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ABSTRACT 
 
The increase in resistance to older drugs and the emergence of new types of infection have created an urgent need for discovery and development of new 
compounds with antimalarial activity.  Quantitative-Structure Activity Relationship (QSAR) methodology has been performed to develop models that 
correlate antimalarial activity of artemisinin analogs and their molecular structures. In this study, the data set consisted of 197 compounds with their 
activities expressed as log RA (relative activity). These compounds were randomly divided into training set (n=157) and test set (n=40).  The initial 
stage of the study was the generation of a series of descriptors from three-dimensional representations of the compounds in the data set. Several types of 
descriptors which include topological, connectivity indices, geometrical, physical properties and charge descriptors have been generated. The number of 
descriptors was then reduced to a set of relevant descriptors by performing a systematic variable selection procedure which includes zero test, pairwise 
correlation analysis and genetic algorithm (GA). Several models were developed using different combinations of modelling techniques such as multiple 
linear regression (MLR) and partial least square (PLS) regression. Statistical significance of the final model was characterized by correlation coefficient, 
r2 and root-mean-square error calibration, RMSEC. The results obtained were comparable to those from previous study on the same data set with r2 
values greater than 0.8. Both internal and external validations were carried out to verify that the models have good stability, robustness and predictive 
ability. The cross-validated regression coefficient (r2

cv) and prediction regression coefficient (r2
test) for the external test set were consistently greater than 

0.7. The QSAR models developed in this study should facilitate the search for new compounds with antimalarial activity. 
  
| QSAR| Antimalarial | Artemisinin| GA-PLS | MLR |  
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1. INTRODUCTION 

 
Malaria is an infectious disease spread by the bite of 

female Anopheles mosquito.  Generally, malaria on human 
is caused by four Plasmodium species which are vivax, 
malariae, ovale as well as the most prevalent and life 
threatening parasite, falciparum [1]. This deadly disease is a 
major health problem especially in the developing world, 
killing approximately two million people each year. Malaria 
medications such as chloroquine, mefloquine and fansidar 
have become ineffective against the disease [2]. Thus, the 
increases in resistance to older drugs have created an urgent 
and continuous need for discovery and development of new 
antimalarial agents to treat sensitive and drug-resistant 
strains of malaria. Artemisinin (depicted in Figure 1) also 
known as qinghaosu , isolated from Chinese medicinal herb 
Artemisia annua L. not only have significant antimalarial 
activity but also kill the parasites more rapidly and are 
eliminated quickly. Artemisinin and its derivatives such as 
artemether, arteether, artesunate and dihydroartemisinin are 
toxic to malarial parasite at nanomolar concentrations [3]. 
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This antimalarial compound is a sesquiterpene 

endoperoxide lactone with unique structure and mechanism 
of action. The presence of a peroxide bridge, a known 
source of oxygen-free radicals is essential for its 
antimalarial activity. Basically, the mode of action involves 
two steps. First, catalytic activation of artemisinin where the 
endoperoxide bridge break open to generate free radical 
intermediates in a reaction catalyzed by iron or heme in the 
malaria parasites [4]. Posner showed that the resulting free 
radicals are carbon-centred [5] and also suggested that 
ferryl ions (Fe[IV]=O) appear to form in this iron-mediated 
decomposition of artemisinin [6]. The next step is alkylation 
which involves formation of covalent adducts between the 
drug and malarial protein as well as heme (covalent 
artemisinin-heme adducts) in high yield under very mild 
conditions that appear to damage specific intracellular 
targets and could mediate the killing action of artemisinin 
derivatives [7-9].  Despite clinical success of artemisinin, 
considerable efforts have been made to develop more 
potent, selective, nontoxic, clinically useful newer semi-
synthetic and synthetic derivatives that have similar 
mechanism of action yet are superior in activity in order to 
eradicate or control this infection throughout the world. 

