, the Prandtl number, the Darcy number,  the porous 
parameter, the viscosity ratio, the 

 
Chandrasekhar number, the 

diffusivity ratio of fluid in porous layer and the internal Rayleigh 

number  respectively with 
2

i
dR φ
κ

= and 
2

m m
im

m

dR φ
κ

= .  

Introducing the normal mode expansion procedure for both 
layers in the form 

( )
( )
( )

( ), nt

w W z
z f x y e

H H z
θ

  
   = Θ  
     

                                                              (23) 

( )
( )
( )

( ), m

m m m
n t

m m m m m

m

w W z
z f x y e

H H z
θ

  
   = Θ  
     

                                                    (24) 

with 2 2
2 0f a f∇ + =  and 2 2

2 0m m m mf a f∇ + = , where a  and ma  are the 
non-dimensional horizontal wave numbers, n  and mn   are the 
frequencies. Since the dimensional horizontal wave numbers must be 

the same for the fluid and porous layers, we must have m

m

a a
d d
=  and 

hence ˆ
ma da=  where ˆ mdd

d
= is the depth ratio, ( )W z  and 

( )m mW z are the dimensionless vertical velocities in fluid and porous 
layer, respectively, ( )zΘ  and ( )m mzΘ  are the temperature 
distributions in fluid and porous layers, respectively. 

Introducing (23) & (24) into the (17) to (22) and obtained for 
0 1z≤ ≤  and 1 0mz− ≤ ≤ , respectively 

2 2 2 2 2 2( ) ( )
Pr fm
nD a D a W Q D D a Hτ − + − = − − 

 
                        (25) 

( )2 2 ( ) ( ) (2 1) ( ) 0ID a n z h z R z W z∗ − + Θ + + − =                          (26) 

( )2 2 0fm D a n H DWτ − + + =                    (27) 

2
2 2 2 2 2

2 2 2

ˆ[( ) 1]( )
Pr

( ) ( )

m
m m m m m

m

m mm m m m m

nD a D a W

Q D D a H z

βµβ

τ β

− + − − =

− −

         (28) 

( )2 2

Im

( )

( ) (2 1) ( ) 0

m m m m m

m m m m m

D a An z

h z R z W z∗

− + Θ

 + + + = 
          (29) 

( )2 2 ( ) 0mm m m m m mD a n H z DWτ ε − + + =             (30)  

where 
02( )

I
I

u

RR
T T

∗ =
−

 and Im
Im

02( )l

RR
T T

∗ =
−

. 

We assume that the principle of exchange stability to be valid for 
present problem, so we take 0mn n= =  and eliminating the magnetic 
field in equations (25) and (28) using equations (27) and (30), we get 
in 0 1z≤ ≤  and   1 0mz− ≤ ≤ , respectively.                          

( )22 2 2( ) ( )D a W z QD W z− =                                                           (31) 

( )2 2 ( ) [ ( ) (2 1)] ( ) 0ID a z h z R z W z∗− Θ + + − =                                 (32) 

( ) ( )2 2 2 2 2 2 2ˆ 1 ( ) ( )m m m m m m m m m mD a D a W z Q D W zµβ β − − − =               (33) 

( )2 2
Im( ) [ ( ) (2 1)] ( ) 0m m m m m m m m mD a z h z R z W z∗− Θ + + + =               (34) 

Boundary conditions 
The boundary conditions are non-dimensionalized and then 

subjected to normal mode expansion and are 

2 2(1) (1) 0,D W M a+ Θ =  
(1) 0, ( 1) 0, ( 1) 0,m m mW W D W= − = − =

ˆˆ ˆ(0) (0), (0) (0),m m mTW W TdDW D W= =

( ) ( )2 2 2 2 2ˆˆ (0) (0)m m mTd D a W D a W+ = + ,
3 2 3 2

2 3 2

ˆˆ ( (0) 3 (0)) (0)
ˆ ( (0) 3 (0))

m m

m m m m m

Td D W a DW D W

D W a D W

β

µβ

− = −

+ −
ˆ(1) 0, (0) (0),mD TΘ = Θ = Θ  (0) (0), ( 1) 0m m mD DΘ = Θ Θ − =          (35) 
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where 0

0

ˆ l

u

T T
T

T T
−

=
−

is the thermal ratio and 

0( )t uT T d
M

T
σ

µκ
∂ −

= −
∂

is the thermal Marangoni number. 

