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ABSTRACT 
 
A Petri net controlled grammar is a grammar equipped with a Petri net whose transitions are labeled with production rules of the grammar, and the 
associated language consists of all terminal strings which can be derived in the grammar and the sequence of rules in every terminal derivation 
corresponds to some occurrence sequence of transitions of the Petri net which is enabled at the initial marking and finished at a final marking of the net. In 
this paper we define grammars controlled by Petri nets with inhibitor arcs and investigate their computational capacities.  
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1. INTRODUCTION 

 
The symbolic representation of a modeled system in 

the form of strings makes its processes by information 
processing tools very easy. Moreover, Coding Theory, 
Cryptography, Computation Theory, Computational 
Linguistics, Natural Computing, and many other fields 
directly use strings for the description and analysis of 
modeled systems. In the modeling we usually have to deal 
with infinite sets of strings. Thus, it is very important to 
define some finite devices which generate all the strings of 
these sets. If we consider strings as words, then a set of 
strings can be considered as a language and a generative 
device as a grammar. In general, a grammar consists of 
finite sets of terminal symbols, nonterminal symbols and 
production rules as well as the axiom (the start symbol). To 
generate a word in the language, one begins with the start 
symbol. Then production rules are applied in any order, 
until a word that contains neither the start symbol nor 
nonterminal symbols is produced. 

With respect to the forms of production rules, 
grammars are divided into two major classes: context-free 
where the left-hand side of each production rule consists of 
a single nonterminal symbol and context-sensitive where the 
left-hand side of each production rule consists of a 
nonterminal symbol surrounded by a context of terminal 
and nonterminal symbols. Though context-free grammars 
have beautiful mathematical properties, and they are easily 
applicable in practical problems,  they can’t cover all aspect 
of modeled phenomena. 
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On the other hand, context-sensitive grammars are too 
powerful to be used in applications. In order to overcome 
this problem, we need some “context-free like” generative 
devices, which have as many context-free-like properties as 
possible, but are also able to describe the non-context-free 
features of the specific languages in the question. One of the 
solutions is that a context-free grammar should be 
considered with some additional (control) mechanism 
which restricts the application of the rules in order to avoid 
some derivations and obtain a subset of the language 
generated in usual way. The computational power of some 
grammars with control mechanism turns out to be greater 
than the power of context-free grammars. The consideration 
of different types of control mechanisms leads to the 
definition of different types of grammars with controlled 
(regulated) rewriting. For instance, in the monograph [5], 
we can find the detailed information on various types of 
grammars with regulated rewriting such as matrix, 
programmed, valence, random context, and tree controlled 
grammars, etc. 

However, the rapid developments in present day 
industry, biology, and other areas challenge to deal with 
various tasks which need suitable tools for their modeling 
and investigation. We introduce Petri net controlled 
grammars as models for representing and analyzing of the 
systems such as automated manufacturing systems in 
industry and metabolic pathways in systems biology, where 
Petri nets are responsible for the structure and 
communication of the systems, and grammars represent 
generative processes in these systems. In our recent papers 
[1, 2, 3, 4, 7, 8, 9] we have defined various types of Petri 
net controlled grammars (considering different classes of 
place/transition Petri nets) motivated by different theoretical 
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and practical problems, and studied their mathematical 
properties. 

Our study has shown that the use of place/transition 
Petri nets as control mechanisms for context-free grammars 
allows only generating families of languages, which are 
strict subclasses of the family of context-sensitive 
languages. Thus, it is interesting to consider grammars 
controlled by high level Petri nets (Petri nets with inhibitor 
arcs, colored Petri nets, etc.), which have a larger modeling 
and computational power. In this paper we define grammars 
controlled by Petri nets with inhibitor arcs and investigate 
their computational power. 

 
2. PRELIMINARIES 

 
 Grammars. Let Σ be an alphabet, which is a finite 
nonempty set of symbols. A word over the alphabet Σ is a 
finite sequence of symbols from the alphabet Σ. The empty 
word is denoted by λ. The set of all words over the alphabet 
Σ is denoted by Σ*. A subset of Σ* is called a language.   

