
Journal of Fundamental Sciences Vol. 6, No. 2 (2010) 98-103.

.

ISSN 1823-626X

Journal of Fundamental Sciences

available online at http://jfs.ibnusina.utm.my

Grammars controlled by petri nets with inhibitor arcs

Sherzod Turaev* and Mohd Hasan Selamat

Faculty of Computer Science and Information Technology, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

Received 24 May 2010, Revised 25 June 2010, Accepted 17 July 2010, Available online 29 October 2010

ABSTRACT

A Petri net controlled grammar is a grammar equipped with a Petri net whose transitions are labeled with production rules of the grammar, and the
associated language consists of all terminal strings which can be derived in the grammar and the sequence of rules in every terminal derivation
corresponds to some occurrence sequence of transitions of the Petri net which is enabled at the initial marking and finished at a final marking of the net. In
this paper we define grammars controlled by Petri nets with inhibitor arcs and investigate their computational capacities.

| Formal grammars and languages | Grammars with regulated rewriting | Petri nets | Petri net controlled grammars |

® 2010 Ibnu Sina Institute. All rights reserved.

1. INTRODUCTION

The symbolic representation of a modeled system in

the form of strings makes its processes by information
processing tools very easy. Moreover, Coding Theory,
Cryptography, Computation Theory, Computational
Linguistics, Natural Computing, and many other fields
directly use strings for the description and analysis of
modeled systems. In the modeling we usually have to deal
with infinite sets of strings. Thus, it is very important to
define some finite devices which generate all the strings of
these sets. If we consider strings as words, then a set of
strings can be considered as a language and a generative
device as a grammar. In general, a grammar consists of
finite sets of terminal symbols, nonterminal symbols and
production rules as well as the axiom (the start symbol). To
generate a word in the language, one begins with the start
symbol. Then production rules are applied in any order,
until a word that contains neither the start symbol nor
nonterminal symbols is produced.

With respect to the forms of production rules,
grammars are divided into two major classes: context-free
where the left-hand side of each production rule consists of
a single nonterminal symbol and context-sensitive where the
left-hand side of each production rule consists of a
nonterminal symbol surrounded by a context of terminal
and nonterminal symbols. Though context-free grammars
have beautiful mathematical properties, and they are easily
applicable in practical problems, they can’t cover all aspect
of modeled phenomena.

Corresponding author at: Faculty of Computer Science and Information Technology,
University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
E-mail address: sherzod@fsktm.upm.edu.my (Sherzod Turaev)

On the other hand, context-sensitive grammars are too
powerful to be used in applications. In order to overcome
this problem, we need some “context-free like” generative
devices, which have as many context-free-like properties as
possible, but are also able to describe the non-context-free
features of the specific languages in the question. One of the
solutions is that a context-free grammar should be
considered with some additional (control) mechanism
which restricts the application of the rules in order to avoid
some derivations and obtain a subset of the language
generated in usual way. The computational power of some
grammars with control mechanism turns out to be greater
than the power of context-free grammars. The consideration
of different types of control mechanisms leads to the
definition of different types of grammars with controlled
(regulated) rewriting. For instance, in the monograph [5],
we can find the detailed information on various types of
grammars with regulated rewriting such as matrix,
programmed, valence, random context, and tree controlled
grammars, etc.

However, the rapid developments in present day
industry, biology, and other areas challenge to deal with
various tasks which need suitable tools for their modeling
and investigation. We introduce Petri net controlled
grammars as models for representing and analyzing of the
systems such as automated manufacturing systems in
industry and metabolic pathways in systems biology, where
Petri nets are responsible for the structure and
communication of the systems, and grammars represent
generative processes in these systems. In our recent papers
[1, 2, 3, 4, 7, 8, 9] we have defined various types of Petri
net controlled grammars (considering different classes of
place/transition Petri nets) motivated by different theoretical

 http://dx.doi.org/10.11113/mjfas.v6n2.190

S. Turaev and M.H. Selamat / Journal of Fundamental Sciences Vol. 6, No. 2 (2010) 98-103.

| 99 |

and practical problems, and studied their mathematical
properties.