 
Method of solution 

The resulting eigenvalue problem solved exactly, the vertical 
velocities for fluid and porous layer ( )W z  and ( )m mW z  are found 
using the velocity boundary conditions (35), 

( ) [ ]1 1 2 3W z A cosh z a sinh z a cosh z a sinh zδ δ ζ ζ= + + +           (36) 

( ) 4 5 6
1

7

m m m m m m
m m

m m

a cosh z a sinh z a cosh z
W z A

a sinh z
η η ψ

ψ
+ + 

=  + 
          (37) 

where   

2 24 4
,

2 2
Q Q a Q Q a

δ ζ
+ + − +

= =

2 24 4,
2 2m m

E E F E E Fη ψ+ − − −
= = , 

2 2 2 2 4 2

2 2

ˆ ˆ2 1 ,
ˆ ˆ

m m m ma Q a aE Fµβ β µβ
µβ µβ
+ + +

= = , 

6 15 7 16 17
1

14

( )a aa δ δ δ
δ

− + +
= , 2 6 5 6a a δ δ= + , 1 10 7 11

3
9

( )a aa δ δ
δ
+

= , 

4 6 8 7a a δ δ= + , 5 1 12 7 13a a aδ δ= + , 23 25 26 22
6

25 21 24 22

a δ δ δ δ
δ δ δ δ

−
=

−
, 

23 24 26 21
7

24 22 25 21

a δ δ δ δ
δ δ δ δ

−
=

−
,  2 3 3 2

1
ˆˆ ( 3 )T d aδ β δ δ= − , 

2 3 3 2
2

ˆˆ ( 3 )T d aδ β ζ ζ= − , 2 3 2
3 ˆ ( 3 )m m m maδ µβ η η η= − − , 

2 3 2
4 ˆ ( 3 )m m m maδ µβ ψ ψ ψ= − − , 

2 2 2 2

5 2 2 2 2 2

ˆˆ[( ) ( )]
ˆˆ ˆˆ( ) ( )

m m m m

m m

a T a
Td a T a
µ ψ ηδ

ζ µ η
+ − +

=
+ − +

, 

2 2 2 2

6 2 2 2 2 2

ˆ ( ) ( )]
ˆ ˆ( ) ( )

m m

m m

a a
d a a
µ η δδ
ζ µ η

+ − +
=

+ − +
, 7 6

ˆ(1 )Tδ δ= + , 8 5
ˆ 1Tδ δ= − , 

3
9 2

ˆˆ

m

Tdζδδ δ
η

= − , 3
10 1

ˆˆ

m

Tdδδδ δ
η

= − + , 3
11 4

m

m

ψ δδ δ
η

= − , 

10
12

9

1 ˆˆ
m

Td ζδδ δ
η δ

 
= + 

 
, 11

13
9

ˆˆ1
m

m

Tdζδδ ψ
η δ

 
= −  

 
, 

10
14

9

sinh sinhδδ δ ζ
δ

= + ,  15 5 coshδ δ ζ= , 11
16

9

sinhδ ζδ
δ

= , 

17 6 cosh coshδ δ ζ δ= + , 12 15
18

14

δ δδ
δ

= , 12 16
19 13

14

δ δδ δ
δ

= + , 12 17
20

14

δ δδ
δ

=  

21 8 18cosh sinh coshm m mδ δ η δ η ψ= − + , 22 19 sinh sinhm mδ δ η ψ= − − , 

23 20 7sinh coshm mδ δ η δ η= − , 

24 8 18sinh cosh sinhm m m m m mδ η δ η δ η η ψ ψ= − − − , 

25 19 cosh coshm m m mδ η δ η ψ ψ= − + ,  26 7 20sinh coshm m m mδ η δ η δ η η= +  

Linear Temperature Profile 
For linear temperature profile,  

( ) 1h z = and ( ) 1m mh z =                                  (38) 

