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Abstract 
 
Polarization tensor is an object-specific property in order to indicate its shape, size and also the 
material used. In this paper, we describe an accurate and easy-implemented method based on 
numerical integration in order to compute the first order polarization tensor. We proposed an 
alternative method to deal with boundary integral equation of first order polarization tensor which is 
quadratic element numerical integration. This method uses standard three points Gaussian 
quadrature in order to generate the singular integral operator matrix of polarization tensor. Different 
values of object’s conductivity are used in order to study the behavior of the polarization tensor. The 
validation of the results is based on the exact solution provided for sphere and ellipsoid geometry by 
previous researcher. Moreover, numerical computation showed that the quadratic element 
integration generates high accuracy numerical results for the approximated first order polarization 
tensor. The numerical results are illustrated in graphical form in order to show the validity of the 
proposed scheme. 
 
Keywords: Quadratic element integration; polarization tensor; boundary integral equation; Gaussian 
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INTRODUCTION 
 

Recently, the study of polarization tensor (PT) have attracted the 
attention of researchers interested in science and engineering area. The 
perturbation due to the presence of conducting object inclusion can be 
represented by asymptotic formula and the dominant terms of the 
formula is said to be the PT [1–3]. The term PT first arose from the 
study of Polya [4] where he defined PT as virtual mass involving the 
motion of solids through fluid when the solids have zero conductivity. 
This study has then been extensively developed by researchers as in 
[5,6] where they denoted the new PT as Polya-Szego PT. Later, in 
recent years, the term Generalized Polarization Tensor (GPT) which 
combines the infinite numbers of PT, has been defined and the lowest 
order of GPT is said to be first order PT (FPT) [1]. FPT is a rank 2 GPT 
where it contains geometric and physical properties of an object 
inclusion. The information about the object is beneficial to determine 
between used and unused material underground for example. The 
concept of GPT has generalized the old concept of Polya-Szego PT that 
has been studied by a number of researchers in various areas such as in 
[1,7–9]. Not only that, the applications of PT can be seen through 
various applications in metal detection which is landmine detection 
[10–15], electrosensing fish [16–22] and also in dilute composites 
models. 

Several numerical methods have been implemented by former 
researchers in order to compute the first order PT [23,24]. For example, 
semi algebraic method has been employed by Capdeboscq et al. where 
they have shown that, the computation of objects with higher 
conductivity would produce lower convergence of PT compared to 
lower conductivity object [24]. Unfortunately, the method that has been 

derived is restricted and can only be applied to two dimensional cases 
of PT. Then, from this, the study of computational PT has been 
extended by a few researchers where they adopt different numerical 
methods such as boundary element method (BEM) and also linear 
element integration [17,25,26]. New technique has been introduced 
where the operating system regime called BEM++ in order to compute 
first order of PT is used [25]. Ammari and Kang [1] defined PT in the 
form of boundary integral equation where from this boundary integral, 
Khairuddin and Lionheart [17] used linear element integration in order 
to numerically calculate PT for various kinds of shapes of object such 
as sphere, cylinder, cube and the other basic symmetrical shapes. Their 
study is can be used for any three dimensional domains. 

Hence from the numerical methods that has been introduced and 
developed, we came out with new technique to numerically calculate 
the FPT which is using quadratic element numerical integration. Here, 
our method is slightly different from the method of Khairuddin and 
Lionheart [17] where we compute the boundary integral equation with 
the usage of Gaussian quadrature of three points and six nodal shape 
functions involving 𝜉 and 𝜂 . The shape function of 𝜉 and 𝜂 is used in 
order to change the local coordinates to global coordinates. Firstly, we 
are going to review the definition of PT in the form of boundary integral 
equation, and then we will provide the methodology using quadratic 
interpolation. The comparison between analytical solution (provided in 
[1]) with numerical solution of quadratic element integration were 
made and the convergence of the results will be analysed. Not even that, 
we will also compare the numerical solution for first order PT by using 
linear element numerical integration with our approach.  

For next section will review the mathematical background of PT 
that will help to increase the understanding of PT. 