 

       http://dx.doi.org/10.11113/mjfas.v6n1.181
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                  Figure 1: Structure of artemisinin 
 

Several Quantitative-Structure Activity Relationship 
(QSAR) studies have been reported on the data set of 
artemisinin analogues for antimalarial activity. Avery [10] 
utilized comparative molecular field analysis (CoMFA) 
which was dependent on molecular conformation and 
structural alignment along with hologram QSAR (HQSAR). 
All of the models emerging from both methods were of 
practical quality and exhibited good predictive ability. 
However, models that considered racemic compounds in the 
training set have lower r2 (correlation coefficient for 
training set) and r2

test (correlation coefficient for test set) 

values compared to the models that exclude them.  
Alternatively, Guha [11] developed 2D-QSAR model which 
was not dependent on molecular alignments. He has 
developed both linear and nonlinear models to link the 
structures to their reported biological activity. The best 
linear model provided an interpretation of the Structure-
Activity Relationship (SAR) trend present in the data set, 
while the neural network model provided superior 
predictive ability. In a recent work [12], Srivastava had built 
robust QSAR models with high predictive ability using a 
combination of topological, electro-topological state 
indices, electronic and thermodynamic descriptors of 
chemical structures. He had used Genetic Algorithm (GA) 
and Multiple Linear Regression (MLR) as tools to model 
the activity of artemisinin analogues. 

QSAR is a modelling technique in which the 
observed activities or properties of chemical compounds are 
correlated with structural descriptors derived from the 
molecular structures that can be represented in 
mathematical equation as shown below: 

 
Molecular activity = f (descriptor)  
    = a1d1 + a2d2 + a3d3 + ...+ andn  (1) 
 
where d1, d2, d3, …dn are structural descriptors and  
a1, a2, a3 …an are regression coefficients.  

 
The models developed can be utilized to study the 

correlation between structural features of artemisinin with 
their biological activities, predict activities of compounds 
not included in the model development process as well as to 
form a basis for understanding factors affecting their 
activities [13, 14].  

The aim of this work is to employ well-characterized 
data set of artemisinin analogues with in vitro antimalarial 
activity collected by Avery [10] using practical method of 

variable selection to develop reliable predictive QSAR 
models. Combination of different types of molecular 
descriptors ranging from 0D to 3D descriptors were 
employed to describe compound structural diversity and 
correlate them quantitatively to antimalarial activity. For 
this study, the best linear models provided good statistical 
properties and predictive ability as well as sound physical 
interpretation of the structure-activity trend captured by the 
model. Subsequently, these models are expected to perform 
well as rapid screening tools to uncover new and useful 
anti-malarial drugs of artemisinin analogues from a large 
library of compounds.  

 
2. EXPERIMENTAL  
 

Typically, the first step in a QSAR study is structure 
entry and molecular modeling together with generation of 
the 3D models of each compound in the data set. The next 
procedure involves descriptor generation followed by 
feature selection. The subsequent steps are the construction 
of the QSAR models using the descriptors set and finally, 
validation of the model by predicting the property of 
compounds in the external prediction set.  

All structural and biological data of 211 artemisinin 
analogues used in this study were based on the previous 
research taken from the literature [10]. The molecules were 
either peroxides or trioxanes and were categorized into 
different classes as presented in Table 1.  

Each of these compounds had associated in vitro 
bioactivity values against the drug-resistant malaria strain 
P. falciparum (W-2 clone). The dependent variable was log 
RA (relative activity) which fell into the range [-4, 1.47] 
and was defined as:  

 
  

 
(2) 

 
Table 1: Different classes of artemisinin analogues used in this 
study 
 

Class of compounds Number of 
compounds 

Artemisinin analogs 40 
Deoxyartemisinin analogs 15 
10-Substituted artemisinin analogs 49 
Secoartemisinin analogs 7 
Bicycloartemisinin analogs 5 
Azaartemisinin analogs 19 
Artemisinin derivatives lacking the D-ring 33 
Dihydroartemisinin derivatives 7 
Various derivatives of artemisinin and arteether 13 
Miscellaneous artemisinin analog 12 