Introducing (38) into (32) & (34), using the temperature boundary 
conditions, we get ( )zΘ and ( )m mzΘ as 

[ ]1 1 2 1( ) ( )z A c coshaz c sinhaz g zΘ = + +                    (39) 

[ ]1 3 4 1( ) ( )m m m m m m m mz A c cosha z c sinha z g zΘ = + +                          (40) 

where 1 1 27 28 29 30( ) [ ]g z A δ δ δ δ= − + − , 

1 1 31 32 33 34( ) [ ]m mg z A δ δ δ δ= − + − ,  

1 2
27 12 2 (cosh sinh )

( )
E E z z a z

a
δ δ δ

δ
+

= +
−

, 

2
28 12 2 2

2 ( cosh sinh )
( )

E a z z
a

δδ δ δ
δ

= +
−

, 

1 2
29 2 32 2 ( cosh sinh )

( )
E E z a z a z

a
δ ζ ζ

ζ
+

= +
−

, 

2
30 3 22 2 2

2 ( cosh sinh )
( )

E a z a z
a

ζδ ζ ζ
ζ

= +
−

, 

1 2
31 4 52 2 ( cosh sinh )

( )
m m m

m m m m
m m

E E z a z a z
a

δ η η
η
+

= +
−

, 

2
32 5 42 2 2

2 ( cosh sinh )
( )

m m
m m m m

m m

E a z a z
a
ηδ η η

η
= +

−
, 

1 2
33 6 72 2 ( cosh sinh )

( )
m m m

m m m m
m m

E E z a z a z
a

δ ψ ψ
ψ
+

= +
−

, 

2
34 7 62 2 2

2 ( cosh sinh )
( )

m m
m m m m

m m

E a z a z
a
ψδ ψ ψ

ψ
= +

−
, 

1 21, 2I IE R E R∗ ∗= − = − , 1 Im 2 Im1, 2m mE R E R∗ ∗= − − = − , 

1 3 2 3 2 4 4 5
1ˆ , ( )mc Tc c c a
a

= + ∆ − ∆ = + ∆ − ∆ ,  

8 10 11 7
3

6 10 9 7

c ∆ ∆ + ∆ ∆
=
∆ ∆ + ∆ ∆

, 8 9 11 6
4

7 9 10 6

c ∆ ∆ − ∆ ∆
=
−∆ ∆ − ∆ ∆

,  

1 35 36 37 38[ ]δ δ δ δ∆ = − + + + ,  

1 2
35 12 2

( ) ( cosh sinh )
( )
E E a

a
δδ δ δ

δ
+

= +
−

, 

2
2 2

36 12 2 2 2 2

2 (cosh sinh )
( ) ( )

E E a
a a

δδ δ δ
δ δ

 
= − + − − 

, 

1 2
37 3 22 2

( ) ( cosh sinh )
( )
E E a a

a
ζδ ζ ζ

ζ
+

= +
−

, 

2
2 2

38 2 32 2 2 2 2

2 ( cosh sinh )
( ) ( )

E E a a
a a

ζδ ζ ζ
ζ ζ

 
= − + − − 

, 

1 4 2 5 1 6 2 7
2 2 2 2 2 2 2 2 2 2 2

2 2ˆ[ ]
( ) ( ) ( ) ( )

m m m m m m

m m m m m m m m

E a E a E a E aT
a a a a

η ψ
η η ψ ψ

∆ = − + −
− − − −

, 

1 1 2 2 1 2 3
3 2 2 2 2 2 2 2 2 2 2

2 2
( ) ( ) ( ) ( )

E a E a E E a
a a a a

δ ζ
δ δ ζ ζ

∆ = − + −
− − − −

, 

2
2 4 1 5 2 4

4 4002 2 2 2 2 2 2

2
( ) ( ) ( )

m m m m m

m m m m m m

E a E a E a
a a a

η η
η η η

∆ = + − + ∆
− − −

, 

2
2 6 1 7 2 6

400 2 2 2 2 2 2 2

2
( ) ( ) ( )

m m m m m

m m m m m m

E a E a E a
a a a

ψ ψ
ψ ψ ψ

∆ = + −
− − −

, 

2 2
1 1 2 2 1 3 2 2 2 2

5 2 2 2 2 2 2 2 2 2 2

2 2
( ) ( ) ( ) ( )