RESEARCH ARTICLE 
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FIRST ORDER POLARIZATION TENSOR 
 

The terminology of PT is originated from the transmission problem 
and has been defined by the author in [1]. Consider a Lipschitz bounded 
domain of 𝐵 in such that the origin, 𝑂 is inside 𝐵. Then, Ammari and 
Kang stated the condition of the conductivity which denoted as 𝑘 must 
not be equal to 1 and is between 0 to +∞ (0 < 𝑘 ≠ 1 < ∞). Let 𝑢 be 
the solution of the following transmission problem where 𝐻 is the 
harmonic function in ℝ1 

 
(𝑢 −𝐻)(𝑥)

= 5
(−1)|7|

𝑖! 𝑗! 𝜕<7 	Γ(𝑥)	𝑀7@(𝑘, 𝐵)𝜕@𝐻(0)
BC

|7|,|@|DE

			as		|𝑥| → +∞.		 

 

(1) 

Here, 𝑖	 = 	 (𝑖E, 𝑖J, 𝑖1) and 𝑗	 = 	 (𝑗E, 𝑗J, 𝑗1) are the multi 
indices, Γ is the fundamental solution of the Laplacian while 𝑀K7@ is the 
GPT. The definition of GPT is expressed as an integral equation over 
the boundary domain of 𝐵 as stated in equation (2)  
 

𝑀K7@ = L 𝑦@𝜙7(𝑦)
OP

𝑑𝜎(𝑦),								𝑦 ∈ 𝜕𝐵 (2) 

 
𝑦@ is the coordinates for element 𝑦 while 𝜙7(𝑦) is defined as linear 
system of equations as in equation (3) 
 

𝜙7(𝑦) = (𝜆𝐼 − 𝐾P∗)X𝑣<	 ⋅ ∇𝑥7\(𝑦)					𝑦 ∈ 𝜕𝐵   (3) 
 
for 𝑥, 𝑦 inside the domain 𝐵 with 𝜆 = (𝑘 + 1)/(2𝑘 − 2). The singular 
integral operator is defined with Cauchy principle value 𝑃. 𝑉. where 
 

𝐾P∗𝜙(𝑥) =
1
4𝜋𝑃. 𝑉.L

〈𝑥 − 𝑦, 𝑣<〉
|𝑥 − 𝑦|1 𝜙(𝑦)

OP
𝑑𝜎(𝑦) (4) 

 
for 𝜙(𝑥) ∈ 𝐿J(𝜕𝐵) such that 𝐿J(𝜕𝐵) is the space of square integrable 
functions on 𝜕𝐵. Throughout this study, our main intention in order to  
find PT is by solving the equation in (2), (3) and (4). The only parameter 
that we need to consider in order to estimate the first order of PT is the 
conductivity and also the shape of the object inclusion B. We also will 
refer to the properties of PT that is proven by Ammari and Kang [1] in 
order to validate the numerical results. 
 
Theorem 1. If 𝑘	 > 	1, then the first order PT is a positive 
definite(matrix)  while it is a negative definite matrix if  0	 < 	𝑘	 < 	1. 
 

For the next section, we are going to review the analytical solution 
that has been provided by previous researchers. 
 
Analytical Solution of First Order Polarization Tensor 

The analytical solution of PT has been derived initially which is 
based on the geometry of ellipsoid [1]. The authors consider the 
ellipsoid 𝑥J/𝑎	 +	𝑦J	/𝑏	 + 	𝑧J/𝑐	 = 	1 with semi principle axes 𝑎, 𝑏 
and 𝑐 where 0	 < 	𝑐	 = 	𝑏	 = 	𝑎. This analytical solution is represented 
in the form of matrix 3 by 3 where the main diagonal is in the form of 
integral containing the semi principle axes of 𝑎, 𝑏 and 𝑐. The following 
matrix represents the first order PT of object 𝐵 with specific 
conductivity 

 
𝑀K(𝑘, 𝐵) =	

(𝑘 − 1)|𝐵|

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1
(1− 𝑑E) + 𝑘𝑑E

0 0

0
1

(1 − 𝑑J) + 𝑘𝑑J
0

0 0
1

(1 − 𝑑1) + 𝑘𝑑1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

(5) 
 

where |𝐵| is referred as the volume of an object while 𝑑E,𝑑J,𝑑1 are in 
the form of integral equation containing semi principle axes 𝑎,𝑏,𝑐 as in 
equation (6). 
 
