
Journal of Fundamental Sciences Vol. 6, No. 1 (2010) 67-71. 

. 

ISSN 1823-626X 

Journal of Fundamental Sciences 
available online at http://jfs.ibnusina.utm.my 

Robust start up stage for beltline moulding process variability monitoring using 
vector variance  
Rohayu Mohd Salleh* and Maman A. Djauhari 

Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor. 

Received 11 March 2010, Revised 4 May 2010, Accepted 13 May 2010, Available online 25 May 2010 

ABSTRACT 

One of the primary problems encountered in monitoring the variability of beltline moulding process in an automotive industry is the estimation of 
parameters in the start-up stage. This problem becomes more interesting because the process is in multivariate setting and must be monitored based on 
individual observations, i.e., the sample size of each subgroup is 1. This paper deals with a robust estimation of location and scale during the start-up 
stage. For this purpose, we use Mahalanobis distance in data ordering process. But, in data concentration process, we use vector variance (VV). This 
method is highly robust and computationally efficient. Its advantage in monitoring the variability of beltline moulding process will be compared with the 
non-robust method.  
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1. INTRODUCTION 

It is known that a successful of monitoring process in 
Phase II depends on a successful analysis during start up 
stage (SUS) or Phase I (Jensen et. al, 2005). Even though 
the two phases are both dedicated to identify out-of-control 
states, each phase has a unique objective. If SUS is used to 
estimate parameters, Phase II consists of monitoring future 
observations by using information from in-control historical 
data set (HDS) in SUS to determine whether or not the 
process continues to be in stable condition. Consider the 
situation when random sample data are stored in n p×
matrix where n  and p  are the number of observations and 

variables, respectively. Let iX  be the vector representing 

the i-th row. We assume that ;  1, 2,...,iX i n=  are 
independent and follow a multivariate normal distribution. 
These data vectors will be used in start-up stage to obtain an 
in-control data subset which will be used to estimate the 
process parameters. Since  and are unknown, they are 

replaced with an appropriate estimators mean vectors, X
r

and covariance matrix,   These estimators are needed to 
monitor the process variability right after a future data 
vector or, equivalently, individual observation is available. 
Since the data is in multivariate setting, it is not easy to 
identify the outliers during the start-up stage as the analysis 
will be done simultaneously. 
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Derquenne (1992) stated the measure of identification 
multivariate outliers is created by a technique of transforms 
the random vectors to be random variables so that 
candidates of outlier will be seen more clearly. The most 
popular transformation is the Mahalanobis squared distance 
(MSD). A large value of MSD may indicate that 
corresponding observation is an outlier.  Explained by Hadi 
(1992), outliers do not necessarily have large value of MSD 
and not all observations with large MSD value are 
necessarily outliers. These problems are known as masking 
and swamping effect due to the fact that mean vector and 
covariance matrix are not robust.  

To handle this problem, the method of robust 
estimator is applicable as theoretical foundations of the 
construction of distance which is robust MSD. This paper is 
organized as follows. Section 2 and 3 presents classical 
approach and robust approach in SUS. We present an 
illustrative example on real life data of beltline moulding to 
demonstrate the effectiveness of robust approach compared 
with classical approach.  
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2. CLASSICAL APPROACH 
 

Classical method based on MSD is powerful when 
there is only one out-of control point. Its power will 
decrease if more than one out-of control points are present 
in the data (Hadi, 1992). It is sensitive not only to the shift 
in mean vector but also in covariance matrix (Tracy, 1992). 
Any shift in mean vector and or covariance matrix will lead 
to unstable process.  
 
2.1 Classical distance and distribution  
 

The classical distance is generated from the 
arithmetic mean. The arithmetic mean is an estimation of 
the classical mean which is computed from the whole 
sample. Let 1 2, ,..., nX X X be a random sample from p-
variate distribution where the second moment exists. The 
sample mean vector and sample covariance matrix are, 
respectively, 
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The MSD is a classical distance which measures each 
observation   to   given by sample covariance , and 
formulated by 
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for all 

1, 2,...,i n=   
  
Based on MSD, the in control data is determined by plotting 
the value in control chart. Presence of one or more extreme 
data or called outliers changes the arithmetic mean  
significantly, and the distance increases.  It is sensitive not 
only to the shift in mean vector but also in covariance 
matrix (Tracy, 1992). Any shift in mean vector and or 
covariance matrix will lead to unstable process. Since our 
aim in SUS is to check whether the observations are fall 
within the control limit, MSD is distributed as Beta 
distribution. Gnanadesikan and Kettenring (1972) based on 
results of Wilks (1962). Specifically,  
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Knowing the distribution of MSD, it is possible to construct 
the control limits. It is given by 
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3. ROBUST APPROACH 
 

