Available online at
http://www.ibnusina.utm.myl/jfs Journal of

Fundamental

Sciences

Numerical Analysis of the Electrical Potential Calculation in
a Transversely Isotropic Media

Sri Mardiyati *, T. Basyarudin and Heru Suhartanto

Faculty of Computer Sciences, University of Indonesia, Kampus Depok, Indonesia 16424
*To whom correspondence should be addressed. E-mail: sri_ mardiyati@hotmail.com

Received 16 October 2006
http://dx.doi.org/10.11113/mjfas.v2n1-2.19

ABSTRACT

The electrical potential due to a point source of current supplied at the surface of a transversely isotropic medium is
calculated using a finite element formulation. The finite and infinite elements are applied to calculate the potential for
arbitrary electrical conductivity profiles. The accuracy of the scheme is checked against results obtainable using
Chave's algorithm.

Transversely isotropic | transverse conductivity | vertical conductivity | direct current | electrical potential | finite element | infinite
element |

1. Introduction

The analytical solution for the electrical potential in transversely isotropic earth is represented as an integral
equation form. Some authors calculated the electrical potential by solving the integral equation numerically.
Sampaio [6] investigated cases in an isotropic medium. Stoyer and Wait [8] analyzed a two-layer model of
isotropic medium, where the lower layer has an exponentially varying conductivity. Sato and Sampaio [7]
considered a half-space whose resistivity varies as the power of an expression depending linearly on depth.
However, their methods are limited to specific forms of conductivity.

In this paper, the electrical potential ¢(7,z) in transversely isotropic media is chosen as a model. The potential

resulting from a single current electrode located at the origin of a cylindrical coordinate system, which is axially
symmetry satisfies a Boundary Value Problem (BVP) which consists of a partial differential equation:
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and two boundary conditions, those are:
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(i) The vertical component of the current density must be zero at ground surface, this satisfies

By 1 8(r)
0L (r,0)=—22 .
Uv()az(r) r r (1.2)
(ii) The electrical potential must approximate to zero at infinite distance, this satisfies
#(r,z)—> 0 as 2122 5w (1.3)

where o, is the conductivity in horizontal directions and &, is the conductivity in vertical current flow.

A finite element scheme is developed to solve this BVP for any form of conductivity profile in a medium. The
basic steps involved in solving this method are:
(1) The formulation of a variational statement with an appropriate space of admissible function identified.

(2) The constructions of an approximation of the variational BVP on a finite dimensional subspace H b
(3) The construction of a finite element mesh and piecewise-polynomial basis functions defined on the mesh.
(4) Solving the system of equations.

The first step of finite element method will be shown on the following section.

2. Variational Statement of the Boundary Value Problem

The equation (1.1) can be written as follows:
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In a cylindrical coordinate system which is axially symmetry, if F =[Fj,F,] then the divergence of F becomes:

- 10 0
V.F =——I[rF]]+—|[F
" ar[” l]+6z[ 21
Applying the divergence of F' into equation (2.4), the BVP will consist of an equation:

VF=0 where F| =0 %9 and F, =0, 9 2.5)
or 0z

and the boundary conditions (1.2) and (1.3). The total weight residual error of equation (2.5) over a
region Q (see Figure 1) needs to be zero, that is:

gw(v. f)dQ=£[V.wF-f.V w]dQ =5£WF'Z ds-g_gf.deQ (2.6)

where 7 is an orthogonal vector to the boundary.
The integral on the boundary is calculated on three subregions of 0, those are:

00, =2=0,00, =r=0and Q3 =Vr’+z2 >
Now consider:
wa.nds= ij.nds+ ij.nds+ jWF.I’ldS
o) a0y 0, 805

I
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R =length
\ 4 >
Z=depth ¥
Figure 1: The domain Q
On the boundary 0Q; we have:
ij.n ds = 5 wo, —2xrdr= j.-lw(r,O)ﬁ(r)dr:-I w(0,0) (2.7)
o0 o0 0z o6 '
1 1 1

On the boundary 0Q2, , the boundary condition (1.1) is applied and the following result is obtained by choosing
w=0o0n 0Q, :
—_ a¢
wFnds = wo; —2rrdr=0
aggz aggz or (2.8)

On the boundary 6Q5, w =0 is chosen to obtain the following result:

ijZ ds =0 2.9)
o0 )
By adding the results (2.7), (2.8) and (2.9), the integral on the boundary becomes:
j WF; ds =-1 W(0,0) (2 10)
a0 '

with weight function w is chosen such that w=0 on 0Q, and 0Q3 .
The integral in the domain € is obtained as follow:

EF.VWsz j[Fl,Fz] {a—wz+a—WZ}dQ= j o] %6_w+ o 90w 2z rdrdz (2.11)
o I} or 0z o or or 0z 0z

Combining the equation (2.10) and (2.11), the total weight residual error over region Q becomes:

%a—w+a o ow 27z'rdrdz=0}

W) dQ = -1 w(0,0) -
A‘W(V w) w(0,0) g[o—l or or V oz oz

Atau:

for 280, 200

-
drd= | =L w00
Ao e Y Z} 2z 100 (2.12)
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Hence the variational of the BVP can now be stated concisely in the following term: find ¢(r,z)e H 1(Q) such
that:

opow _ 0p ow y 1
DB, DL iz |=w(0,0) Y w(rz)e H(Q
g{[az v z} w00 Vu(n)e HI(Q) (2.13)

where w(r, z) is a weight function and the space of admissible function H L is given by:

H%Q)z{ﬂv,?,? aresquare integrable and }v(r,z)zO if Vrz +22 5w (2.14)
r Oz

3. The Galerkin Approximation

A Galerkin approximation for solution ¢ is obtained by posing the variational problem on a finite dimensional
subspace H" of admissible function #7'(Q) and the weight function chosen as a function in H b Specifically,

we seek ¢, € H " such that

Oy, Owy, Oy, Owy, I
n MWh | OO g | =L 0,0
g{al o o TV o A |=o, w00 (.15)

Let {)(-(r,z)}?i be the basis functions of H”", then @, and w; can be represented as a linear combination of
! i=1 h h

the basis functions:

N N
$h=2a;y;(r.z) and wy =2 pBiy;(r.2) (3.16)
j=1 =1
If the function wj, in (3.16) is substituted into equation (3.15), then the following result is obtained:
For the left hand side of (3.18) we have

j‘o_l P Zﬂz Xi +O'vﬂzﬂii rdrdz =—Zﬂili(050)
or .o = or 0z ;o Oz 27 14

Q
or
S Odp Oxi ody, i N
—_—t L2 2B ordrdz | =— . 0,0 .
izlgj.|:o-l o o e o TE T Elﬂzzl( ) (3.17)

Because f; are arbitrary, the equation (3.17) represents N equations to be satisfied by the a; defining ¢, rather
than the single equation. By choosing g; =1,8; =0 Vk*iand Vi, f5; is substituted into equation
(3.17) then the following equation is obtained:

ody 0 oy o ;
ja,ﬂﬁmvﬂi rdrdz|==L 4.(0.0) for i=12,.,N
o or or 0z 0z 2

N
The function ¢, = 2 X (r,z) is substituted into abov equation and we get:
Jj=1
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N Ox; oy, Oxj oy;
o J i J 9%i

-1
o a; rdrdz|=— y;(0,0) for i=12,..,N
Jag{ o o Ve e Y 27 410

Now, we arrive at the system of N linear equation with N' unknown a; as follows:

N
2K;
J=1

ja =F; fori=12,..,Nor Ka=F (3.18)

Where

O oxi o) oxi -1
Kij :fg (eJ] o ?4-0'\) ?E rdrdz | and Fi :;ZZ(O,O) (319)

The K is called the Stiffness matrix order (N x N), a is unknown and F is called load vector. Matrix K in
equation (3.18) is invertible because {y; (r, Z)}i]\i | 1s linearly independent, so the coefficient o ; will be unique.
Therefore the Galerkin's approximation ¢, of the solution ¢ is on the form:
N
¢n= 2a;x;(r,z) where a; is the solution of the linear system (3.18) and {z;(r,2)} l]i | is the basis function of
j=1
H"

4. Finite Element Method

The FEM provides a general and systematic technique for construction the basis functions {y;(r,z)} ,Ai , for the
Galerkin's approximation. The procedure is started by divided Q into two regions, those are a finite element
mesh: Q/ ={(r,2)| 0 <r <L and 0 <z <D} and an infinite element mesh Q; ={(.z)|r > L,z > D}

The finite element mesh Q , and Q; is generated by mapping a nine-point isoparametric master element Q

with coordinate (£,7) in Cartesian and the origin (0, 0) is located at the center of €2 . The master element is
transformed into the 7 z-plane by using the following coordinate transformation:

8 8
r=z(,]rl-l//i(f,77) and z= zozjl//j & n)
= J=

where (r;,z;),i=12,...N are nodal points in Qf and Vi, j=12..N is the set of master element shape

functions (see [2]):

l//o(é,ﬂ):%(éz-f)(nz-n) W1(§,77)=%(1-§2)(772-77) l//z(é,n):%(éz%)(nz-ﬂ)

://3(5,77):%(52-5)(1-772) waEm=1-£501-n2) wS@,n):%(&%:)(l-nz)

W6(§,n)=%(§2-§)(f72+n) w(f,n):%(l-éz)(n%n), Wg(én):%(éz%)(nzw)

For the region €, the method as outlined in Zienkiewicz [9] is used for mapping the master element to infinite
element with the following element shape functions:

To(é,n):(n-ﬂz)(é , 1@ = 3 D

%), rz(é,m:z(l-nzxé)
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%), T 4(E.) = (n+772)(é), u(é,m:%mm%m%)

and the coordinate transformation is as follows:

r3(Em) =1 -n2)(1+

The integral (3.19) is evaluated by using The Gaussian Quadrature formula of order 3 in every element. The
stiffness matrix K is constructed based on these results and the linear system (3.18) is solved to obtain the value
of the electrical potential in every nodal point.

4.1 Interpolation Error

The actual solution ¢ of the boundary value problem will be interpolated by a finite element representation

¢, which contains complete polynomial of degree 2. The interpolation error function £ =¢-¢, on

Q. ={(r,2)|ri<r<riy ,z; <z<zj,1} can be expanded in a Taylor series about any interior point (;, ;)e Q, as
follow (see [5] ):

- — — - — — - — 1 —
E(r,z)=E(r,z)+[(r-r)E,(r,z)+(z-2)E, (r,z)]+§[(r—r)2EW (rg,z9)+
~ = N2
2Az-2)(r-1E,;; (ry,20) +(2-2)" E.; (r9,2)]
where r, is between rand r, z is betweenzand z . Since ¢, is interpolation of ¢ then E is zero at end point
(r,,z,) wherer, =r; or r, =r;;1 and z,=2z; or z, =z;,,. If point (;, ;) is selected to be a point which
make |E | is maximum, then E,. (r,z)=0, E 2 (r,z) =0 . The error function E becomes:

- = 1 — — — —
E(r,2) = E(r,2)+ —[(71)? Epy (r9,20) + 22 -2)(71)E 2 (79,20) +(22)” B (7, 20)]
If we set (r,z) as end point (7;,z;) or (#;,1,2;,1) Whichever is closer to (;, ;), say (r;,z;) then
E(r;,z;)=0. So the following result is obtained:
- — l — — — —
E(r,2) =107 1) Epr (70, 20)+ 2021 -2)03 =) 2 (70, 20) + (21 -2) Bz (0, 20))

or

|E(?,E)|<%[(ri 1) E e (rgs20) |+ 2(z; -2) (5 1) | E s (75 20) | H(zi -2)* | E (rg > 20) ]

. . o - _h - _h
Assume that £, is the largest distance between two points in Q, , then ‘rl- - r‘ é;g and ‘z i - z‘ <76 or the

error bound becomes:
B2
| E(r,z) | g?e[l E,.(ro,20) |+ 2| E\; (rg,z0) |+ E.- (r9,20) |]
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Finally, £ = ¢ - ¢;, implies £ = gon - go;l = gon within Q. If this condition is applied and
2
is assumed then we arrive on the following result: | E(r,z) | < CTe . So the

C = max (. e, |#' (. 2)

interpolation error satisfies: ||¢ -d, ||00 o =Max o, |#(r,2)-¢,(r,z) |<C1he2 , where C, :g
=ée

0
and h, is the largest distance between two points in €, . Similarly, HZ—¢ —% < Cyh, and
r  or
o0 ’Qe
dp 0O 2
9 < C3h, . If the norm on the H 5 is defined as follows ||¢|| = f (%)2 + (%)2 dr dz then
0z 0z |, Qa o Or 0z

the interpolation error, measured in gl) -norm becomes: ||E || Q < C4h2 , for h is the largest distance between

two points in every element Q or ¢ converge to ¢, with rate of convergence .