 
 

𝑑E =
𝑏𝑐
𝑎J
⌡
⎮
⎮
⌠ 1

𝑡Jv𝑡J − 1 + w𝑏𝑎x
J
v𝑡J − 1 + w𝑐𝑎x

J
	
𝑑𝑡

BC

E

,	

𝑑J =
𝑏𝑐
𝑎J

⌡
⎮
⎮
⎮
⎮
⌠

1

y𝑡J − 1 + w𝑏𝑎x
J
z

1
J
v𝑡J − 1 + w𝑐𝑎x

J
	

𝑑𝑡

BC

E

,	

𝑑J =
𝑏𝑐
𝑎J

⌡
⎮
⎮
⎮
⌠

1

v𝑡J − 1 + w𝑏𝑎x
J
	{𝑡J − 1 + w𝑐𝑎x

J
|
1
J
𝑑𝑡

BC

E

, 

 
(6) 

 
By setting 𝑎	 = 	𝑏	 = 	𝑐, the integrals of 𝑑E,𝑑J and 𝑑1 will resulted 

to 1/3 and the first order PT of sphere is given as 
 

𝑀K}(𝑘, 𝐵) = (𝑘 − 1)|𝐵|

⎣
⎢
⎢
⎢
⎢
⎡
3

2 + 𝑘 0 0

0
3

2 + 𝑘 0

0 0
3

2 + 𝑘⎦
⎥
⎥
⎥
⎥
⎤

 (7) 

 
 
where in this case the volume of sphere, |𝐵| will be equal to 4/3𝜋𝑟. 
From the integral equation of PT in (2), we will implement the quadratic 
element integration technique and use the meshing software to 
discretize the domain 𝐵. Next part will describe the discretization of the 
geometry using the Netgen Mesh Generator software.  
 
Discretization of Object using Netgen Mesh Generator (NG 
Solver) 
 

Before we compute the first order PT using our approach, we must 
firstly discretize the object which is sphere into triangular mesh. This is 
crucial so that we can observe how the meshes sizes affect the accuracy 
of the computation of first order PT. Therefore, the adoption of Netgen 
mesh generator software is needed to perform triangularization to the 
specific object. This NG Solver is user-friendly software that can 
generate the mesh and also the nodal points of each triangular element 
[27]. It will auto-generate the meshes where it allows the user to choose 
linear element which involve three nodal points or quadratic triangular 
elements which involve six nodal points. The meshing option that build 
in NG Solver must be set to second order element which represent the 
quadratic interpolation involving six nodal points. Figure 1 shows 
sphere geometry that has been discretized into 968 triangular elements 
using NG Solver software. 
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Figure 1  The discretization of sphere xJ + yJ + zJ = 1	into 968 triangular 
elements using NG Solver software. 
 

From this triangularization, we will import the information that has 
been generated by Netgen software into MATLAB routine. Then after 
that, we will start to compute the first order PT. Figure 2 show the 
process to discretize the geometry by NG Solver starting From meshing 
size to be equal to 68 triangles until 968 triangles. 

 

 
 

Figure 2  Flow chart to show the process using NG Solver. 
 

Next section provides the methodology of quadratic element 
numerical integration and the resulted matrix system after the 
implementation of the approach. 
 
QUADRATIC ELEMENT NUMERICAL INTEGRATION 
 

Throughout this paper, we intend to implement numerical 
integration technique in order to solve the integral of PT. The 
computation of the integral of the first order PT involves the 
computation of the singular integral operator, 𝐾P∗ , solving linear system 
of 𝜙7(𝑦) and lastly, the integral of PT itself. We expressed the singular 
integral operator, 𝐾P∗ in form of integral equation containing surface 
projection and Jacobian as in the form 

 
 

 

𝐾P∗𝜙(𝑥) =
1
4𝜋𝑃.𝑉.L

〈𝑥 − 𝑦, 𝑣<〉
|𝑥 − 𝑦|1OP

𝜙(𝑦)𝑑𝜎(𝑦),	

=
1
4𝜋𝑃. 𝑉.L

〈𝑥 − 𝑦, 𝑣<〉
|𝑥 − 𝑦|1OP

𝜙(𝑦)	SurP(𝜉, 𝜂)|Jac(𝜉, 𝜂)|	𝑑𝜉𝑑𝜂(𝑦). 

