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ABSTRACT 

In this paper, we consider the numerical solutions of linear Fredholm integral equations of the second kind. The Quarter-Sweep Successive Over-
Relaxation (QSSOR) iterative method is applied to solve linear systems generated from discretization of the second kind linear Fredholm integral 
equations using quadrature method. In addition, the formulation and implementation of the proposed method to solve the problem are also presented. 
Numerical tests and comparisons with other existing methods are given to illustrate the effectiveness of the proposed method.  
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1. INTRODUCTION 

The theory and applications of the integral equations 
have been one of the principal tools in various areas of 
science such as applied mathematics, physics, biology, 
chemistry and engineering. On the other hand, integral 
equations are encountered in numerous applications in 
many fields including continuum mechanics, potential 
theory, geophysics, electricity and magnetism, kinetic 
theory of gases, hereditary phenomena in physics and 
biology, renewal theory, quantum mechanics, radiation, 
optimization, optimal control systems, communication 
theory, mathematical economics, population genetics, 
queuing theory, medicine, mathematical problems of 
radiative equilibrium, particle transport problems of 
astrophysics and reactor theory, acoustics, fluid mechanics, 
steady state heat conduction, fracture mechanics, and 
radiative heat transfer problems [1]. Basically, integral 
equations can be classified according to the integration 
domain. Integral equations in which the integration domain 
varies with the independent variable in the equation are 
known as Volterra equations and those with fixed 
integration domain are Fredholm equations. In this paper, 
second kind linear integral equations type of Fredholm is 
considered. 

Generally, second kind linear Fredholm integral 
equations can be written as 

( ) ( ) ( ) ( )xfdttytxKxy =− ∫Γ ,λ , [ ]ba,=Γ 0≠λ     (1)   
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where the parameter λ , kernel ( )Γ×Γ∈ 2LK  and free term 

( )Γ∈ 2Lf  are given, ( )Γ∈ 2Ly  is the unknown function to 

be determined and 2L  represents the function space of the 
solution domain. The kernel function ( )txK ,  is assumed to 
be absolutely integrable and satisfy other properties that are 
sufficient to imply the Fredholm alternative theorem. 
Meanwhile, Eq. (1) also can be rewritten in the equivalent 
operator form 

( ) fy =−κλ                        (2) 

Fredholm Alternative Theorem [2] 

Let χ  be a Banach space and let χχκ →:  be compact. 
Then the equation ( ) fy =−κλ , 0≠λ  has a unique 
solution χ∈x  if and only if the homogeneous equation 
( ) 0=− zκλ  has only the trivial solution 0=z . In such a 

case, the operator χχκλ
11

:
−
→−
onto

 has a bounded inverse 

( ) 1−−κλ . 
A numerical approach to the solution of integral 

equations is an essential branch of scientific inquiry. As a 
matter of fact, some valid methods of solving linear 
Fredholm integral equations have been developed in recent 
years. To solve Eq. (1) numerically, we either seek to 
determine an approximate solution by using the quadrature 
method [2-8], or use the projection method [9-15]. Such 
discretizations of integral equations lead to dense linear 
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systems and can be prohibitively expensive to solve using 
direct methods as the order of the linear system increases. 
Thus, iterative methods are the natural options for efficient 
solutions.  

The concept of the half-sweep iteration has been 
inspired by Abdullah [16] via the Explicit Decoupled Group 
(EDG) iterative method to solve two-dimensional Poisson 
equations. Following to that, applications of the half-sweep 
iterative methods have been reviewed in [17-21]. 
Meanwhile, Othman and Abdullah [22] extended the half-
sweep iteration concept by introducing quarter-sweep 
iterative method via the Modified Explicit Group (MEG) 
iterative method to solve two-dimensional Poisson 
equations. Further studies to verify the effectiveness of the 
quarter-sweep iterative methods have been carried out; see 
[23-27]. In this paper, we examined the applications of the 
half- and quarter-sweep iterative concepts with Successive 
Over-Relaxation (SOR) iterative method by using 
approximation equation based on quadrature method for 
solving problem (1). The standard SOR iterative method is 
also called as the Full-Sweep Successive Over-Relaxation 
(FSSOR) method. Meanwhile, combinations of the SOR 
method with half- and quarter-sweep iterations are called as 
Half-Sweep Successive Over-Relaxation (HSSOR) and 
Quarter-Sweep Successive Over-Relaxation (QSSOR) 
methods respectively.  