Our study has shown that the use of place/transition
Petri nets as control mechanisms for context-free grammars
allows only generating families of languages, which are
strict subclasses of the family of context-sensitive
languages. Thus, it is interesting to consider grammars
controlled by high level Petri nets (Petri nets with inhibitor
arcs, colored Petri nets, etc.), which have a larger modeling
and computational power. In this paper we define grammars
controlled by Petri nets with inhibitor arcs and investigate
their computational power.

2. PRELIMINARIES

 Grammars. Let Σ be an alphabet, which is a finite
nonempty set of symbols. A word over the alphabet Σ is a
finite sequence of symbols from the alphabet Σ. The empty
word is denoted by λ. The set of all words over the alphabet
Σ is denoted by Σ*. A subset of Σ* is called a language.

A phrase structure grammar is a quadruple G = (V,
Σ, S, R) where V and Σ are two disjoint alphabets of
nonterminal and terminal symbols, respectively, S∈V is the
start symbol and R ⊆ (V∪Σ)*V(V∪Σ)*×(V∪Σ)* is a finite set
of (production) rules. Usually, a rule (u,v)∈R is written in
the form u→v. A rule of the form u→λ is called an erasing
rule. A string x∈(V∪Σ)* directly derives a string y∈(V∪Σ)*
in G, written as x[〉y, if and only if there is a rule u→v∈R
such that x = x1ux2 and y=x1vx2 for some x1, x2∈(V∪Σ)*. The
reflexive and transitive closure of the relation [〉 is denoted
by [〉*. A derivation using the sequence of rules π = r1r2 ⋅⋅⋅rk,
ri∈R, 1≤i≤k, is denoted by [π〉 or [r1r2 ⋅⋅⋅rk〉. A string
w∈(V∪Σ)* such that S[〉*w is called a sentential form. The
language generated by G, denoted by L(G), is defined by
L(G) = {w∈Σ* | S[〉*w}. The families of languages generated
by phrase structure grammars are denoted by RE.

A phrase-structure grammar G = (V, Σ, S, R) is called
context-sensitive if each rule u→v∈R has u = u1Au2, v =
u1xu2 for u1, u2∈(V∪Σ)*, A∈V and x∈(V∪Σ)+ (in context
sensitive grammars S→λ is allowed, provided that S does
not appear in the right-hand members of rules in R), and it is
called context-free if each rule u→v∈R has u∈V.

The families of languages generated by context-
sensitive and context-free grammars are denoted by CS and
CF, respectively. The next strict inclusions hold (for details,
see [6]).

Theorem 2.1 CF ⊂ CS ⊂ RE

A matrix grammar is a quintuple G = (V, Σ, M, S, B)
where V, Σ and S are defined as in phrase structure
grammars, M is a finite set of matrices each of which is a
finite sequence m: (A1→w1, A2→w2, …, An→wn), n≥1, of
context-free rules over (V∪Σ), and B is a finite set of
occurrences of such rules on M. For some words x and y in
(V∪Σ)* and a matrix m: (A1→w1, A2→w2, …, An→wn)∈M,

we write x[m〉y iff there are words x0, x1, …, xn such that
x0=x, xn=y, and for 1≤i≤n, either
xi-1 = zi-1Aiz'i-1, xi = zi-1wiz'i-1 for some zi-1, z'i-1∈(V∪Σ)*

or xi-1 = xi, the rule Ai→wi is not applicable to xi-1, and this
occurrence of Ai→wi appears in B. One says that the rules
whose occurrences appear in B are used in appearance
checking mode, and that a matrix grammar is defined with
(without) appearance checking if B ≠ ∅ (B = ∅). The
language generated by G is defined as L(G) = {w∈Σ* |
S[〉*w}. The family of languages generated by matrix
grammars with appearance checking (without appearance
checking) is denoted by MAT[λ]

ac (MAT[λ]). The following
theorem shows the relationships of the families of matrix
languages (for details, see [5]).