(8) 
Here, 𝑥 and 𝑦 is the elements of object inclusion whilst 𝑥	 − 	𝑦 is 

the distance between both elements. 𝑣< is the outward normal vector at 
element 𝑥, SurP(𝜉, 𝜂) is the surface projection of the triangular 
elements while 𝐽𝑎𝑐(𝜉, 𝜂) is the Jacobian in the form of 𝜉 and 𝜂. Since 
the analytical solution of sphere is provided, we use sphere geometry, 
𝑥J 	+	𝑦J 	+	𝑧J 	= 	1 to compute its approximated first order 
polarization. The surface projection will yield to 
 

 SurP = 𝜓(𝑥, 𝑦, 𝑧) =
〈2𝑥, 2𝑦, 2𝑧〉
|〈2𝑥, 2𝑦, 2𝑧〉|, 

(9) 

while 
|Jac|

=

⎣
⎢
⎢
⎡{
(4𝜉 − 1)𝑥E + (−4𝜏 + 1)𝑥1 + 4𝜂𝑥�

−4𝜂𝑥� + (4 − 8𝜉 − 4𝜂)𝑥�
| {

(4𝜉 − 1)𝑦E + (−4𝜏 + 1)𝑦1 + 4𝜂𝑦�
−4𝜂𝑦� + (4 − 8𝜉 − 4𝜂)𝑦�

|

{
(4𝜂 − 1)𝑥J + (−4𝜏 + 1)𝑥1 + 4𝜉𝑥�

+(4 − 4𝜉 − 8𝜂)𝑥� − 4𝜉𝑥�
| {

(4𝜂 − 1)𝑦J + (−4𝜏 + 1)𝑦1 + 4𝜉𝑦�
+(4 − 4𝜉 − 8𝜂)𝑦� − 4𝜉𝑦�

|⎦
⎥
⎥
⎤. 

(10) 
Equation in (9) and (10) present the surface projection and the 

Jacobian that we are using throughout the study. We change the local 
coordinates into global coordinates by implementing the shape 
functions of six nodes as stated in equation (11). 

 

𝑥(𝜉, 𝜂) = 5 𝑥�𝑁�(𝜉, 𝜂),
�

�DE

	

	𝑦(𝜉, 𝜂) = 5𝑦�𝑁�(𝜉, 𝜂),
�

�DE

			

𝑧(𝜉, 𝜂) =5𝑥�𝑁�(𝜉, 𝜂).
�

�DE

 

 

(11) 

where 𝑁�,𝑁� and 𝑁� is the shape function for 𝑚 = 𝑛 = 𝑙 = 1…6 
which indicate 1 until six nodal points of each triangular elements. They 
can be expressed as 

 

𝑁E = 2𝜉J − 𝜉,	
𝑁J = 2𝜂J − 𝜂,	

𝑁1 = 2𝜉J + 2𝜂J + 4𝜉𝜂 − 𝜉 − 𝜂 + 1,	
𝑁� = 4𝜉𝜂,	

𝑁� = −4𝜂J − 4𝜉𝜂 + 4𝜂,	
	𝑁� = −4𝜉J − 4𝜉𝜂 + 4𝜂. 

(12) 

 
Instead of using the midpoint as in Khairuddin and Lionheart in 

[28], we are going to use the Gaussian points and weight in order to 
transform the local coordinates of the meshes that had been discretized 
into global coordinates containing 𝜉 and 𝜂. The standard Gaussian 
quadrature of three points during the computation of first order PT are 
𝜉 = 2/3, 𝜂	 = 	1/6 (for Gauss points 1 denoted as 𝐺𝑃E),  𝜉 =
	1/6, 𝜂	 = 	2/3 (for Gauss points denoted as 2 denoted as 𝐺𝑃J)) and 
lastly 𝜉	 = 	1/6, 𝜂	 = 	1/6 (for Gauss points 3 denoted as 𝐺𝑃1)). The 
linear integration element integration that has been done by Khairuddin 
and Lionheart [23] produced 𝑁 ×𝑁 matrix system of 𝐾P∗. We denoted 
the Gaussian point for element 𝑥 by 𝐺𝑃�� while for element 𝑦 we 
denoted as 𝐺𝑃��    For our case, we will obtain 3𝑁	 × 	3𝑁	matrix system 
as in the form   
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w𝐺𝑃��,𝐺𝑃��x =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡w𝐺𝑃�DE