A phrase structure grammar is a quadruple G = (V, 
Σ, S, R) where V and Σ are two disjoint alphabets of 
nonterminal and terminal symbols, respectively, S∈V is the 
start symbol and R ⊆ (V∪Σ)*V(V∪Σ)*×(V∪Σ)* is a finite set 
of (production) rules. Usually, a rule (u,v)∈R is written in 
the form u→v. A rule of the form u→λ is called an erasing 
rule. A string x∈(V∪Σ)* directly derives a string y∈(V∪Σ)* 
in G, written as x[〉y, if and only if there is a rule u→v∈R 
such that x = x1ux2 and y=x1vx2 for some x1, x2∈(V∪Σ)*. The 
reflexive and transitive closure of the relation [〉 is denoted 
by [〉*. A derivation using the sequence of rules π = r1r2 ⋅⋅⋅rk, 
ri∈R, 1≤i≤k, is denoted by [π〉 or [r1r2 ⋅⋅⋅rk〉. A string 
w∈(V∪Σ)* such that S[〉*w is called a sentential form. The 
language generated by G, denoted by L(G), is defined by 
L(G) = {w∈Σ* | S[〉*w}. The families of languages generated 
by phrase structure grammars are denoted by RE. 

A phrase-structure grammar G = (V, Σ, S, R) is called 
context-sensitive if each rule u→v∈R has u = u1Au2, v = 
u1xu2 for u1, u2∈(V∪Σ)*, A∈V and x∈(V∪Σ)+ (in context 
sensitive grammars S→λ is allowed, provided that S does 
not appear in the right-hand members of rules in R), and it is 
called context-free if each rule u→v∈R has u∈V.  

The families of languages generated by context-
sensitive and context-free grammars are denoted by CS and 
CF, respectively. The next strict inclusions hold (for details, 
see [6]). 
 
Theorem 2.1 CF ⊂ CS ⊂ RE 
 

A matrix grammar is a quintuple G = (V, Σ, M, S, B) 
where V, Σ and S are defined as in phrase structure 
grammars, M is a finite set of matrices each of which is a 
finite sequence m: (A1→w1, A2→w2, …, An→wn), n≥1, of 
context-free rules over (V∪Σ), and B is a finite set of 
occurrences of such rules on M. For some words x and y in 
(V∪Σ)* and a matrix m: (A1→w1, A2→w2, …, An→wn)∈M, 

we write x[m〉y iff there are words x0, x1, …, xn such that 
x0=x, xn=y, and for 1≤i≤n, either 
xi-1 = zi-1Aiz'i-1, xi = zi-1wiz'i-1 for some zi-1, z'i-1∈(V∪Σ)* 

or xi-1 = xi, the rule Ai→wi is not applicable to xi-1, and this 
occurrence of Ai→wi appears in B. One says that the rules 
whose occurrences appear in B are used in appearance 
checking mode, and that a matrix grammar is defined with 
(without) appearance checking if B ≠ ∅ (B = ∅). The 
language generated by G is defined as L(G) = {w∈Σ* | 
S[〉*w}. The family of languages generated by matrix 
grammars with appearance checking (without appearance 
checking) is denoted by MAT[λ]

ac (MAT[λ]). The following 
theorem shows the relationships of the families of matrix 
languages (for details, see [5]). 
 
Theorem 2.2 CF ⊂ MAT ⊂ MATac ⊂ CS  and  MAT ⊆ 
MATλ

 ⊂ MATλ
ac = RE 

 
Petri nets. A place/transition Petri net (simply Petri 

net) is a construct N = (P, T, F, φ) where P and T are 
disjoint finite sets of places and transitions, respectively, 
F⊆(P×T)∪(T×P) is the set of directed arcs, φ: F→{1,2, …} 
is a weight function. A Petri net can be represented by a 
bipartite directed graph with the node set P∪T where places 
are drawn as circles, transitions as boxes and arcs as 
arrows. The arrow representing an arc (x,y)∈F is labelled 
with φ(x,y); if φ(x,y)=1, the label is omitted. A mapping µ: 
P→{0,1,2, …} is called a marking. For each place p∈P, 
µ(p) gives the number of tokens in p. Graphically, tokens 
are drawn as small solid dots inside circles. •x={y | (y,x)∈F} 
and x•={y | (x,y)∈F} are called pre- and post-sets of 
x∈P∪T, respectively. For t∈T (p∈P), the elements of •t (•p) 
are called input places (transitions) and the elements of t• 
(p•) are called output places (transitions) of the transition t 
(the place p).  