Theorem 2.2 CF ⊂ MAT ⊂ MATac ⊂ CS and MAT ⊆
MATλ

 ⊂ MATλ
ac = RE

Petri nets. A place/transition Petri net (simply Petri

net) is a construct N = (P, T, F, φ) where P and T are
disjoint finite sets of places and transitions, respectively,
F⊆(P×T)∪(T×P) is the set of directed arcs, φ: F→{1,2, …}
is a weight function. A Petri net can be represented by a
bipartite directed graph with the node set P∪T where places
are drawn as circles, transitions as boxes and arcs as
arrows. The arrow representing an arc (x,y)∈F is labelled
with φ(x,y); if φ(x,y)=1, the label is omitted. A mapping µ:
P→{0,1,2, …} is called a marking. For each place p∈P,
µ(p) gives the number of tokens in p. Graphically, tokens
are drawn as small solid dots inside circles. •x={y | (y,x)∈F}
and x•={y | (x,y)∈F} are called pre- and post-sets of
x∈P∪T, respectively. For t∈T (p∈P), the elements of •t (•p)
are called input places (transitions) and the elements of t•
(p•) are called output places (transitions) of the transition t
(the place p).

A transition t∈T is enabled by marking µ if and only
if µ(p)≥φ(p,t) for all p∈•t. In this case t can occur (fire). Its
occurrence transforms the marking µ into the marking µ'
defined for each place p∈P by µ'(p)=µ(p)−φ(p,t)+φ(t,p). We
write µ[t)µ' to indicate that the firing of t in µ leads to µ'. A
finite sequence t1t2⋅⋅⋅tk, ti∈T, 1≤i≤k, is called an
occurrence sequence enabled at a marking µ and finished at
a marking µ' if there are markings µ1, µ2, …, µk-1 such that
µ[t1)µ1[t2)µ2[t3)⋅⋅⋅[tk-1)µk-1[tk)µ'. In short this sequence can be
written as µ[t1t2⋅⋅⋅tk)µ' or µ[ν)µ' where ν= t1t2⋅⋅⋅tk.

A marked Petri net is a system N = (P, T, F, φ, ι)
where (P, T, F, φ) is a Petri net, ι is the initial marking.

Example 2.3. Figure 1 depicts a Petri net N=(P, T, F, φ, ι)
with P={p1, p2, p3, p4, p5} and T={t1, t2, t3, t4}. We can see
that φ(p3,t3)=2. The initial marking ι is defined by
ι(p1)=ι(p4)=1 and ι(p)=0 for all P−{p1, p4}.

A Petri net with final markings is a construct N = (P,
T, F, φ, ι, M) where (P, T, F, φ, ι) is a marked Petri net and
M is a set of markings which are called final markings. An
occurrence sequence ν of transitions is called successful for

S. Turaev and M.H. Selamat / Journal of Fundamental Sciences Vol. 6, No. 2 (2010) 98-103.

| 100 |

M if it is enabled at the initial marking ι and finished at a
final marking τ of M.

Figure 1: A Petri net

A Petri net with inhibitor arcs is a 6-tuple N = (P, T,
F, I, φ, ι) where (P, T, F, φ, ι) is a marked net and I ⊆ P×T
is a set of inhibitor arcs. Graphically, an inhibitor arc is
represented by a special arrow head. Figure 2 shows a Petri
net with inhibitor arcs, which is obtained from the Petri net
in Figure 1 by adding an inhibitor arc (p2,t3). Let °t = {p∈P |
(p,t)∈I}. A transition t∈T can occur at a marking µ if and
only if µ(p) = 0 for all p∈°t and µ(p) ≥ φ(p,t) for all p∈P−°t.

Figure 2: A Petri net with inhibitor arcs

Petri net controlled grammars.

The construction of the following type of Petri nets is
based on the idea of using similarity between the firing of a
transition and the application of a production rule in a
derivation in which places are nonterminals and tokens are
different occurrences of nonterminals.