E ,𝐺𝑃�DE
(E…1)x … w𝐺𝑃�DEE ,𝐺𝑃�D�

(E…1)x

w𝐺𝑃�DEJ ,𝐺𝑃�DE
(E…1)x … w𝐺𝑃�DEJ ,𝐺𝑃�D�

(E…1)x

w𝐺𝑃�DE1 ,𝐺𝑃�DE
(E…1)x … w𝐺𝑃�DE1 ,𝐺𝑃�D�

(E…1)x
⋮ ⋱ ⋮

w𝐺𝑃�D�E , 𝐺𝑃�DE
(E…1)x … w𝐺𝑃�D�E ,𝐺𝑃��D�

(E…1)x

w𝐺𝑃�D�J , 𝐺𝑃�DE
(E…1)x … w𝐺𝑃�D�J ,𝐺𝑃�D�

(E…1)x

(𝐺𝑃�D�1 , 𝐺𝑃�DEE ) … w𝐺𝑃�D�1 ,𝐺𝑃�D�
(E…1)x⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

which yield to matrix system of 𝐾P∗ given by 
 

𝐾P∗𝜙(𝑋∗)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑤£𝐾 w𝑥E

E, 𝑦E
(E…1)x … 𝑤£𝐾 w𝑥EE,𝑦�

(E…1)x

𝑤£𝐾w𝑥EJ, 𝑦E
(E…1)x … 𝑤£𝐾w𝑥EJ, 𝑦E

(E…1)x

𝑤£𝐾w𝑥E1, 𝑦E
¤¥(£)x … 𝑤£𝐾w𝑥E1, 𝑦E

(E…1)x
⋮ ⋱ ⋮

𝑤£𝐾 w𝑥�E , 𝑦E
(E…1)x … 𝑤£𝐾 w𝑥�E , 𝑦�

(E…1)x

𝑤£𝐾 w𝑥�J , 𝑦E
(E…1)x … 𝑤£𝐾 w𝑥�J , 𝑦�

(E…1)x

𝑤£𝐾 w𝑥�1 , 𝑦E
(E…1)x … 𝑤£𝐾 w𝑥�1 , 𝑦�

(E…1)x⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜙¦§

E

𝜙¦§
J

𝜙¦§
1

⋮
𝜙¦¨
E

𝜙¦¨
J

𝜙¦¨
1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (13) 

 
Here, 1,2 and 3 indicate the Gaussian points that we have used. 

After obtaining the matrix of 𝐾P∗, we substitute this matrix into linear 
system of 𝜙7(𝑦), which resulted to 3𝑁	 × 3 matrix. The method that we 
used in order to solve the linear system of 𝜙7(𝑦) is Gaussian elimination 
method (GEM). It is well known that in order to find the solution of 
matrix system, we simply need to find the inverse of (𝜆𝐼	–	𝐾P∗) and then 
multiplying it with the outward normal vector of element 𝑥. Lastly, for 
the integral of PT, 𝑀K7@ , we implement the same technique as in the 
integral of  𝐾P∗ where the integral can be expressed as 
 

 
𝑀7@ = L 𝑦@𝜙7(𝑦)

OP
SurP(𝜉, 𝜂)	𝑑𝐴(𝑦)	

= L 𝑦@𝜙7(𝑦)
OP

SurP(𝜉, 𝜂)|Jac(𝜉, 𝜂)| ⋅ 𝑑𝜉𝑑𝜂(𝑦) 
(14) 

  
which resulted to 3	 × 	3 matrix. For the next section, we are going to 
apply this approach to numerically calculate the first order of PT for 
specific geometry which is sphere.  
 
NUMERICAL EXAMPLES 
 
Numerical comparison between analytical and 
approximated first order PT using quadratic element 
numerical integration 

The first order PT for the sphere with radius, 𝑟 = 1 is approximated 
with different number of meshes which are,	𝑁	= 68, 120, 242, 620 and 
968 triangles. For that discretization, we used different times of 
meshing option in NG Solver which are moderate, fine, very fine, user 
defined and refinement. Figure 3 depicts the relative error, 𝑅𝐸	 =
	®𝑀}̄–	𝑀°̄®J

/ ®𝑀�̄�®
J
 , between the approximated first order PT, 𝑀°̄ 

using quadratic element numerical integration with the analytical 
solution of PT, 𝑀}̄.  

 
Figure 3 The convergence of ®M²̄–	M³̄®J /

®MĀ®
J
 for approximated first 

order PT, M³̄  for the sphere radius, r = 1 with the analytical solution of 
first order PT, M²̄ on the mesh with 68, 120, 242, 620 and 968 triangles 
against conductivity k. 
 