The outline of this paper is organized in following 
way. In Section 2, the formulations of the full-, half- and 
quarter-sweep quadrature approximation equations are 
elaborated. In Section 3, we discuss the formulations of the 
FSSOR, HSSOR and QSSOR methods. Some numerical 
results are shown in Section 4 to assert the performance of 
the iterative methods. Analysis on computational 
complexity is mentioned in Section 5 and some concluding 
remarks are given in Section 6. 
 
2. DISCRETIZATION OF INTEGRAL 

EQUATIONS 
 

As afore-mentioned, a discretization scheme based 
on method of quadrature was used to construct 
approximation equations for problem (1) by replacing the 
integral to finite sums. In order to facilitate the formulation 
of the full-, half- and quarter-sweep quadrature 
approximation equations for problem (1), further discussion 
will be restricted onto repeated trapezoidal (RT) scheme, 
which is based on linear interpolation formula with equally 
spaced data. 

Let the interval [ ]ba,  be partitioned into n  
subintervals of length  
 

n
abh −

= .             (3) 

                                                                       
Then, trapezoidal scheme for approximating definite 

integral ∫
b

a
dtty )(  can be defined as 

( ) ( ) ( )( ) ( )∫ ++=
b

a
n ybyayhdtty ε

2
   (4) 

 
and its repeated formula can be shown as 
 

( ) ( ) ( ) ( ) ( )ybyhtyhayhdtty n

n

j
j

b

a
ε+++= ∑∫

−

= 22

1

1

   (5)     

                                                    
where jt  and ( )ynε are abscissas of the partition points of 

the integration interval [ ]ba,  and truncation error 
respectively. 

Meanwhile, Fig. 1 shows the finite grid networks in 
order to form the full-, half- and quarter-sweep quadrature 
approximation equations. 

 
 

         h 
                                                 ...                                                  
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           2h 
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b) 
                             4h 
                                                 ...                                                  
         0       1       2       3       4                       n-4    n-3   n-2     n-1    n       

 
c) 

Figure 1: a), b) and c) show distribution of uniform node points 
for the full-, half- and quarter-sweep cases respectively. 

 
 

Based on Fig. 1, the full-, half- and quarter-sweep iterative 
methods will compute approximate values onto node points 
of type  only until the convergence criterion is reached. 
Then, other approximate solutions at remaining points 
(points of the different type) can be computed using the 
direct method [16, 22]. 

By applying Eq. (5) into Eq. (1) and neglecting the 
error term ( )ynε , a system of linear equations can be 
formed for approximation values of ( )ty . Therefore, the 
full-, half- and quarter-sweep repeated trapezoidal 
approximation equations for Eq. (1) can be generally shown 
as follows  

 

inni

pn

pj
jjiii fyKphyKphyKphy =⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
++− ∑

−

=
,,00, 22

λ   

nppi ,,2,1,0 L=  nppj ,,2,1,0 L= .          (6)                   
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The value of p , which corresponds to 1, 2 and 4, represents 
the full-, half- and quarter-sweep cases respectively. From 
Eq. (6), it is obvious that discretization of the Eq. (1) using 
RT scheme leads to the dense linear systems as follows  

~~
fyM =                                    (7)          

                                     

where 
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and 
 

[ ]Tnpnpnpp fffffff −−= 220
~

L . 