E a E E E a a E E a
a a a a

δ δ ζ ζ
δ δ ζ ζ

+ +
∆ = − + −

− − − −
, 

6 7cosh , sinhm ma a∆ = ∆ = ,  8 39 40 41 42[ ]δ δ δ δ∆ = − − + − , 

1 2
39 4 52 2 ( cosh sinh )

( )
m m

m m
m m

E E a a
a

δ η η
η

−
= −

−
, 

2
40 5 42 2 2

2 ( cosh sinh )
( )

m m
m m

m m

E a a
a
ηδ η η

η
= −

−
, 

1 2
41 6 72 2 ( cosh sinh )

( )
m m

m m
m m

E E a a
a

δ ψ ψ
ψ

−
= −

−
, 

2
42 7 62 2 2

2 ( cosh sinh )
( )

m m
m m

m m

E a a
a
ψδ ψ ψ

ψ
= −

−
, 
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9 10
ˆ sin , coshmTa ha a a∆ = ∆ = , 

11 1 2 3 4 5( ) sinh ( )cosha a a∆ = ∆ − ∆ − ∆ − ∆ − ∆  

The thermal Marangoni number for this model from (35) as 
follows 

2 2
1 2 3

1 2
1 2 1 2

[ (cosh sinh ) ( cosh sinh )]
( cosh sinh )

z a z a z a zM
a c a c a

δ δ δ ζ ζ ζ− + + +
=

+ + Λ + Λ
       (41) 

where 

1 2 2
1 1 12 2 2 2 2

2(cosh sinh ) ( cosh sinh )
( ) ( )
E E Ea a

a a
δδ δ δ δ

δ δ
+

Λ = + − +
− −

1 2 2
2 2 3 3 22 2 2 2 2

2( cosh sinh ) ( cosh sinh )
( ) ( )
E E Ea a a a

a a
ζζ ζ ζ ζ

ζ ζ
+

Λ = + − +
− −

 

Parabolic temperature profile 
For parabolic temperature profile,  

( ) 2h z z= and ( ) 2m m mh z z=              (42) 

Introducing (42) into (32) & (34), using the temperature boundary 
conditions, we get ( )zΘ and ( )m mzΘ as 

[ ]1 5 6 2( ) ( )z A c coshaz c sinhaz g zΘ = + +            (43) 

[ ]1 7 8 2( ) ( )m m m m m m m mz A c cosha z c sinha z g zΘ = + +            (44) 

where 2 1 43 44 45 46( ) [ ]g z A δ δ δ δ= − + − , 

2 1 47 48 49 50( ) [ ]m mg z A δ δ δ δ= − + − ,  

3 4
43 12 2 (cosh sinh )

( )
E E z z a z

a
δ δ δ

δ
+

= +
−

, 

4
44 12 2 2

2 ( cosh sinh )
( )

E a z z
a

δδ δ δ
δ

= +
−

, 

3 4
45 2 32 2 ( cosh sinh )

( )
E E z a z a z

a
δ ζ ζ

ζ
+

= +
−

, 

4
46 3 22 2 2

2 ( cosh sinh )
( )

E a z a z
a

ζδ ζ ζ
ζ

= +
−

, 

3 4
47 4 52 2 ( cosh sinh )

( )
m m m

m m m m
m m

E E z a z a z
a

δ η η
η
+

= +
−

, 

4
48 5 42 2 2

2 ( cosh sinh )
( )

m m
m m m m

m m

E a z a z
a
ηδ η η

η
= +

−
, 

3 4
49 6 72 2 ( cosh sinh )