A context-free Petri net (a cf Petri net for short) with
respect to a context-free grammar G = (V, Σ, S, R) is a tuple
N = (P, T, F, φ, β, γ, ι) where

• (P, T, F, φ) is a Petri net;
• the labelling functions β: P→V and γ: T→R are

bijections;
• there is an arc from place p to transition t if and only if

γ(t) = A→α and β(p) = A. The weight of the arc (p,t) is
1;

• there is an arc from transition t to place p if and only if
γ(t) = A→α and β(p) = X where |α|X>0. The weight of
the arc (t,p) is |α|X;

• the initial marking ι is defined by ι(β-1(S)) = 1and ι(p)
= 0 for all p∈P−{β-1(S)}.

Example 2.4. Figure 3 illustrates the cf Petri net N1 with
respect to the grammar G1 = ({S, A, B}, {a,b}, S, R) where R
consists of r0: S→AB, r1: A→aAb, r2: A→λ, r3: B→cB, r4:
B→λ.

Figure 3: A context-free Petri net N1

We recall the definition of an s-Petri net, i.e. context-

free Petri nets with such additional places and arcs that
these new places with input and output transitions of a net
compose cycles with the common place (for details, see [1,
8, 9]).

Let G=(V, Σ, S, R) be a context-free grammar with its
corresponding context-free Petri net N = (P, T, F, φ, β, γ, ι).
Let T1, T2, …, Tn be a partition of T.

An s-Petri net is a Petri net with final markings Ns =
(P∪Q, T, F∪E, ϕ, ξ, γ, µ0, τ) where

• Q = ∪ρ∈ΠPρ, E = ∪ρ∈ΠFρ;
• the weight function ϕ is defined by ϕ(x,y) = φ(x,y) if

(x,y)∈F and ϕ(x,y) = 1 if (x,y)∈E;
• the labelling function ξ: P∪Q→V∪{λ} is defined by

ξ(p) = β(p) if p∈P and ξ(p) = λ if p∈Q;
• µ0 is the initial marking where µ0(p) = ι(p) if p∈P,

µ0(p0) = 1 and µ0(p) = 0 if p∈Q−{p0};
• τ is the final marking where τ(p0) = 1 and τ(p) = 0 if

p∈(P∪Q)−{p0}.

Example 2.5. Figure 4 depicts an s-Petri net which are
constructed with respect to the grammar G2 = ({S, A, B},
{a, b}, S, R) where R consists of r0: S→AB, r1: A→λ, r2:
B→λ, r3: A→aA, r4: B→aB, r5: A→bA, r6: B→bB.
An s-PN controlled grammar is a system G = (V, Σ, S, R,
Ns) where G' = (V, Σ, S, R) is a context-free grammar and Ns
is an s-Petri net with respect to the context-free grammar G'.
The language generated by an s-Petri net controlled
grammar G consists of all strings w∈Σ* such that there is a
derivation S[r1r2⋅⋅⋅rk〉w∈Σ* and a successful occurrence
sequence of transitions ν=t1t2⋅⋅⋅tk of Ns such that r1r2⋅⋅⋅rk =γ(
t1t2⋅⋅⋅tk). PN[λ]

s denotes the family of languages generated by
s-PN controlled grammars. It was shown in [10] that
Theorem 2.2. MAT[λ] = PN[λ]

s.

S. Turaev and M.H. Selamat / Journal of Fundamental Sciences Vol. 6, No. 2 (2010) 98-103.

| 101 |

Figure 4: An s-Petri net N2 (additional places are represented
without labels)

Further, we recall the main definitions and main

results concerning to arbitrary (place/transition) Petri net
controlled grammars (for details, see [2, 3, 4]).

A Petri net controlled grammar is a tuple G = (V, Σ,
S, R, N, γ, M) where V, Σ, S, R are defined as for a context-
free grammar and N = (P, T, F, ϕ, ι) is a (marked) Petri net,
γ: T→R∪{λ} is a transition labelling function and M is a
finite set of final markings (this definition uses the extended
form of the transition labelling function γ: T*→R*; this
extension is done in the usual manner).