A transition t∈T is enabled by marking µ if and only 
if µ(p)≥φ(p,t) for all p∈•t. In this case t can occur (fire). Its 
occurrence transforms the marking µ into the marking µ' 
defined for each place p∈P by µ'(p)=µ(p)−φ(p,t)+φ(t,p). We 
write µ[t)µ' to indicate that the firing of t in µ leads to µ'. A 
finite sequence  t1t2⋅⋅⋅tk,  ti∈T,  1≤i≤k, is called an 
occurrence sequence enabled at a marking µ and finished at 
a marking µ' if there are markings µ1, µ2, …, µk-1 such that            
µ[t1)µ1[t2)µ2[t3)⋅⋅⋅[tk-1)µk-1[tk)µ'. In short this sequence can be 
written as µ[t1t2⋅⋅⋅tk)µ' or µ[ν)µ' where ν= t1t2⋅⋅⋅tk. 

A marked Petri net is a system N = (P, T, F, φ, ι) 
where (P, T, F, φ) is a Petri net, ι is the initial marking. 
 
Example 2.3. Figure 1 depicts a Petri net N=(P, T, F, φ, ι) 
with P={p1, p2, p3, p4, p5} and T={t1, t2, t3, t4}. We can see 
that φ(p3,t3)=2. The initial marking ι is defined by 
ι(p1)=ι(p4)=1 and ι(p)=0 for all P−{p1, p4}. 

A Petri net with final markings is a construct N = (P, 
T, F, φ, ι, M) where (P, T, F, φ, ι) is a marked Petri net and 
M is a set of markings which are called final markings. An 
occurrence sequence ν of transitions is called successful for 
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M if it is enabled at the initial marking ι and finished at a 
final marking τ of M.  

 
 

 
 

Figure 1: A Petri net 
 

A Petri net with inhibitor arcs is a 6-tuple N = (P, T, 
F, I, φ, ι) where (P, T, F, φ, ι) is a marked net and I ⊆ P×T 
is a set of inhibitor arcs. Graphically, an inhibitor arc is 
represented by a special arrow head. Figure 2 shows a Petri 
net with inhibitor arcs, which is obtained from the Petri net 
in Figure 1 by adding an inhibitor arc (p2,t3). Let °t = {p∈P | 
(p,t)∈I}. A transition t∈T can occur at a marking µ if and 
only if µ(p) = 0 for all p∈°t and µ(p) ≥ φ(p,t) for all p∈P−°t. 

 
 

 
 

Figure 2: A Petri net with inhibitor arcs 
 
Petri net controlled grammars.  
 

The construction of the following type of Petri nets is 
based on the idea of using similarity between the firing of a 
transition and the application of a production rule in a 
derivation in which places are nonterminals and tokens are 
different occurrences of nonterminals. 

A context-free Petri net (a cf Petri net for short) with 
respect to a context-free grammar G = (V, Σ, S, R) is a tuple    
N = (P, T, F, φ, β, γ, ι) where 

• (P, T, F, φ) is a Petri net; 
• the labelling functions β: P→V and γ: T→R are 

bijections; 
• there is an arc from place p to transition t if and only if 

γ(t) = A→α and β(p) = A. The weight of the arc (p,t) is 
1; 

• there is an arc from transition t to place p if and only if 
γ(t) = A→α and β(p) = X where |α|X>0. The weight of 
the arc (t,p) is |α|X; 

• the initial marking ι is defined by ι(β-1(S)) = 1and ι(p) 
= 0 for all p∈P−{β-1(S)}. 

 
Example 2.4. Figure 3 illustrates the cf Petri net N1 with 
respect to the grammar G1 = ({S, A, B}, {a,b}, S, R) where R 
consists of r0: S→AB, r1: A→aAb, r2: A→λ, r3: B→cB, r4: 
B→λ. 

 

 
 

Figure 3: A context-free Petri net N1 

 
We recall the definition of an s-Petri net, i.e. context-

free Petri nets with such additional places and arcs that 
these new places with input and output transitions of a net 
compose cycles with the common place (for details, see [1, 
8, 9]). 

Let G=(V, Σ, S, R) be a context-free grammar with its 
corresponding context-free Petri net N = (P, T, F, φ, β, γ, ι). 
Let T1, T2, …,  Tn be a partition of T.  