( )
m m m

m m m m
m m

E E z a z a z
a

δ ψ ψ
ψ
+

= +
−

, 

4
50 7 62 2 2

2 ( cosh sinh )
( )

m m
m m m m

m m

E a z a z
a
ψδ ψ ψ

ψ
= +

−
, 

3 4, 2(1 )I IE R E R∗ ∗= = − + , 3 Im 4 Im1, 2(1 )m mE R E R∗ ∗= − − = − + , 

5 7 13 14 6 8 15 16
1ˆ , ( )mc Tc c c a
a

= + ∆ − ∆ = + ∆ − ∆ , 19 21 22 18
7

17 21 20 18

c ∆ ∆ + ∆ ∆
=
∆ ∆ + ∆ ∆

, 

20 19 22 17
8

18 20 21 17

c ∆ ∆ − ∆ ∆
=
−∆ ∆ − ∆ ∆

, 12 51 52 53 54[ ]δ δ δ δ∆ = − + + + , 

3 4
51 12 2

( ) ( cosh sinh )
( )
E E a

a
δδ δ δ

δ
+

= +
−

, 

2
4 4

52 12 2 2 2 2

2 (cosh sinh )
( ) ( )

E E a
a a

δδ δ δ
δ δ

 
= − + − − 

, 

3 4
53 3 22 2

( ) ( cosh sinh )
( )
E E a a

a
ζδ ζ ζ

ζ
+

= +
−

, 

2
4 4

54 2 32 2 2 2 2

2 ( cosh sinh )
( ) ( )

E E a a
a a

ζδ ζ ζ
ζ ζ

 
= − + − − 

, 

3 4 4 5 3 6 4 7
13 2 2 2 2 2 2 2 2 2 2

2 2ˆ[ ]
( ) ( ) ( ) ( )

m m m m m m

m m m m m m m m

E a E a E a E aT
a a a a

η ψ
η η ψ ψ

∆ = − + −
− − − −

, 

3 1 4 2 3 4 3
14 2 2 2 2 2 2 2 2 2 2

2 2
( ) ( ) ( ) ( )

E a E a E E a
a a a a

δ ζ
δ δ ζ ζ

∆ = − + −
− − − −

, 

2
4 4 3 5 4 4

15 1502 2 2 2 2 2 2

2
( ) ( ) ( )

m m m m m

m m m m m m

E a E a E a
a a a

η η
η η η

∆ = + − + ∆
− − −

, 

2
4 6 3 7 4 6

150 2 2 2 2 2 2 2

2
( ) ( ) ( )

m m m m m

m m m m m m

E a E a E a
a a a

ψ ψ
ψ ψ ψ

∆ = + −
− − −

, 

2 2
3 1 4 4 3 3 2 4 4 2

16 2 2 2 2 2 2 2 2 2 2

2 2
( ) ( ) ( ) ( )

E a E E E a a E E a
a a a a

δ δ ζ ζ
δ δ ζ ζ

+ +
∆ = − + −

− − − −
, 

17 18cosh , sinhm ma a∆ = ∆ = ,  19 55 56 57 58[ ]δ δ δ δ∆ = − − + − , 

3 4
55 4 52 2 ( cosh sinh )

( )
m m

m m
m m

E E a a
a

δ η η
η

−
= −

−
, 

4
56 5 42 2 2

2 ( cosh sinh )
( )

m m
m m

m m

E a a
a
ηδ η η

η
= −

−
, 

3 4
57 6 72 2 ( cosh sinh )

( )
m m

m m
m m

E E a a
a

δ ψ ψ
ψ

−
= −

−
, 

4
58 7 62 2 2

2 ( cosh sinh )
( )

m m
m m

m m

E a a
a
ψδ ψ ψ

ψ
= −

−
, 

20 21
ˆ sin , coshmTa ha a a∆ = ∆ = , 

22 12 13 14 15 16( ) sinh ( )cosha a a∆ = ∆ − ∆ − ∆ − ∆ − ∆  

The thermal Marangoni number for this model from (35) as follows 

2 2
1 2 3

2 2
5 6 3 4

[ (cosh sinh ) ( cosh sinh )]
( cosh sinh )

z a z a z a zM
a c a c a

δ δ δ ζ ζ ζ− + + +
=

+ + Λ + Λ
       

(45) 

3 4 4
3 1 12 2 2 2 2

2(cosh sinh ) ( cosh sinh )
( ) ( )
E E Ea a

a a
δδ δ δ δ

δ δ
+

Λ = + − +
− −

3 4 4
4 2 3 3 22 2 2 2 2

2( cosh sinh ) ( cosh sinh )
( ) ( )
E E Ea a a a

a a
ζζ ζ ζ ζ

ζ ζ
+

Λ = + − +
− −

 