 
3. ITERATIVE METHODS 

 
As mentioned in Section 1, a family of SOR iterative 

method consists of FSSOR, HSSOR and QSSOR methods 
will be applied to solve dense linear system generated from 
the discretization of the problem (1), as shown in Eq. (7). 
To develop the formulation for SOR methods, let the 
coefficient matrix M  be decomposed into 

 
ULDM −−=               (8) 

                                                                    
where D , L  and U  are diagonal, strictly lower triangular 
and strictly upper triangular matrices respectively. Thus, the 
general scheme for SOR iterative methods can be written as 
follows 
 

( ) ( ) ( ) ( ) ( )kkkk yDfyUyLyD
~~~

1

~

1

~
1 ωωωω −+++= ++      (9)    

                                                 
where ω  is a relaxation parameter. Actually, the iterative 
methods attempt to find a solution by repeatedly solving the 
linear system using approximations to the vector 

~
y . 

Iterations for iterative methods continue until the solution is 
within a predetermined acceptable bound on the error.  

The performance of the SOR methods can be very 
often drastically improved with the proper choice of the 
relaxation parameter ω . Relaxation parameter can be 

calculated in practice by consecutively choosing values with 
some precision until the optimal value is obtained. Note that 
choosing 1=ω  will result in the Gauss-Seidel (GS) 
method. For a general system matrix M , guarantee that the 
SOR method converges for relaxation parameters 20 << ω  
and theoretical optimal value given by the formula [28]  
 

211

2

ρ
ω

−+
=opt                           (10)   

                                                   
where ρ  is the spectral radius of the Jacobi iteration 
matrix. The previous studies have shown the experimental 
value of ω  to be in good agreement with the theoretical 
value [29, 30]. By determining values of matrices D , L  
and U  as stated in Eq. (8), the general algorithm for 
FSSOR, HSSOR and QSSOR iterative methods to solve 
problem (1) would be generally described in Algorithm 1. 

 
4. NUMERICAL SIMULATIONS 
 

In order to compare the performances of the iterative 
methods described in the previous section, several 
experiments were carried out on the following Fredholm 
integral equations problems.  
 
Example 1 [1] The integral equation 
 

( ) ( ) xdttyxtxxy =−− ∫
1

0

2 )(4 ,   10 ≤≤ x           (11) 

    
with the exact solution given by 
 

2924)( xxxy −= . 
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Example 2 [31] The integral equation 
 105)()()( 361

0

22 ++−=+− ∫ xxxdttytxxy , 10 ≤≤ x        (12) 

Algorithm 1. FSSOR, HSSOR and QSSOR algorithms 
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with the exact solution  
 

84
2141

28
10455)( 236 +++−= xxxxxy  

 
Example 3 [32] The integral equation  
 

( )
2

sin)(
2
1)( 2

0

xxdttytxxy −=− ∫
π

,   10 ≤≤ x        (13)                                                   

 
and the exact solution is  
 

( )xxy sin)( =  
 
In comparison, the GS method acts as the comparison 
control of numerical results. There are three parameters 
considered in numerical comparison such as number of 
iterations, execution time and maximum absolute error. 
Throughout the experiments, the convergence test 
considered the tolerance error 1010−=ε  and carried out on 
several different values of n . Meanwhile, the experimental 
values of ω  were obtained by running the program for 