An s-Petri net is a Petri net with final markings Ns = 
(P∪Q, T, F∪E, ϕ, ξ, γ, µ0, τ) where 

• Q = ∪ρ∈ΠPρ, E = ∪ρ∈ΠFρ; 
• the weight function ϕ is defined by ϕ(x,y) = φ(x,y) if 

(x,y)∈F and ϕ(x,y) = 1 if (x,y)∈E; 
• the labelling function ξ: P∪Q→V∪{λ} is defined by 

ξ(p) = β(p) if p∈P and ξ(p) = λ if p∈Q; 
• µ0 is the initial marking where µ0(p) = ι(p) if p∈P, 

µ0(p0) = 1 and µ0(p) = 0 if p∈Q−{p0}; 
• τ is the final marking where τ(p0) = 1 and τ(p) = 0 if 

p∈(P∪Q)−{p0}. 
 
Example 2.5. Figure 4 depicts an s-Petri net which are 
constructed with respect to the grammar G2 = ({S, A, B},  
{a, b}, S, R) where R consists of r0: S→AB, r1: A→λ, r2: 
B→λ, r3: A→aA, r4: B→aB, r5: A→bA, r6: B→bB. 
An s-PN controlled grammar is a system G = (V, Σ, S, R, 
Ns) where G' = (V, Σ, S, R) is a context-free grammar and Ns 
is an s-Petri net with respect to the context-free grammar G'. 
The language generated by an s-Petri net controlled 
grammar G consists of all strings w∈Σ* such that there is a 
derivation S[r1r2⋅⋅⋅rk〉w∈Σ* and a successful occurrence 
sequence of transitions ν=t1t2⋅⋅⋅tk of Ns such that r1r2⋅⋅⋅rk =γ( 
t1t2⋅⋅⋅tk). PN[λ]

s denotes the family of languages generated by 
s-PN controlled grammars. It was shown in [10] that  
Theorem 2.2. MAT[λ] = PN[λ]

s. 
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Figure 4: An s-Petri net N2 (additional places are represented 
without labels) 
 

 
Further, we recall the main definitions and main 

results concerning to arbitrary (place/transition) Petri net 
controlled grammars (for details, see [2, 3, 4]).  

A Petri net controlled grammar is a tuple G = (V, Σ, 
S, R, N, γ, M) where V, Σ, S, R are defined as for a context-
free grammar and N = (P, T, F, ϕ, ι) is a (marked) Petri net, 
γ: T→R∪{λ} is a transition labelling function and M is a 
finite set of final markings (this definition uses the extended 
form of the transition labelling function γ: T*→R*; this 
extension is done in the usual manner). 

The language generated by a Petri net controlled 
grammar G consists of all strings w∈Σ* such that there is a 
derivation S[r1r2⋅⋅⋅rk〉w∈Σ*and an occurrence sequence 
ν=t1t2⋅⋅⋅ts which is successful for M such that r1r2⋅⋅⋅rk  = γ( 
t1t2⋅⋅⋅ts). 
 
Example 2.5.  Let G3  = ({S, A, B, C}, {a, b, c}, S, R, N3, γ3, 
M3) be a Petri net controlled grammar where R consists of 
rules S→ABC, A→aA, B→bB, C→cC, A→a, B→b, C→c; 
the net N3 is illustrated in Figure 5 and M3 = {µ} with µ(p) = 
0 for all p∈P, then G3 generates the language L(G3) = 
{anbncn | n≥1}∉CF. 

PN and PNλ denote the families of languages 
generated by PN controlled grammars without and with 
erasing rules, respectively. The computational power of 
Petri net controlled grammars has been investigated in [4, 
11]. It was shown that 
Theorem 2.2. MAT ⊆ PN = PN[λ] = MAT[λ]. 

 
3. THE EFFECT OF INHIBITOR ARCS 

 
Definition 3.1. A Petri net controlled grammar G = 

(V, Σ, S, R, N, γ, M) is called a grammar controlled by a 
Petri net with inhibitor arcs (in short, a PNI controlled 
grammar) if N is a Petri net with inhibitor arcs.  

The language L(G) generated by a PNI controlled 
grammar G is defined as usual manner. PNI and PNIλ 

denote the families of languages generated by PNI 
controlled grammars without and with erasing rules, 
respectively. 

 
 

 
 
 

Figure 5: A Petri net N3 

 
 

Example 2.5. We consider the PNI controlled 
grammar G4 = ({S, S', A}, {a}, S, {S→SS|S'|A, S'→S, A→a}, 
N4, γ4, M4) where N4 and its transition labeling are 
illustrated in Figure 6, and M4 = {µ} with µ(p) = 0 for all 
p∈P. We show that G4 generates the language L(G4) = 

{ 2n

a | n≥1}. 
 