Inverted parabolic temperature profile 
For inverted parabolic temperature profile, 

( ) 2(1 )h z z= − and ( ) 2(1 )m m mh z z= −             (46) 

Introducing (46) into (32) & (34), using the temperature boundary 
conditions, we get ( )zΘ and ( )m mzΘ as  

[ ]1 9 10 3( ) ( )z A c coshaz c sinhaz g zΘ = + +                           (47) 

[ ]1 11 12 3( ) ( )m m m m m m m mz A c cosha z c sinha z g zΘ = + +                        (48) 

where 3 1 59 60 61 62( ) [ ]g z A δ δ δ δ= − + − ,  

3 1 63 64 65 66( ) [ ]m mg z A δ δ δ δ= − + − ,  

5 6
59 12 2 (cosh sinh )

( )
E E z z a z

a
δ δ δ

δ
+

= +
−

, 

6
60 12 2 2

2 ( cosh sinh )
( )

E a z z
a

δδ δ δ
δ

= +
−

, 

5 6
61 2 32 2 ( cosh sinh )

( )
E E z a z a z

a
δ ζ ζ

ζ
+

= +
−

, 
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6
62 3 22 2 2

2 ( cosh sinh )
( )

E a z a z
a

ζδ ζ ζ
ζ

= +
−

, 

5 6
63 4 52 2 ( cosh sinh )

( )
m m m

m m m m
m m

E E z a z a z
a

δ η η
η
+

= +
−

, 

6
64 5 42 2 2

2 ( cosh sinh )
( )

m m
m m m m

m m

E a z a z
a
ηδ η η

η
= +

−
, 

5 6
65 6 72 2 ( cosh sinh )

( )
m m m

m m m m
m m

E E z a z a z
a

δ ψ ψ
ψ
+

= +
−

, 

6
66 7 62 2 2

2 ( cosh sinh )
( )

m m
m m m m

m m

E a z a z
a
ψδ ψ ψ

ψ
= +

−
, 

5 62, 2 2I IE R E R∗ ∗= − = − , 5 Im 6 Im2 1, 2 2m mE R E R∗ ∗= − − − = − , 

9 11 24 25 10 12 26 27
1ˆ , ( )mc Tc c c a
a

= + ∆ − ∆ = + ∆ − ∆ ,  

30 32 33 29
11

28 32 29 31

c ∆ ∆ + ∆ ∆
=
∆ ∆ + ∆ ∆

, 30 31 33 28
12

31 29 32 28

c ∆ ∆ − ∆ ∆
=
−∆ ∆ − ∆ ∆

,  

23 67 68 69 70[ ]δ δ δ δ∆ = − + + + ,  

5 6
67 12 2

( ) ( cosh sinh )
( )
E E a

a
δδ δ δ

δ
+

= +
−

, 

2
6 6

68 12 2 2 2 2

2 (cosh sinh )
( ) ( )

E E a
a a

δδ δ δ
δ δ

 
= − + − − 

, 

5 6
69 3 22 2

( ) ( cosh sinh )
( )
E E a a

a
ζδ ζ ζ

ζ
+

= +
−

, 

2
6 6

70 2 32 2 2 2 2

2 ( cosh sinh )
( ) ( )

E E a a
a a

ζδ ζ ζ
ζ ζ

 
= − + − − 

, 

5 4 6 5 5 6 6 7
24 2 2 2 2 2 2 2 2 2 2

2 2ˆ[ ]
( ) ( ) ( ) ( )

m m m m m m

m m m m m m m m

E a E a E a E aT
a a a a

η ψ
η η ψ ψ

∆ = − + −
− − − −

, 

5 1 6 2 5 6 3
25 2 2 2 2 2 2 2 2 2 2

2 2
( ) ( ) ( ) ( )