different values of ω  and choosing the one(s) that gave the 
minimum number of iterations.  

Results of numerical simulations, which were 
obtained from implementations of the GS, FSSOR, HSSOR 

and QSSOR iterative methods for Examples 1 - 3, have 
been recorded in Tables 1 - 3 respectively. Meanwhile, 
reduction percentages of the number of iterations and 
execution time for the FSSOR, HSSOR and QSSOR 
methods compared with GS method have been summarized 
in Table 4. 
 
5. COMPUTATIONAL COMPLEXITY ANALYSIS 
 

In order to measure the computational complexity of 
the FSSOR, HSSOR and QSSOR iterative methods, an 
estimation amount of the computational work required for 
both methods have been conducted. The computational 
work is estimated by considering the arithmetic operations 
performed per iteration. Based on Algorithm 1, it can be 

observed that there are 
p
n

+3  additions/subtractions 

(ADD/SUB) and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

p
n37  multiplications/divisions 

(MUL/DIV) in computing a value for each node point in the 
solution domain for second kind linear Fredholm integral 
equations. From the order of the coefficient matrix M  in 
Eq. (7), the total number of arithmetic operations per 
iteration for the FSSOR, HSSOR and QSSOR iterative 
methods in solving second kind linear Fredholm integral 
equations has been summarized in Table 5. 
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Table 1: Comparison of a number of iterations, execution time (seconds) and maximum absolute error for the iterative methods   (Example 1) 
 
 

 Number of iterations 

Methods n 
512 1024 2048 4096 8192 

GS 
FSSOR 

 
HSSOR 

 
QSSOR 

 

194 
138 

( 84.1=ω ) 
136 

( 84.1=ω ) 
136 

( 84.1=ω ) 

194 
139 

( 84.1=ω ) 
138 

( 84.1=ω ) 
136 

( 84.1=ω ) 

195 
140 

( 84.1=ω ) 
139 

( 84.1=ω ) 
138 

( 84.1=ω ) 

195 
140 

( 84.1=ω ) 
140 

( 84.1=ω ) 
139 

( 84.1=ω ) 

195 
140 

( 84.1=ω ) 
140 

( 84.1=ω ) 
140 

( 84.1=ω ) 

  
Execution time (seconds) 

Methods n 
512 1024 2048 4096 8192 

GS 
FSSOR 
HSSOR 
QSSOR 

2.62 
1.70 
0.81 
0.50 

10.77 
8.66 
2.07 
0.93 

38.77 
27.67 
9.21 
3.46 

145.01 
93.99 
38.93 
18.97 

570.58 
439.36 
119.58 
60.55 

  
Maximum absolute error 

Methods n 
512 1024 2048 4096 8192 

GS 
FSSOR 
HSSOR 
QSSOR 

4.6922 E-4 
4.6922 E-4 
1.8771 E-3 
7.5111 E-3 

1.1730 E-4 
1.1730 E-4 
4.6922 E-4 
1.8771 E-3 

2.9325 E-5 
2.9326 E-5 
1.1730 E-4 
4.6922 E-4 

7.3307 E-6 
7.3313 E-6 
2.9326 E-5 
1.1730 E-4 

1.8321 E-6 
1.8328 E-6 
7.3313 E-6 
2.9326 E-5 

 
 

Table 2: Comparison of a number of iterations, execution time (seconds) and maximum absolute error for the iterative methods  (Example 2) 
 

  
Number of iterations 

Methods n 
512 1024 2048 4096 8192 

GS 
FSSOR 

 
HSSOR 

 
QSSOR 

 

56 
44 

( 53.1=ω ) 
44 

( 53.1=ω ) 
43 

( 53.1=ω ) 

56 
44 

( 53.1=ω ) 
44 

( 53.1=ω ) 
44 

( 53.1=ω ) 

56 
44 

( 53.1=ω ) 
44 

( 53.1=ω ) 
44 

( 53.1=ω ) 

56 
44 

( 53.1=ω ) 
44 

( 53.1=ω ) 
44 

( 53.1=ω ) 

56 
44 

( 53.1=ω ) 
44 

( 53.1=ω ) 
44 

( 53.1=ω ) 

  
Execution time (seconds) 

Methods n 
512 1024 2048 4096 8192 

GS 
FSSOR 
HSSOR 
QSSOR 

0.89 
0.69 
0.44 
0.31 

3.47 
2.56 
0.78 
0.55 

17.06 
10.53 
4.24 
1.57 

55.85 
35.02 
19.34 
8.91 

189.98 
129.04 
58.63 
34.88 

  
Maximum absolute error 

Methods n 
512 1024 2048 4096 8192 

GS 
FSSOR 
HSSOR 
QSSOR 

4.7770 E-4 
4.7770 E-4 
1.9108 E-3 
7.6441 E-3 

1.1942 E-4 
1.1942 E-4 
4.7770 E-4 
1.9108 E-3 