 
 

Figure 6: A Petri net with inhibitor arcs N4 

 

 

Proof. Let place p1 has k≥1 tokens. Inhibitor arcs 
(p1,t2) and (p1,t4) controls that all tokens are moved from 
place p1 to place p2 before transition t2 or transition t4 fires. 
Then place p2 receives 2k tokens. In the next step transitions 
t2 and t4 are enabled. If transition t2 (t4) occurs, then 
transition t4 (t2) cannot occur until all tokens are removed 
from place p3 (p4). Thus only one of transitions t2 and t4 can 
occur. Inhibitor arc (p2,t3) ((p2,t5)) controls that all tokens 
are moved from place p2 to place p3 (p4).  Inhibitor arc 
(p3,t1) controls that all tokens are moved from place p3 to 
place p1 until transition t1 fires. Thus 2k tokens (i.e. the 
doubled number of the tokens) return to place p1. The 
occurrences of transition t5  2k times remove all tokens from 
place p4 and the execution of the Petri net reaches to the 
final marking. The corresponding derivation for this 
occurrence of transitions has the form 
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D: S[〉* Sk[〉* S2k[〉* S'2k [〉* S2k [〉* S4k [〉* ⋅⋅⋅ [〉* S2⋅2⋅⋅⋅2k [〉* ⋅⋅⋅ 

 
Since in the initial marking place p1 has only one token, 

Derivation D generates sentential forms 2n

S , n≥1. Then in 
order to terminate the derivation we replace all S's with A's, 
i.e. 
 

D': S[〉* S2⋅2⋅⋅⋅2k [〉*A2⋅2⋅⋅⋅2k [〉* 2n

a . 
 
Next we prove the main results of the paper. 
 
Lemma 3.3. MAT[λ]

ac ⊆ PNI[λ]. 
 

Proof.  Let G = (V, Σ, S, M, B) be a matrix grammar 
with or without erasing rules. Without loss of generality we 
assume that G is without repetitions. Let R be the set of all 
rules occurred in M. By Theorem 2.6, we can construct an 
s-PN controlled grammar G' = (V, Σ, S, R, Ns) equivalent to 
the matrix grammar G'' = (V, Σ, S, M).  

We modify the net Ns = (P∪Q, T, F∪E, ϕ, ξ, γ, µ0, τ) 
as follows. Let r: A→α∈B with γ(t) = r, ξ(p) = A. Let r': 
A'→α' is the next rule after the rule r in the matrix, i.e. m: 
(…, A→α, A'→α', …). Let γ(t') = r' and ξ(p') = A'. We add a 
new transition tA labeled with r', an inhibitor arc (p,tA), and 
an arc (tA,qr') where qr'∈Q∩•t'. If the rule r: A→α is not 
applicable in a derivation, we can skip this rule, and we can 
apply the next rule r': A'→α' in the matrix since r∈B. 
Correspondingly, if r is not applicable, place p does not 
have any token, and transition tA can fire, correspondingly, 
the rule r': A'→α' can be applied. This modification of Ns 
allows us to take into consideration of the checking of 
occurrences of nonterminals in sentential forms. Let N's be 
the Petri net obtained from Ns by the modification above. 
Then G''' = (V, Σ, S, R, N's) is a PNI controlled grammar 
where L(G) = L(G'''). 

We show that the inverse inclusion also holds for the λ-
case. 

 
Lemma 3.4. PNIλ ⊆ MATλ

ac. 
 

Proof.  Let G = (V, Σ, S, R, N, γ, M') be a PNI 
controlled grammar with N = (P, T, F, I, φ, ι). Let P = {p1, 
p2, …, pn}. We set V' = V∪P'∪{S', C, X} where P' = {p' | 
p∈P} is a set of new nonterminal symbols and S', C, X are 
new nonterminal symbols. Let for t∈T,  

•t ={pi,1, …, pi,k}, °t ={pi,k+1, …, pi,l} and t•={pj,1, …, pj,m}. 
We associate the following sequences of rules with 

each transition t∈T  
• σi,1: p'i,1→λ, p'i,1→λ, …, p'i,1→λ                     

(the number of the erasing rules is φ(pi,1,t)),  (3.1) 
• σi,2: p'i,2→λ, p'i,2→λ, …, p'i,2→λ                      

(the number of the erasing rules is φ(pi,2,t)), (3.2) 
• σi,k: p'i,k→λ, p'i,k→λ, …, p'i,k→λ   

(the number of the erasing rules is φ(pi,k,t)), (3.3) 

• σX: p'i,k+1→X, p'i,k+2→X, …, p'i,l→X   (3.4) 