E a E a E E a
a a a a

δ ζ
δ δ ζ ζ

∆ = − + −
− − − −

, 

2
6 4 5 5 6 4

26 2602 2 2 2 2 2 2

2
( ) ( ) ( )

m m m m m

m m m m m m

E a E a E a
a a a

η η
η η η

∆ = + − + ∆
− − −

, 

2
6 6 5 7 6 6

260 2 2 2 2 2 2 2

2
( ) ( ) ( )

m m m m m

m m m m m m

E a E a E a
a a a

ψ ψ
ψ ψ ψ

∆ = + −
− − −

, 

2 2
5 1 6 6 5 3 2 6 6 2

27 2 2 2 2 2 2 2 2 2 2

2 2
( ) ( ) ( ) ( )

E a E E E a a E E a
a a a a

δ δ ζ ζ
δ δ ζ ζ

+ +
∆ = − + −

− − − −
, 

28 29cosh , sinhm ma a∆ = ∆ = ,  30 71 72 73 74[ ]δ δ δ δ∆ = − − + − , 

5 6
71 4 52 2 ( cosh sinh )

( )
m m

m m
m m

E E a a
a

δ η η
η

−
= −

−
, 

6
72 5 42 2 2

2 ( cosh sinh )
( )

m m
m m

m m

E a a
a
ηδ η η

η
= −

−
, 

5 6
73 6 72 2 ( cosh sinh )

( )
m m

m m
m m

E E a a
a

δ ψ ψ
ψ

−
= −

−
, 

6
74 7 62 2 2

2 ( cosh sinh )
( )

m m
m m

m m

E a a
a
ψδ ψ ψ

ψ
= −

−
, 

31 32
ˆ sin , coshmTa ha a a∆ = ∆ = , 

33 23 24 25 26 27( ) sinh ( )cosha a a∆ = ∆ − ∆ − ∆ − ∆ − ∆   

The thermal Marangoni number for this model from (35) as follows 

2 2
1 2 3

3 2
9 10 5 6

[ (cosh sinh ) ( cosh sinh )]
( cosh sinh )

z a z a z a zM
a c a c a

δ δ δ ζ ζ ζ− + + +
=

+ + Λ + Λ
      (49) 

5 6 6
5 1 12 2 2 2 2

2(cosh sinh ) ( cosh sinh )
( ) ( )
E E Ea a

a a
δδ δ δ δ

δ δ
+

Λ = + − +
− −

5 6 6
6 2 3 3 22 2 2 2 2

2( cosh sinh ) ( cosh sinh )
( ) ( )
E E Ea a a a

a a
ζζ ζ ζ ζ

ζ ζ
+

Λ = + − +
− −

 

RESULTS AND DISCUSSION 

 
The eigenvalue, thermal Marangoni number M for non-Darcian-

Benard-magneto-surface tension driven convection is obtained as an 
expression of the diverse parameters, which are d̂ , a and ma , β ,  

T̂ , µ̂ , IR and ImR , Q  namely, the depth ratio, the horizontal 
wavenumbers, the porous parameter, the thermal ratio, viscosity 
ratio, the internal Rayleigh numbers for fluid and porous layers and 
the Chandrasekhar number respectively. The curves of thermal 
Marangoni number M  are drawn as a function of the thermal ratio 
T̂ . By observing the graphs in Figures 2-6, it is evident that, for 
smaller values of T̂ , the thermal Marangoni number M falls till 
some value of T̂ , again thermal Marangoni rises as the value of 
thermal ratio rises. The weightage of the horizontal wave number a , 
the porous parameter β , the Chandrasekhar number Q , the viscosity 
ratio µ̂ , the internal Rayleigh number IR on non-Darcian-Benard-
Magneto-Surface tension driven convection is explained in the 
upcoming graphs where with the variation of one parameter with the 
accompanying parameters are fixed as 10Q = , 1ε = ,  0.1β = , 

2.5a = , ˆ 2.5d = , ˆ 2.5µ = , 3IR = − and Im 1R = . 
Fig.2a-2c explain the variation of the horizontal wave number 

a on the value of thermal Marangoni number M for the values of 
a =1.5, 2.0 and 2.5, for linear, parabolic and inverted parabolic 
temperature profiles respectively. From the curves, it is 
understandable that for smaller values of thermal ratio there is no 
much effect of this parameter on thermal Marangoni number. For 
larger values of thermal ratio, there is considerable effect of this 
parameter on thermal Marangoni number. For a fixed value of 
thermal ratio, the thermal Marangoni number reduces with an 
augment in the value of a . So, the system becomes firm for smaller 
values of the horizontal wave number. Analogous effects are seen for 
both uniform and non-uniform temperature profiles. 