Based on Figure 3, we can observe that, as 𝑁 increases, the relative 
error approximated for the first order PT will decrease. However, the 
error, e is unbounded as the values of the conductivity increases (𝑘 →
		+1)	regardless of the total number of surface elements used. When we 
used 𝑁	 = 	120, at first, the error for the approximated PT showed the 
lowest error but it started to increase as the number of conductivity, 
𝑘	 > 	10. For the surface element of 968 meshes, the error showed less 
increment compared to other values of meshes. This indicates that the 
smaller meshes would produce less error compared to big mesh. 

 

 
 
Figure 4  The first, second and third main diagonal, MKEE, MKJJ and MK11 of 
the approximated first order PT for sphere triangularized by 
68, 120, 242, 620 and 968 triangles and the main diagonals for the 
analytical solution of first order PT. 
 

Figure 4 showed the values of the elements for main diagonals 
𝑀KEE,𝑀KJJ and 𝑀K11 as the conductivity increases. Here, the conductivity 
used are 𝑘	 = 	0.01, 0.05, 1.5, 50, 100,500,1000,5000 and 10000. 
For main diagonal, 𝑀KEE,𝑀KJJ and 𝑀K11, since for analytical solution the 
computed result for those three diagonals share the same values, we 
plot the approximated first order PT for sphere in the same graphs. We 
can see from Figure 4 that the numerical solutions for 𝑀KEE, 𝑀KJJ and 
𝑀K11 for surface element 968 triangles showed very accurate values of 
the elements compared to other surface elements. This result satisfies 
the theorem that has been mentioned in previous section, where we can 
observe that, when the conductivity is less than 1 the first order PT is 
negative definite matrix. When the conductivity increases to more than 
1, the matrix of the first order PT will be positive definite. Hence, from 
the theorem, we can conclude that, our approach is suitable and can be 
implement in order to evaluate the matrix of first order PT. 

On the other hand, non-diagonal for the approximated first order 
PT can be seen in Figure 5, 6 and 7 where, in Figure 5, the values for 
non-diagonal elements of 𝑀KEJ and 𝑀KJE are depicted. At 𝑘	 = 	1.5	(𝑘	 >
	1), the values of approximated first order PT become closer to 0. 
However, note that as we increased the conductivity 𝑘 → +∞, the 
approximate values of first order PT is slowly diverge from its 
analytical solution. As for surface element 𝑁	 = 	68, the values of 
approximated first order PT show less accurate results compared to 
other values of surface elements. This suggest that the usage of higher 
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number of surface elements is important so that we obtained an accurate 
approximation of PT.   

For 𝑀K1E and 𝑀KE1, when we used surface element. of 120, the values 
of approximated first order PT would diverge from its analytical 
solution. But for other values of surface elements, the non-diagonals 
are smaller and become closer to 0 as required by the analytical solution 
in equation (7). Moreover, an accurate values of element is shown as 
we computed non-diagonals of 𝑀K1J and 𝑀KJ1. From Figure 7, the values 
of elements of approximated first order PT converge to 0 except for 
approximated first order PT for surface element of 68. 

 

 
 
Figure 5  The first non-diagonal, MKEJ and MKJE of the approximated first 
order PT for sphere triangularized by 68,120,242,620 and 968 triangles 
triangles and the non diagonals of the analytical solution of first order PT. 
 

 
 
Figure 6  The second non-diagonal, MK1E and MKE1 of the approximated 
first order PT for sphere triangularized by 68,120,242,620 and 968 
triangles and the non diagonals of the analytical solution of first order PT. 
 

 
 
Figure 7  The third non-diagonal, MK1J and MK J1 of the approximated first 
order PT for sphere triangularized by	68, 120, 242, 620 and 968 triangles 
and the diagonals of the analytical solution of  first order PT. 
 
Numerical comparison between first order PT using linear 
and quadratic element numerical integration  

In this section, comparison between approximated first order PT 
using linear and quadratic element will be computed and compared. We 
used different values of surface element, 𝑁 in order to observe the 
convergence of approximated first order PT of both approach. By using 
sphere with radius, 𝑟 = 0.01 and fixing the conductivity of object to 
𝑘 = 1.5, we then will obtain the analytical solution as  

𝑀K} = 10·� × ¸
0.17952 0 0

0 0.17952 0
0 0 0.17952

º. 
(15) 

By using linear element with 9920 surface elements, we can 
see that the matrix of first order PT become as follow 