The language generated by a Petri net controlled
grammar G consists of all strings w∈Σ* such that there is a
derivation S[r1r2⋅⋅⋅rk〉w∈Σ*and an occurrence sequence
ν=t1t2⋅⋅⋅ts which is successful for M such that r1r2⋅⋅⋅rk = γ(
t1t2⋅⋅⋅ts).

Example 2.5. Let G3 = ({S, A, B, C}, {a, b, c}, S, R, N3, γ3,
M3) be a Petri net controlled grammar where R consists of
rules S→ABC, A→aA, B→bB, C→cC, A→a, B→b, C→c;
the net N3 is illustrated in Figure 5 and M3 = {µ} with µ(p) =
0 for all p∈P, then G3 generates the language L(G3) =
{anbncn | n≥1}∉CF.

PN and PNλ denote the families of languages
generated by PN controlled grammars without and with
erasing rules, respectively. The computational power of
Petri net controlled grammars has been investigated in [4,
11]. It was shown that
Theorem 2.2. MAT ⊆ PN = PN[λ] = MAT[λ].

3. THE EFFECT OF INHIBITOR ARCS

Definition 3.1. A Petri net controlled grammar G =

(V, Σ, S, R, N, γ, M) is called a grammar controlled by a
Petri net with inhibitor arcs (in short, a PNI controlled
grammar) if N is a Petri net with inhibitor arcs.

The language L(G) generated by a PNI controlled
grammar G is defined as usual manner. PNI and PNIλ

denote the families of languages generated by PNI
controlled grammars without and with erasing rules,
respectively.

Figure 5: A Petri net N3

Example 2.5. We consider the PNI controlled
grammar G4 = ({S, S', A}, {a}, S, {S→SS|S'|A, S'→S, A→a},
N4, γ4, M4) where N4 and its transition labeling are
illustrated in Figure 6, and M4 = {µ} with µ(p) = 0 for all
p∈P. We show that G4 generates the language L(G4) =

{ 2n

a | n≥1}.

Figure 6: A Petri net with inhibitor arcs N4

Proof. Let place p1 has k≥1 tokens. Inhibitor arcs
(p1,t2) and (p1,t4) controls that all tokens are moved from
place p1 to place p2 before transition t2 or transition t4 fires.
Then place p2 receives 2k tokens. In the next step transitions
t2 and t4 are enabled. If transition t2 (t4) occurs, then
transition t4 (t2) cannot occur until all tokens are removed
from place p3 (p4). Thus only one of transitions t2 and t4 can
occur. Inhibitor arc (p2,t3) ((p2,t5)) controls that all tokens
are moved from place p2 to place p3 (p4). Inhibitor arc
(p3,t1) controls that all tokens are moved from place p3 to
place p1 until transition t1 fires. Thus 2k tokens (i.e. the
doubled number of the tokens) return to place p1. The
occurrences of transition t5 2k times remove all tokens from
place p4 and the execution of the Petri net reaches to the
final marking. The corresponding derivation for this
occurrence of transitions has the form

S. Turaev and M.H. Selamat / Journal of Fundamental Sciences Vol. 6, No. 2 (2010) 98-103.

| 102 |

D: S[〉* Sk[〉* S2k[〉* S'2k [〉* S2k [〉* S4k [〉* ⋅⋅⋅ [〉* S2⋅2⋅⋅⋅2k [〉* ⋅⋅⋅

Since in the initial marking place p1 has only one token,

Derivation D generates sentential forms 2n

S , n≥1. Then in
order to terminate the derivation we replace all S's with A's,
i.e.

D': S[〉* S2⋅2⋅⋅⋅2k [〉*A2⋅2⋅⋅⋅2k [〉* 2n

a .

Next we prove the main results of the paper.

Lemma 3.3. MAT[λ]

ac ⊆ PNI[λ].