 
The RA was calculated from the experimentally 

derived control IC50 (reported in ng/ml) of artemisinin 
divided by the IC50 of the analogue and corrected for 
molecular weight (MW). Essentially, the selected 
compounds had been tested using the same assay method 
and had a reported control activity of artemisinin. This was 
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crucial for a bioassay method that employed parasitized red 
blood cells because there could be interday and 
interlaboratory variations in the IC50 [10]. Since the data set 
contained 14 enantiomeric pairs and assuming that only one 
enantiomer was bioactive, the member of each pair with the 
lowest log RA value was removed [11].  
     The division of data set into training set for model 
development and test set for model validation was 
performed by random method. Around 25% of the objects 
were placed in the test set where 40 molecules were 
removed from the original 197 compounds that evenly 
spanned the antimalarial activity range, as well as the 
structure diversity of the database. In other words, they 
were chosen in such a way that they were as representative 
as possible of the global data set to determine the external 
predictive ability of the resulting model. 

All the software packages used in this study were run 
on Microsoft Window XP on a Pentium IV system. 
ChemDraw Ultra version 6.0 (Cambridge Soft) was used to 
draw 2D model molecular structure of the compounds. 
Next, Chem3D Ultra version 6.0 was utilized to convert the 
molecular structure to 3D structure and afterward, the 
structures of the compounds were energy minimized using 
MOE version 2009.10 (Chemical Computing Group Inc.) 
software.  

The next step in the process was to characterize each 
molecule in the data set with an appropriate set of computer 
generated molecular descriptors that are derived from the 
3D models. The molecular descriptors for all the 
compounds were solely calculated using DRAGON 
software package version 5.4 [15] that encoded topological, 
geometric, structural, and physical properties of the 
molecules [16].  All descriptors were auto-scaled to zero 
mean and unit standard deviation where same variance was 
given to the informative and uninformative variables.  

After numerical descriptors had been calculated for 
each compound, the number of descriptors was reduced to a 
set of descriptors that were information-rich but as small as 
possible. Prior to analysis, objective feature selection was 
performed where highly correlated and redundant 
descriptors were removed from the pool. This included 
constant and near-constant variables. In addition, one from 
each correlated descriptor pair having pair-wise correlation 
coefficient greater than 0.95 was randomly removed. Then, 
an identical test was carried out manually in which a 
descriptor was rejected if the values of the descriptors for 
more than 90% of the molecules were identical. This 
resulted in a reduced pool of 488 descriptors for further 
analysis. 

Next, subjective feature selection was performed to 
identify a descriptor subset that best map an accurate link 
between structure and property of interest. Techniques for 
selecting the best subset of variables included GA and 
forward stepwise multiple regression. GA very often led to 
a significant improvement of the predictive ability when 
correctly applied and could also be used as assistance 
during interpretation in order to understand which variables 
were correlated with a specific activity of the compounds.  

Feature selection and models generation were 
achieved using routines in PLS Toolbox 5.2 (Eigenvector 
Research Inc.) in Matlab 7.5.0 (2007) (The Mathworks Inc., 
Natick, MA). In PLS Toolbox 5.2, GA variable selection 
was performed using the Genetic Algorithm GUI (genalg) 
function instead of the command-line version (gaselectr) 
which used the minimum root-mean-square error cross-
validation (RMSECV) as objective function. The form of the 
objective function favoured sets that had RMSECV that was 
as low as possible, while minimizing the number of 
parameters being used as descriptors. 

The optimal values for the GA parameter were 
determined after several GA-PLS and GA-MLR runs with 
different settings of initial populations as well as based on 
the GA settings used by other researchers [17-22]. Several 
factors had to be considered when choosing the appropriate 
value for the GA parameter. High variables to objects ratio 
where the critical point was 5, would lead to senseless 
model where it would model noise instead of information. 
Therefore, in the study, window width was set to 1 because 
the number of variables and molecules were 488 and 157 
respectively, thus the ratio was approximately 3 which was 
quite reasonable. Another point to consider when setting the 
parameters was to perform high number of different runs 
and try to extract some information from all of them to 
increase reliability. However, the runs must be stopped very 
early to avoid modeling noise. Since small part of the 
domain was explored and different runs yielded different 
final results, global information should be obtained in 
several runs. Thus, the parameters used for the GA included 
maximum generations of 100 with replicate runs of 30. 
Other settings that differed from the default settings were 
percent initial terms of 10 and number of latent variable 
(LV) was 5. The combination of variables producing the 
best response was taken as the final solution where 
variables were entered according to the frequency of 
selections.   Therefore, instead of directly utilizing the best 
data set selected by GA, the final model was obtained 
following a stepwise approach where the frequency with 
which each variable was selected in the top chromosome of 
each run was used [17, 22].  