4.2 The Accuracy of the Finite Element Approximation

The global matrix K in linear system (3.18) is a sparse matrix. If K is stored in a 2-dimension array, it is leading
to an extravagant waste of computer storage and computer time. Therefore, the storage of K is modified by
storing the non zero entries in K into an one dimensional array. If K is stored in a 2-dimension array, the code can
only solve a problem in a mesh with 3600 nodes, but if K is stored in a one-dimension array, then the code can
solve it for a mesh with 14400 nodes. By increased the number of nodes, the accuracy of the results will be
improved. Tables 1, 2, 3 show the potential values and the enhancement of the relative error on the surface for
distance 10 units, 20 units, 40 units and Table 4, 5, 6 show for distance 15 units, 30 units, and 60 units. The
results are compared with the results obtained by using Chave's algorithms. The largest relative error in the range
shown is less than 3% for the node located around the source.

Table 1. The potential and the relative-error on the surface with AB=10 units and the conductivity o, = 20" o ;= 3e"%*
The Potential Relative-error

R V(Chaves) | r=c=21 | r=c=41 r=c=81 | r=c=21 r=c=41 r=c=81

2 0.020209 | 0.024379 | 0.020613 | 0.020215 | 0.206351 | 0.019984 | 0.000280
3 0.011328 | 0.011672 | 0.011353 | 0.011328 | 0.030365 | 0.002182 | 0.000020
4 0.007243 | 0.007436 | 0.007245 | 0.007242 | 0.026719 | 0.000365 | 0.000039
5 0.004985 | 0.005002 | 0.004986 | 0.004985 | 0.003260 | 0.000076 | 0.000080
6 0.003599 | 0.003605 | 0.003599 | 0.003599 | 0.001748 | 0.000040 | 0.000123
7 0.002687 | 0.002683 | 0.002687 | 0.002687 | 0.001405 | 0.000130 | 0.000175
8 0.002057 | 0.002051 | 0.002056 | 0.002056 | 0.002852 | 0.000226 | 0.000240
9 0.001605 | 0.001598 | 0.001605 | 0.001605 | 0.004747 | 0.000348 | 0.000322
10 0.001272 | 0.001263 | 0.001272 | 0.001272 | 0.007439 | 0.000520 | 0.000427
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Table 2. The potential and the relative-error on the surface with AB=20 units and the conductivity o, = 2¢%% ,0

The Potential Relative-error

R V(Chaves) | r=c=21 | r=c=41 | r=c=81 | r=c=21 | r=c=41 | r=c=81

4 0.007243 | 0.009249 | 0.007442 | 0.007246 | 0.277064 | 0.027534 | 0.000428

6 0.003599 | 0.003782 | 0.003612 | 0.003600 | 0.050895 | 0.003516 | 0.000095

8 0.002057 | 0.002154 | 0.002058 | 0.002057 | 0.047005 | 0.000765 | 0.000041
10 0.001272 | 0.001283 | 0.001273 | 0.001272 | 0.008217 | 0.000308 | 0.000021

12 0.000828 | 0.000833 | 0.000829 | 0.000828 | 0.005631 | 0.000137 | 0.000009
14 0.000559 | 0.000559 | 0.000559 | 0.000559 | 0.000793 | 0.000011 | 0.000001

16 0.000388 | 0.000387 | 0.000388 | 0.000388 | 0.003795 | 0.000126 | 0.000009
18 0.000275 | 0.000273 | 0.000275 | 0.000275 | 0.008420 | 0.000325 | 0.000023
20 0.000198 | 0.000195 | 0.000198 | 0.000198 | 0.015671 | 0.000664 | 0.000048

Table 3. The potential and the relative-error on the surface with AB=40 units and the conductivity o, = 2¢"% ,0
The Potential Relative-error

R V(Chaves) r=c=21 r=c=41 r=c=81 r=c=21 r=c=41 r=c=81
8 0.002057 0.002989 | 0.002155 | 0.002058 | 0.453183 | 0.047914 | 0.000801
12 0.000828 0.000927 | 0.000835 | 0.000829 | 0.118960 | 0.008057 | 0.000233
16 0.000388 0.000437 | 0.000389 | 0.000388 | 0.125478 | 0.002379 | 0.000127
20 0.000198 0.000205 | 0.000199 | 0.000198 | 0.034969 | 0.001297 | 0.000084
24 0.000107 0.000111 | 0.000107 | 0.000107 | 0.031763 | 0.000894 | 0.000059
28 0.000060 0.000061 | 0.000060 | 0.000060 | 0.012119 | 0.000610 | 0.000039
32 0.000035 0.000035 | 0.000035 | 0.000035 | 0.006672 | 0.000273 | 0.000015
36 0.000021 0.000021 | 0.000021 | 0.000021 | 0.006423 | 0.000340 | 0.000030
40 0.000012 0.000012 | 0.000012 | 0.000012 | 0.030762 | 0.001766 | 0.000140