Proof. Let G = (V, Σ, S, M, B) be a matrix grammar
with or without erasing rules. Without loss of generality we
assume that G is without repetitions. Let R be the set of all
rules occurred in M. By Theorem 2.6, we can construct an
s-PN controlled grammar G' = (V, Σ, S, R, Ns) equivalent to
the matrix grammar G'' = (V, Σ, S, M).

We modify the net Ns = (P∪Q, T, F∪E, ϕ, ξ, γ, µ0, τ)
as follows. Let r: A→α∈B with γ(t) = r, ξ(p) = A. Let r':
A'→α' is the next rule after the rule r in the matrix, i.e. m:
(…, A→α, A'→α', …). Let γ(t') = r' and ξ(p') = A'. We add a
new transition tA labeled with r', an inhibitor arc (p,tA), and
an arc (tA,qr') where qr'∈Q∩•t'. If the rule r: A→α is not
applicable in a derivation, we can skip this rule, and we can
apply the next rule r': A'→α' in the matrix since r∈B.
Correspondingly, if r is not applicable, place p does not
have any token, and transition tA can fire, correspondingly,
the rule r': A'→α' can be applied. This modification of Ns
allows us to take into consideration of the checking of
occurrences of nonterminals in sentential forms. Let N's be
the Petri net obtained from Ns by the modification above.
Then G''' = (V, Σ, S, R, N's) is a PNI controlled grammar
where L(G) = L(G''').

We show that the inverse inclusion also holds for the λ-
case.

Lemma 3.4. PNIλ ⊆ MATλ

ac.

Proof. Let G = (V, Σ, S, R, N, γ, M') be a PNI
controlled grammar with N = (P, T, F, I, φ, ι). Let P = {p1,
p2, …, pn}. We set V' = V∪P'∪{S', C, X} where P' = {p' |
p∈P} is a set of new nonterminal symbols and S', C, X are
new nonterminal symbols. Let for t∈T,

•t ={pi,1, …, pi,k}, °t ={pi,k+1, …, pi,l} and t•={pj,1, …, pj,m}.
We associate the following sequences of rules with

each transition t∈T
• σi,1: p'i,1→λ, p'i,1→λ, …, p'i,1→λ

(the number of the erasing rules is φ(pi,1,t)), (3.1)
• σi,2: p'i,2→λ, p'i,2→λ, …, p'i,2→λ

(the number of the erasing rules is φ(pi,2,t)), (3.2)
• σi,k: p'i,k→λ, p'i,k→λ, …, p'i,k→λ

(the number of the erasing rules is φ(pi,k,t)), (3.3)

• σX: p'i,k+1→X, p'i,k+2→X, …, p'i,l→X (3.4)

• σC: C→C ,1 ,2 ,(,) (,) (,)
,1 ,2 ,' ' 'j j j mt p t p t p

j j j mp p pφ φ φ
⋅ ⋅ ⋅ (3.5)

and define the matrix
• mr = (σi,1, σi,2, …, σi,k, σC, σX, r) (3.6)

where r = A→α = γ(t)∈R. Furthermore, we add the starting
matrix

• m0 = (
| ()|' p

p P

pS SC ι

∈

′ → ∏) (3.7)
and for each τ∈M', the “erasing” matrix

• mr,λ = (C→λ, p'1→λ, …, p'1→λ, p'2→λ, …, p'2→λ, …,
p'n→λ, …, p'n→λ) (3.8)

where mr,λ has τ(pi) occurrences of each rule p'i→λ, 1≤i≤n.
We consider the matrix grammar G' = (V', Σ, S', M, B)
where M consists of all matrices of the form (3.6)-(3.8) and
B consists of the rules of the form p'i,k+1→X, p'i,k+2→X, …,
p'i,l→X.

Let D: S[r1r2⋅⋅⋅rn〉w∈Σ* be a derivation in G. Then
ν = t1t2⋅⋅⋅ts, γ(ν) = r1r2⋅⋅⋅rn is an occurrence sequence of
transitions of N enabled at the initial marking ι. We
construct the derivation D' in G' which simulates the
derivation D. The derivation D' starts with

| ()|'[p

p P

pS SC ι

∈

〉 ∏

applying the matrix (3.7), then for each pair of a transition t
in ν and the corresponding rule r=γ(t), we choose a matrix
of the form (3.6). When the terminal string w∈Σ* is
generated, in order to erase the remaining symbols from P'
and the symbol C we use matrices of the form (3.8).