Several models were built by employing 
combinations of variable selection and statistical methods. 
For quantitative modeling, QSAR models were developed 
using partial least square (PLS) and MLR methods.  The 
hybrid approach that integrated GA and PLS or GA and 
MLR was applied to variable selection and modeling.  

Statistical significance of the final model was 
characterized with correlation coefficient, r2 and root mean 
square error of calibration, RMSEC. The high value of r2 
and the low value of RMSEC indicated a more stable model. 
Furthermore, QSAR models were presented as QSAR 
equations. The regression coefficients that were reported in 
brackets after the descriptor abbreviation indicated the 
significance of an individual descriptor presented in the 
regression model.  The plot of predicted vs. experimental 
activity displayed the activity predicted by a QSAR model 
against the experimentally measured or observed activity. 
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Besides, the plot of studentized residual vs. predicted value 
was used to detect any outliers.   

Finally, both internal and external validations were 
carried out in this study to verify that the models have good 
stability, robustness and predictivity. Cross-validation by 
leave-one-out provided rigorous internal check on the 
models while external validation involved predicting 
activity of compounds in the external test set. Therefore, 
statistical results would be reported in r2

CV and r2
test 

respectively.  
Y-randomization test or Y scrambling consisted of 

rebuilding models using shuffled or randomized activities of 
the training sets followed by evaluation of predictive 
accuracy of the resultant models in comparison to the 
original model.  Often it was used along with cross-
validation and the calculation procedure was repeated in the 
same manner.  The goals of this widely used method were 
to establish model robustness, to ensure that models did not 
merely capture noise and to assess if models are the result 
of chance correlations. If a true QSAR relationship existed 
with the real dependent variable, results for the scrambling 
runs should be very poor.  

 
3. RESULTS & DISCUSSION  

 
Generally, PLS can simply treat large data matrices, 

extract relevant part of the information, produce reliable but 
very complex models and almost insensitive to noise [14] 
whereas Genetic Algorithm (GA) is a feature selection 
technique used to select the most informative variables.  
However, combination of PLS and GA to find the best 
QSAR model is more beneficial because it improves the 
predictive ability of the model and at the same time enhance 
its simplicity. 

 

In this work, the performance of GA was measured by 
comparing the RMSECV or r2 of the model proposed by GA 
with the model containing all the variables. The results of 
the two final models are as summarized in Table 2. 

 
Table 2: Statistics of the PLS model 

 

Parameter PLS (without 
GA) 

PLS and 
GA 

r2 0.735 0.815  
r2

CV 0.622 0.780 
r2

test 0.690 0.766 
RMSECV 0.939 0.706 

Number of descriptors used 488 11 
 

Apparently, integration of GA in building PLS model 
offered significant improvements over the model developed 
using PLS alone in terms of higher predictive power as well 
as substantially reducing the number of descriptors. It was a 
common practice in QSAR studies to obtain a model 
containing as few variables as possible to ensure there was 
no overfitting and hence led to a simple and interpretable 
model. 

The best subset of descriptors to build the above GA-
PLS model was based on the frequency of variables selected 
in GA as shown in Figure 2 where 11 peaks representing 
descriptors had been identified as the best combination that 
yielded high r2 in the training set and linear fit predictive r2 
for test sets with fewer variables compared to other models. 
The most frequently selected variables were concentrated in 
the region of atom-centered fragments particularly O-063 
descriptor, corresponding to the R-O-O-R functional group.  