Fig.3a-3c discuss the importance of β , the porous parameter on 
the thermal Marangoni number and it is for β =1.1, 1.2 and 1.3. The 
curves are diverging radically for all the temperature profiles, which 
means that the role of the porous parameter is most important for 
larger values of thermal ratio. For fixed value of thermal ratio, a 
boost in the value of β , boosts the Marangoni number. Hence, the 
system can be stabilized by boosting the value of β . Boosting the 
value of porous parameter is nothing but boosting permeability. Even 
though there is more permeability for the fluid in the porous layer, 
the system still tends to be stable which is quite interesting and may 
be due to influence of vertical magnetic field. 

The role of Chandrasekhar number Q  is discussed in Fig. 4a-4c 
for the three temperature profiles for  values of Q = 10, 15 and 20. 
The hugely diverging curves  for all the three profiles show the 
prominence of Q  for larger thermal ratio values. For a fixed thermal 
ratio, an enhance in the value of Q , enhances the thermal Marangoni 
number, hence the non-Darcian-Benard-magneto-surface tension 
driven convection can be preponed by decreasing the value of Q  and 
hence the system can be destabilized. This is physically reasonable as 
the application of magnetic field stabilizes non-Darcian-Benard-
magneto-surface tension driven convection. 
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Fig. 2a-2c  Thermal Marangoni number M versus thermal ratio T̂ for 
different values of horizontal wave number a  

 

 

Fig. 3a-3c  Thermal Marangoni number M versus thermal ratio T̂ for 
different values of porous parameter β  
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Fig. 4a-4c  Thermal Marangoni number M versus thermal ratio T̂ for 
different values of Chandrasekhar number Q  

 

Fig. 5a-5c  Thermal Marangoni number M versus thermal ratio T̂ for 
different values of viscosity ratio µ̂  
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Fig. 6a-6c  Thermal Marangoni number M versus thermal ratio T̂ for 
different values of internal Rayleigh number IR  
 

The effects of the viscosity ratio µ̂  on the thermal Marangoni 
number is shown in the Fig. 5a-5c, for all the three temperature 
profiles. The curves are diverging for larger values of thermal  ratio, 
which indicates that the effect of µ̂ is effectual only for the higher 
values of thermal ratio and an enhance in the value of viscosity ratio 
µ̂ , decreases the thermal Marangoni number M hence, the system 
can be stabilized by choosing smaller values of  viscosity ratio µ̂ . 

The importance of internal Rayleigh number IR on the 
Marangoni number is explained for all the three temperature profiles 
depicted the Fig. 6a-6c for IR =-3, -4 and -5. Analogous effects are 
observed for the three profiles. The curves are slightly diverging 
indicating its prominence for composite layers with larger values of 
thermal ratio T̂ . Decreasing the values of IR , the Marangoni 
number increases, hence the non-Darcy-Benard-magneto-surface 
tension driven convection can be delayed by decreasing the values of 

IR . That is, heat absorption in the fluid layer favors stability of the 
system. 

 
CONCLUSIONS 
 

Following conclusions are drawn from this study: 
 
i. The effects of the physical parameters considered in the study 

is similar to both uniform and non-uniform (parabolic and 
inverted parabolic) temperature gradients.  

ii. The inverted parabolic temperature gradient is the exceedingly  
 stable when compared to that of linear and parabolic 
temperature gradients. 

iii. Non-Darcy-Benard-magneto-surface tension driven convection  
 can be deferred by increasing the values of porous parameter 
and Chandrasekhar number. 

iv. Non-Darcy-Benard-magneto-surface tension driven convection 
can be preponed by choosing larger values of the horizontal 
wavenumber a  and viscosity ratio µ̂ . 

v. The presence of heat sink in the fluid layer postpones non-
Darcy-Benard-magneto-surface tension driven convection 
whereas there is no effect of internal Rayleigh number ImR  on 
the same. 
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