Let,

*

,1 ,
| ()

0 2 ,
|' : ''[[i i

p

p P
i n np m m m wS C wD m S ι

∈

〉 ⋅⋅⋅ 〉 = ∈ ∑∏

be a derivation in G'. Since V∩P'=∅, we can write a
derivation D'': S[rj,1 rj,2⋅⋅⋅ rj,k〉wj,1 = w∈Σ* where rj,i is the rule
of the non-erasing matrix mr,j,i, 1≤i≤k in D' and we omit
those steps in D' in which erasing matrices are used.

The application of a matrix mr of the form (3.6) in D'
shows that there are at least ϕ(pi,1,t) pieces of p'i,1, etc., and
at least ϕ(pi,k,t) pieces of p'i,k in the sentential form, i.e. the
input places pi,1, pi,2, …, pi,k of t have at least ϕ(pi,1,t),
ϕ(pi,2,t), …, ϕ(pi,k,t) tokens, respectively. Moreover, the
rules of the form p'i,k+1→X, p'i,k+2→X, …, p'i,l→X control
that places from °t do not have any tokens. Thus, the
transition t, γ(t) = r, is enabled in N. We can construct the
successful occurrence sequence ι[tj,1tj,2⋅⋅⋅tj,k)µk where γ(tj,i) =
rj,i, 1≤i≤k. Hence, D'' is a derivation in G. Thus L(G')⊆L(G).

Now let E: S[rj,1rj,2⋅⋅⋅rj,k〉wj,k = w∈Σ* be a derivation in
G. Then we also have the derivation E':
S'[m0〉SC[mj,1mj,2⋅⋅⋅mj,k〉w'j,kC in G' where w'j,k differs from
wj,k only in letters p', p∈P. These letters and C can be erased
with matrices (3.8). Thus L(G) ⊆ L(G').

S. Turaev and M.H. Selamat / Journal of Fundamental Sciences Vol. 6, No. 2 (2010) 98-103.

| 103 |

We summarize our results in the following theorem
Theorem 3.5. MATλ

ac ⊆ PNI ⊆ MATλ
ac = PNIλ.

4. CONCLUSION

In this paper we have defined and investigated

grammars controlled by Petri nets with inhibitor arcs, where
we have considered only arbitrary transition labeling and
the finite set of final markings. The paper clearly establishes
some basic facts. A topic is worth being investigated in this

area is the consideration of different types of transition
labeling strategies and the different definitions of final
marking sets. Another interesting topic is the study of the
hierarchy problems with respect to the number of inhibitor
arcs.

ACKNOWLEDGEMENT

We acknowledge financial support from University
Putra Malaysia via RUGS grant number 05-01-10-0896RU.

REFERENCES

[1] J. Dassow and S. Turaev, LNCS 5196 (2008) 209-220.
[2] J. Dassow and S. Turaev, LNCS 5457 (2009) 326-337.
[3] J. Dassow and S. Turaev, J. of Universal Computer Science, 15(14) (2009) 2808-2835.
[4] J. Dassow and S. Turaev, Romanian J. of Information Science and Technology, 12(2) (2009) 191–207.
[5] J. Dassow and Gh. Paun, Springer, Berlin, 1989.
[6] G. Rozenberg and A. Salomaa, Springer, 1997.
[7] M.H. Selamat and S. Turaev, ICCRD 2010 (2010) 51-55.
[8] R. Stiebe and S. Turaev, EPTCS, 3 (2009) 193-203.
[9] S. Turaev, MEMICS 2007 (2007) 233-240.
[10] S. Turaev, PhD Thesis, 2010.
[11] G. Zetzsche, DLT 2009, (2009) 490-501.