In order to investigate the presence of outliers, a plot 
of studentized residual vs. predicted activity was employed. 
Once the outliers were detected, they were removed from 
the training set and regeneration of the linear model was 
carried out mainly to enhance the quality of the linear 
model for subsequent interpretation using PLS. 
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Figure 2: Frequency of variables selected in models by GA. 
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Based on the residual plot depicted in Figure 3, six 
compounds (029, 096, 107, 173, 175 and 188, refer to 
reference [10] for the structures) appeared as outliers and 
were eliminated.  The quality of the above QSAR model 
had been further improved after the removal of these 
compounds. The plots for quality of the prediction models 
for the training compounds before and after the removal of 
outliers are as shown in Figures 4 and 5.  Those compounds 
were found to be outliers most probably because of their 
very low activity.  
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Figure 3: Plot of studentized residual vs. predicted value for PLS 
model. 
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Figure 4: Plot of predicted vs. measured log RA before outlier 
removal 
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Figure 5: Plot of predicted vs. measured  log RA after outlier 
removal 

The best significant relationship between the 
molecular descriptors and antimalarial activity for GA-PLS 
model has been deduced to: 

 
logRA = -0.967 (GATS6v)  + 1.11 (EEig05r) + 0.799 
 (BELm6) + 0.0376 (Mor03u) + 0.757 (Mor29u) 
 + 1.30 (Mor26m) - 24.2 (R6e+) - 0.589 (C-011) 
 + 0.147 (H-051) + 1.76 (O-063)  
 + 2.55 (Q-mean) + 7.34   (3) 

 
(r2 = 0.815, r2

CV = 0.768, RMSEC = 0.649,  
RMSECV = 0.706, r2

test = 0.766, RMSEP = 0.794) 
 

The QSAR model developed in this study was 
statistically best fitted and consequently used for the 
prediction of antimalarial activity of test set molecules as 
reported in Table 3. Log RA predicted by GA-PLS model 
was consistent with the experimental data and in good 
agreement with each other. The high value of r2

CV suggested 
a more stable and suitable model for predicting compounds 
not included in the training set as evident from the 
reasonable r2

test value. Thus, PLS model gave excellent 
predictions with reliable statistical properties. 

However, it should be noted that a PLS analysis only 
provided guideline regarding the interpretation of the 
descriptors in the model and it did not provide exact 
quantitative descriptions of descriptor contribution. Clearly, 
a major portion of the above PLS model was 3D-MoRSE 
(descriptors calculated by summing atom weights viewed 
by a different angular scattering function) and atom-
centered fragments descriptors. The positive sign of 
descriptor coefficient such as mean absolute charge denoted 
as Q-mean showed that increasing the charge polarization 
caused the log RA activity to increase. Meanwhile, 
GATS6v and R6e+ descriptors had negative effects on the 
activity.  

Lastly, the activity values for the training set without 
the outliers were scrambled several times and linear models 
were reconstructed with the randomized dependent 
variables to ensure that the linear models were not due to 
chance correlation. Most QSAR models generated in the Y-
randomization test exhibited relatively low values of the 
statistical parameters for both training and test sets with the 
r2 values ranging from 0.223 to 0.351 while the r2

test values 
ranging from 0.002 to 0.498. Hence, these results implied 
that chance correlation was negligible and the QSAR model 
obtained for the given data set was reliable. 

Multiple Linear Regression Analysis (MLRA) 
technique had been used to build the best QSAR model 
using two different methods of variable selection which 
were GA and forward stepwise in order to select the most 
informative variables. The equation for the final model 
obtained by combining the GA and MLR is as shown 
below: 

 
 
 



R. Jamaludin and M.N. Hasan  / Journal of Fundamental Sciences Vol. 6, No. 1 (2010) 76-83. 

| 81 | 
 

logRA= -0.445 (nR05) + 5.83 (BELm6) - 0.0171 
 (RDF070u) - 0.398 (Mor04v) + 1.02 (H8m)  
 - 0.556 (C011) + 1.64 (O-063) - 10.1     (4) 
 
(r2 = 0.804, r2

CV = 0.779, RMSEC = 0.629,  
RMSECV = 0.669, r2

test = 0.740, RMSEP = 0.823) 

As evident from the studentized residual vs. 
predicted plot, eight observations appeared to be distinct 
outliers (29, 196, 186, 096, 107, 082, 116 and 189).  A plot 
of predicted vs. experimental log RA after outliers removal 
is as shown in Figure 6. The QSAR model developed was 
statistically reliable and predictive with high r2 and r2

test 
values as well as low error.  