; — 360.22

; — 360.2z

Table 4. The potential and the relative-error on the surface with AB=15 units and the conductivity o, = 2% o ;= 3e"%

The Potential Relative-error
R V(Chaves) | r=c=31 r=c=61 | r=c=121 | r=c=31 r=c=61 | r=c=121
2 0.020209 0.024363 | 0.020613 | 0.020215 | 0.205562 | 0.020005 | 0.000301
3 0.011328 0.011656 | 0.011353 | 0.011329 | 0.028954 | 0.002219 | 0.000058
4 0.007243 0.007420 | 0.007246 | 0.007243 | 0.024507 | 0.000424 | 0.000022
5 0.004985 0.004985 | 0.004986 | 0.004985 | 0.000040 | 0.000164 | 0.000009
6 0.003599 0.003589 | 0.003599 | 0.003599 | 0.002712 | 0.000086 | 0.000004
7 0.002687 0.002667 | 0.002687 | 0.002687 | 0.007357 | 0.000048 | 0.000000
8 0.002057 0.002035 | 0.002057 | 0.002057 | 0.010548 | 0.000024 | 0.000003
9 0.001605 0.001582 | 0.001605 | 0.001605 | 0.014393 | 0.000006 | 0.000006
10 0.001272 0.001248 | 0.001272 | 0.001272 | 0.019079 | 0.000010 | 0.000009
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Table S. The potential and the relative-error on the surface with AB=30 and the conductivity o, = 2% ;= 3e"%

The Potential Relative-error
R V(Chaves) | r=c=31 r=c=61 r=c=121 | r=c=31 r=c=61 r=c=121
4 0.007243 0.009250 | 0.007442 | 0.007246 | 0.277155 | 0.027543 | 0.000429
6
8

0.003599 | 0.003783 | 0.003612 | 0.003600 | 0.051077 | 0.003535 | 0.000097
0.002057 | 0.002154 | 0.002058 | 0.002057 | 0.047324 | 0.000798 | 0.000044
10 0.001272 | 0.001283 | 0.001273 | 0.001272 | 0.008748 | 0.000363 | 0.000025
12 0.000828 | 0.000834 | 0.000829 | 0.000828 | 0.006498 | 0.000225 | 0.000016
14 0.000559 | 0.000560 | 0.000560 | 0.000559 | 0.000643 | 0.000155 | 0.000011
16 0.000388 | 0.000388 | 0.000388 | 0.000388 | 0.001329 | 0.000110 | 0.000008
18 0.000275 | 0.000274 | 0.000275 | 0.000275 | 0.003992 | 0.000075 | 0.000006
20 0.000198 | 0.000197 | 0.000198 | 0.000198 | 0.007287 | 0.000044 | 0.000004

e(].Zz

Table 6. The potential and the relative-error on the surface with AB=60 units and the conductivity o, =2 ,0, = 3¢

The Potential Relative-error

R V(Chaves) | r=c=31 r=c=61 | r=c=121 | r=c=31 r=c=61 | r=c=121
4 0.007243 0.009465 | 0.009251 | 0.007442 | 0.306849 | 0.277318 | 0.027544
8 0.002057 | 0.002989 | 0.002155 | 0.002058 | 0.453223 | 0.047917 | 0.000801
12 0.000828 | 0.000927 | 0.000835 | 0.000829 | 0.119063 | 0.008065 | 0.000234
16 0.000388 | 0.000437 | 0.000389 | 0.000388 | 0.125717 | 0.002395 | 0.000129
20 0.000198 | 0.000205 | 0.000199 | 0.000198 | 0.035498 | 0.001333 | 0.000086
24 0.000107 | 0.000111 | 0.000107 | 0.000107 | 0.032936 | 0.000969 | 0.000065
28 0.000060 | 0.000061 | 0.000060 | 0.000060 | 0.014767 | 0.000775 | 0.000052
32 0.000035 | 0.000035 | 0.000035 | 0.000035 | 0.012853 | 0.000649 | 0.000044
36 0.000021 | 0.000021 | 0.000021 | 0.000021 | 0.008422 | 0.000558 | 0.000038
40 0.000012 | 0.000013 | 0.000013 | 0.000012 | 0.006259 | 0.000481 | 0.000033

5. Conclusion

The verification confirms the accuracy of the finite element code. Although in most practical problems only the
potential on the surface of the earth is measurable, our scheme does give the potential at every node in the
computational domain. Further research will investigate the application of the code to the inverse problem of
determining various conductivity profiles based on surface measurements.
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