• σC: C→C ,1 ,2 ,( , ) ( , ) ( , )
,1 ,2 ,' ' 'j j j mt p t p t p

j j j mp p pφ φ φ
⋅ ⋅ ⋅  (3.5) 

and define the matrix 
• mr = (σi,1, σi,2, …, σi,k, σC, σX, r)  (3.6) 

where r = A→α = γ(t)∈R. Furthermore, we add the starting 
matrix 

• m0 = (
| ( )|' p

p P

pS SC ι

∈

′ → ∏ )   (3.7) 
and  for each τ∈M', the “erasing” matrix 

• mr,λ = (C→λ, p'1→λ, …, p'1→λ, p'2→λ, …, p'2→λ, …, 
p'n→λ, …, p'n→λ)    (3.8) 

where mr,λ has τ(pi) occurrences of each rule p'i→λ, 1≤i≤n. 
We consider the matrix grammar G' = (V', Σ, S', M, B) 
where M consists of all matrices of the form (3.6)-(3.8) and 
B consists of the rules of the form p'i,k+1→X, p'i,k+2→X, …, 
p'i,l→X. 

Let D: S[r1r2⋅⋅⋅rn〉w∈Σ* be a derivation in G. Then 
ν =  t1t2⋅⋅⋅ts, γ(ν) = r1r2⋅⋅⋅rn is an occurrence sequence of 
transitions of N enabled at the initial marking ι. We 
construct the derivation D' in G' which simulates the 
derivation D. The derivation D' starts with 

 
| ( )|'[ p

p P

pS SC ι

∈

〉 ∏  
 

applying the matrix (3.7), then for each pair of a transition t 
in ν and the corresponding rule r=γ(t), we choose a matrix 
of the form (3.6). When the terminal string w∈Σ* is 
generated, in order to erase the remaining symbols from P' 
and the symbol C we use matrices of the form (3.8). 

Let,  

 
*

,1 ,
| ( )

0 2 ,
|' : ''[ [ i i

p

p P
i n np m m m wS C wD m S ι

∈

〉 ⋅⋅⋅ 〉 = ∈ ∑∏  
 
be a derivation in G'. Since V∩P'=∅, we can write a 
derivation D'': S[rj,1 rj,2⋅⋅⋅ rj,k〉wj,1 = w∈Σ* where rj,i is the rule 
of the non-erasing matrix mr,j,i, 1≤i≤k in D' and we omit 
those steps in D' in which erasing matrices are used.  

The application of a matrix mr of the form (3.6) in D' 
shows that there are at least ϕ(pi,1,t) pieces of p'i,1, etc., and 
at least ϕ(pi,k,t) pieces of p'i,k in the sentential form, i.e. the 
input places pi,1, pi,2, …, pi,k of t have at least ϕ(pi,1,t), 
ϕ(pi,2,t), …, ϕ(pi,k,t) tokens, respectively. Moreover, the 
rules of the form p'i,k+1→X, p'i,k+2→X, …, p'i,l→X control 
that places from °t do not have any tokens. Thus, the 
transition t, γ(t) = r, is enabled in N. We can construct the 
successful occurrence sequence ι[tj,1tj,2⋅⋅⋅tj,k)µk where γ( tj,i) = 
rj,i, 1≤i≤k. Hence, D'' is a derivation in G. Thus L(G')⊆L(G). 

Now let E: S[rj,1rj,2⋅⋅⋅rj,k〉wj,k = w∈Σ* be a derivation in 
G. Then we also have the derivation E': 
S'[m0〉SC[mj,1mj,2⋅⋅⋅mj,k〉w'j,kC  in  G' where w'j,k  differs from 
wj,k only in letters p', p∈P. These letters and C can be erased 
with matrices (3.8). Thus L(G) ⊆ L(G'). 
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We summarize our results in the following theorem 
Theorem 3.5. MATλ

ac ⊆ PNI ⊆ MATλ
ac = PNIλ. 

 
4. CONCLUSION 

 
In this paper we have defined and investigated 

grammars controlled by Petri nets with inhibitor arcs, where 
we have considered only arbitrary transition labeling and 
the finite set of final markings. The paper clearly establishes 
some basic facts. A topic is worth being investigated in this 

area is the consideration of different types of transition 
labeling strategies and the different definitions of final 
marking sets. Another interesting topic is the study of the 
hierarchy problems with respect to the number of inhibitor 
arcs. 
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