 
 

 
 

The best linear model consisted of seven descriptors 
is as represented in Equation (4). The first descriptor with 
the largest coefficient value was Burden eigenvalues 
descriptors denoted by BELm6. 
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Figure 6: Plot of predicted vs. measured log RA as per Equation 
(4) after removal of outliers. 

 
In the third analysis, MLR was coupled with forward 

stepwise and the best equation relating antimalarial activity 
and molecular descriptors is displayed below: 

 

logRA = 31.3 (PW4) -1.21 (GATS5m) + 5.15 (BELm6)  
 + 1.99 (PJI3) - 0.929 (E1m) + 11.9 (G1e) 
 - 10.3 (Gs) + 7.50 (H8m) - 0.697 (H8e)  
 + 2.16 (O-063) -17.9                                    (5) 
 
 (r2 = 0.821, r2

CV = 0.794, RMSEC = 0.639,  
RMSECV = 0.685, r2

test = 0.784, RMSEP = 0.778) 
 
 It was found that compounds numbered 29, 33, 94, 
107 and 95 were outliers and the quality of the QSAR 
model had improved after the elimination of these 
compounds from the data set. A plot of observed versus 
predicted relative activity values from the final best linear 
model is as represented in Figure 7. The statistical output of 
stepwise MLR model mentioned above had confirmed the 
robustness and excellent external predictivity of the 
constructed model. 

The standardized regression coefficients revealed the 
significance of an individual descriptor presented in the 
regression model. The order of significance of the 
descriptors was PW4 > G1e > Gs > H8m > BELm6 > O-
063 > PJI3 > GATS5m > E1m > H8m. Obviously, the 
effect of molecular shape indices obtained by considering 
the number of paths and the number of walks within a graph 
for all atoms followed by WHIM descriptors which were 
related to symmetry index, on the activity of the artemisinin 
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derivatives were more significant than that of the other 
descriptors [23].  

The properties of the molecules in this study that 
were responsible for antimalarial activity were determined 
on the basis of the information derived from the QSAR 
models. Description for each descriptor included in all the 
QSAR models described earlier is as tabulated in Table 4.  

It is interesting to highlight that the descriptor O-063 
emerged in all the three final models and was also the most 
frequently selected variables in models by GA. This 
descriptor indicated the presence of the R-O-O-R fragment 
of atom-centered fragments where the two adjacent oxygen 
atoms formed a peroxide functional group. Hence, this 
confirmed the previous finding that endoperoxide bridge 
seemed to be responsible for the antimalarial activity.  
Artemisinin derivatives lacking the endoperoxide bridge 
were devoid of antimalarial activity.  
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Figure 7: Predicted vs. experimental activity of compounds after 
removal of outliers 

 

 
 

The linear models in this work did exhibit significant 
predictive ability and provide interpretability. However, the 
Forward Stepwise-MLR model appeared to be the best. 
Based on the results of artemisinin analogues, good QSAR 
model could be developed using the available QSAR 
methods and was comparable to the original study 
performed by other researchers [10-12]. 

 
4. CONCLUSION  
 

The main objective of this work is to develop robust 
and predictive QSAR models of artemisinin and its 
derivatives that possess several different ring systems with 

antimalarial activity. The combination of descriptors 
generated by the DRAGON software was able to capture all 
the relevant structural features pertaining to antimalarial 
activity that reflected different aspects of molecular 
structure and potential intermolecular interactions. Hence, 
robust QSAR models with high internal and external 
prediction accuracy had been successfully developed in the 
current work. Based from the results, the best model (in 
terms of fitting and predictive ability) was generated by 
using Forward Stepwise and MLR. The final results could 
be further improved by using additional descriptors and 
other alternative modeling techniques. 
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Next, the rigorously validated models will 
subsequently be utilized in database mining. The discovery 
of a novel structural class of anti-malarial agents will then 
be confirmed experimentally. As such, these models shall 
be used as a basis to facilitate the design of new natural 
products as well as the search for new structures with anti-
malarial activity from the large databases. Hopefully, these 
efforts are able to provide some contributions to global 
fights against malaria disease if not eliminate it.  
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