2.9856 E-5 
2.9856 E-5 
1.1942 E-4 
4.7770 E-4 

7.4639 E-6 
7.4640 E-6 
2.9856 E-5 
1.1942 E-4 

1.8659 E-6 
1.8660 E-6 
7.4640 E-6 
2.9856 E-5 

 
 



M.S. Muthuvalu and J.Sulaiman / Journal of Fundamental Sciences Vol. 6, No. 2 (2010) 104-110. 
 

| 109 | 
 

Table 3: Comparison of a number of iterations, execution time (seconds) and maximum absolute error for the iterative methods  (Example 3) 
 

  
Number of iterations 

Methods n 
512 1024 2048 4096 8192 

GS 
FSSOR 

 
HSSOR 

 
QSSOR 

 

29 
15 

 ( 19.1=ω ) 
15 

 ( 19.1=ω ) 
15 

 ( 19.1=ω ) 

29 
15 

 ( 19.1=ω ) 
15 

 ( 19.1=ω ) 
15 

 ( 19.1=ω ) 

29 
15 

 ( 19.1=ω ) 
15 

 ( 19.1=ω ) 
15 

 ( 19.1=ω ) 

29 
15 

 ( 19.1=ω ) 
15 

 ( 19.1=ω ) 
15 

 ( 19.1=ω ) 

29 
15 

 ( 19.1=ω ) 
15 

 ( 19.1=ω ) 
15 

 ( 19.1=ω ) 

  
Execution time (seconds) 

Methods n 
512 1024 2048 4096 8192 

GS 
FSSOR 
HSSOR 
QSSOR 

0.53 
0.39 
0.25 
0.16 

2.24 
1.65 
0.87 
0.41 

11.97 
8.87 
5.23 
2.71 

33.79 
22.34 
13.65 
7.33 

125.77 
90.31 
58.93 
31.94 

  
Maximum absolute error 

Methods n 
512 1024 2048 4096 8192 

GS 
FSSOR 
HSSOR 
QSSOR 

2.2111 E-3 
2.2111 E-3 
2.2164 E-3 
2.2374 E-3 

2.2098 E-3 
2.2098 E-3 
2.2111 E-3 
2.2164 E-3 

2.2095 E-3 
2.2095 E-3 
2.2098 E-3 
2.2111 E-3 

2.2094 E-3 
2.2094 E-3 
2.2095 E-3 
2.2098 E-3 

2.2094 E-3 
2.2094 E-3 
2.2094 E-3 
2.2095 E-3 

 
 

Table 4: Reduction percentages of the number of iterations and execution time for the FSSOR, HSSOR and QSSOR methods compared with GS method 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

Table 5: Total number of arithmetic operations per iteration for FSSOR, HSSOR and QSSOR methods 
 
 
 
 
 
 
 
 
 
 
 
 

 

Methods 
 

Number of iterations 
Example 1 Example 2 Example 3 

FSSOR 
HSSOR 
QSSOR 

28.20 – 28.87% 
28.20 – 29.90% 
28.20 – 29.90%  

21.42 – 21.43% 
21.42 – 21.43% 
21.42 – 23.22% 

48.27 – 48.28% 
48.27 – 48.28% 
48.27 – 48.28% 

Methods 
 

Execution time 
Example 1 Example 2 Example 3 

FSSOR 
HSSOR 
QSSOR 

19.59 – 35.19% 
69.08 – 80.78% 
80.91 – 91.37% 

22.47 – 38.28% 
50.56 – 77.53% 
65.16 – 90.80% 

25.89 – 33.89% 
52.83 – 61.17% 
69.81 – 81.70% 

Methods Arithmetic Operation 
ADD/SUB MUL/DIV 

FSSOR 342 ++ nn  7103 2 ++ nn  

HSSOR 32
4

2
++ nn

 75
4

3 2
++ nn

 

QSSOR 3
16

2
++ nn

 7
2

5
16
3 2

++
nn
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6. CONCLUSION  
 
In this paper, we have presented an application of the 

half- and quarter-sweep iterations with SOR method for 
solving dense linear systems generated from the 
discretization of the second kind linear Fredholm integral 
equations by using RT scheme. Through numerical results 
obtained for Examples 1 - 3 (Tables 1 - 3), it clearly shows 
that applying the SOR methods can reduce number of 
iterations and execution time compared to the GS method. 
At the same time, it has been shown that applying the half- 
and quarter-sweep iterations reduces the computational time 
in the implementation of the iterative method, see Table 4.  

Overall, the numerical results show that the QSSOR 
method is a better method compared to the GS, FSSOR and 

HSSOR methods in the sense of number of iterations and 
execution time. This is mainly because of the reduction in 
term of computational complexity; since the 
implementations of the QSSOR will only consider 
approximately quarter of all interior node points in a 
solution domain (refer Table 5). 
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