𝑀K» = 10·� × ¸
0.17890 0 0

0 0.17890 0
0 0 0.17890

º, 
(16) 

while first order PT obtained by using quadratic element numerical 
integration yield to 

𝑀K¼ = 10·� × ¸
0.17922 0 0

0 0.17922 0
0 0 0.17922

º. 
(17) 

 
 

From the matrix system in (15), (16) and (17), we can oberved that, 
the numerical approximation of first order PT using quadratic 
interpolation, 𝑀K¼	is more accurate than linear element numerical 
integration, 𝑀K». The main diagonal will converge to positive definite 
matrix (since we use conductivity, 𝑘 > 1) for both approaches agrees 
with Theorem 1 that has been proven by Ammari and Kang [1]. 
However, the main diagonal for quadratic element showed better 
accuracy in term of approximation since the difference between main 
diagonal of analytical solution with the approach is 0.0003 while for 
linear element numerical integration is 0.0006. Since linear element 
integration is accurate only for planar triangle, therefore, it resulted to 
higher error in the approximation of first order PT than quadratic 
element. 
 

 
Fig 8.  The first, second and third main diagonal, MKEE,MKJJ and MK11 of the 
approximated first order PT for sphere triangularized by 
44, 72, 118, 230, 620, 2480 and 9920 triangles using linear and quadratic 
element numerical integration with its analytical solution. 
 

Next, we constructed the graph of the first order PT using both 
approaches with different values of surface element in order to observe 
the accuracy and the convergence of the computed numerical results. 
Figure 8 depicted the main diagonal for approximated first order PT 
using different values of surface elements which are 
44,72, 118,230,620, 2480 and 9920 triangles. The straight line that 
shown in the graph is the analytical solution of first order PT of sphere 
with radius 0.01 and conductivity, 𝑘 = 1.5 as stated in matrix in (15). 
From the graph in Figure 8, we can see that, as we increases the surface 
elements from 44 to 9920 triangles, main diagonal for both approaches 
eventually lead to the analytical solution. However, we can see that the 
numerical approximation of first order PT of quadratic element is more 
closer than by using linear element numerical integration. 

 
 
Figure 9  The non-diagonal, MKEJ,MKE1, MKJE,MKJ1, MK1E and MK1J of the 
approximated first order PT for sphere triangularized by 
44, 72, 118, 230, 620, 2480 and 9920 triangles using linear and quadratic 
element numerical integration with its analytical solution. 
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For values of non diagonal, both approximation of first order PT 
using linear and quadratic will eventually lead to 0 as shown in Figure 
9. Non diagonal elements will converge to 0 especially when the 
surface element is set to finer mesh and it start converge to 0 when the 
meshes is at approximately 1000 triangles. At first, for both approaches, 
the approximated first order PT in not accurately computed especially 
when the surface element is 44. 

This suggest that, for both main and non diagonal of approximated 
first order PT, the numerical results is very accurate at finer meshes 
compared to coarse meshes. Other than that, quadratic element 
numerical integration which involve six nodal points of triangles is 
efficient in order to numerically approximate the geometry containing 
curvy part as sphere rather than linear element which uses only three 
nodal points. Next section provide the discussion and conclusion that 
can be made from all the results obtained. 
 
DISCUSSION AND CONCLUSION 

 
In this paper, we have shown that, the polarization tensor of rank 2 

can be obtained more accurately by using our proposed method. The 
quadratic element numerical integration of Gaussian quadrature which 
involve six nodal points has been implemented to the transmission 
problem of PT in the form of boundary integral equation. We have 
included numerical results to illustrate how the tensors can be computed 
accurately by using quadratic element numerical integration by 
comparing it with the analytical results involving sphere provided by 
Ammari and Kang [1].  

Not even that, we also provide the numerical comparison for our 
approach with the approach that has been used by Khairuddin and 
Lionheart [28] . These results indicate that, for a specific geometry, the 
convergence of the computed tensor can be achieved by using finer 
mesh instead of coarse mesh which can be generated by Netgen mesh 
generator. Not even that, we also have proven that, the approximation 
of first order PT using quadratic element numerical integration provide 
better convergence and higher in terms of their accuracy compared to 
linear element numerical integration.  

The understanding and establisment of the study of PT is very 
crucial so that it can be applied to real life problem especially in science 
and engineering problem. Therefore, in future work, we intend to apply 
our approach to different range of objects and the numerical predictions 
of those objects will be computed. 
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