Classical estimation methods will not yield 
appropriate control limits if there are unusual data points in 
SUS. Robust estimation methods have advantage over 
classical methods in that they are not unduly influenced by 
outlier data points. Jensen et al. (2005) discussed the use of 
robust MSD method based on minimum volume estimate 
(MVE) and minimum covariance determinant (MCD) 
criteria in start up stage. Both criteria were introduced by 
Rousseeuw (1985) have good properties, which are affine 
equivariant and have a high breakdown point if the data set 
is in general position. Later on, in order to improve its 
computational efficiency, Rousseeuw (1999) introduced a 
faster algorithm called FMCD. However, see for example 
Werner (2003) and Djauhari (2007) this algorithm is still 
cumbersome when the data set is of high dimension. 
Djauhari (2007) introduced a new robust estimator method 
called as minimum vector variance (MVV). This estimator 
still has the same structure like FMCD but use the different 
concept. Like FMCD, in the first step, we still use robust 
MSD as data ordering. In data concentration step, instead of 
calculate generalize variance; we change the procedure of 
data concentration by using vector variance (VV). The 
objective of FMCD is to find the best subset of  that 
having the minimum covariance determinant or generalized 
variance (GV). This objective will be the stopping rule of 
FMCD. However, the objective and stopping rule of MVV 
is to find the best subset of h that having the minimum 
vector variance (VV). VV is the sum of square of all 
elements of the covariance matrix. As a measure of 
multivariate variability, VV performs much better than GV 
(Djauhari, 2008) for small shift in covariance matrix. There 
are two advantages of using VV as multivariate data 
concentration. First, the computation is far more efficient 
even for large matrix size than GV. Second, VV does not 
need the condition of non-singularity of covariance matrix. 
Unlike VV, the GV needs the condition that the covariance 
matrix must be non-singular. 

 
3.1 Data concentration using VV 
 

Consider a random vector data set of -variate 
normal observations which is in general position.  

 Compute the mean vector 
1

1
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covariance matrix ( )
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These estimators are calculated based on the data 

subset of
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n p
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= . Define the relative distances 
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 Sort these squared distances in increasing order, 
( ) ( ) ( )2 2 2(1) (2) ( )
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 is a permutation on{ }1, 2, ..., n . 
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r
and 2

newHd . 
 

 If   2( ) 0,
newHTr S =  repeat the above procedure. If 

2 2( ) ( ),
new oldH HTr S Tr S= the process is stopped. 

Otherwise, the process is continued until the kth 
iteration.  

 
 Let us denote the location and covariance matrix given 

by MVV as follows; 
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Based on MVV, robust MSD is then defined by  
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The MVV estimator, see Herwindiati et al. (2007), are 

calculated based on the best subset of  
1

2

n p
h

+ +
=   data 

points, having minimum ( )2Tr S among all possible 

subsets in order to get the best estimates of mean vector, X
r

 
and covariance matrix, S . The data concentration of MVV 
is accurate as well as FMCD. 
 
3.2  Robust distance and distribution 

 
By using robust estimates, it gives MSD with 

unknown distributional properties. However, using robust 
estimates gives MSD with unknown distributional 
properties. In Hardin and Rocke (2005), an approximate 
result for MSD based on location and scatter are derived. 
The distribution of MVVS can be approximated by 

 
1 ~ ( , )MVV pWishartmc S m− Σ

 
 
where m  and c  are the unknown parameter. Therefore, 
Hardin and Rocke (2005) approximate the distribution of 
extreme distances by approximating the distribution of the 
MVV shape by Wishart, so that we can apply the F 
distribution.  

2
, 1~

( 1)i p m pd
pm

F
c m p − +− +  

 
The control limits can be expressed as  
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where m and c are the unknown parameter. The parameter 

c can be estimated by 
( )2 2

2 , /

/
,p p h nP

c
h n

χ χ+ <
= p is the 

number of variables and  
� 2

2
m̂

CV
=  .  �CV  is the estimated 

coefficient of variation of the diagonal elements of the 
MVV scatter estimator.  

 
4. ILLUSTRATIVE EXAMPLE 

 
One of the existing problems in any automotive 

industry is in the production process of beltline moulding. 
Beltline moulding over the outer lip of the drip rail prevents 
water from leaking into the car. If the lip is quite short, 
beltline moulding often will not position well. On the other 
hand, if the lip is longer the window glass will not move 
smoothly (Bon, 2008).  This type of problem is not easily 
solved by applying standard procedure of manufacturing 
since the variability among the materials, machine 
processes, ambient conditions and end products exist and 
cannot be avoided.  

The beltline moulding data are stored in n p×  data 
matrix where n  and p  are the number of observations and 
variables, respectively. In this paper, we use the data in Bon 
(2008) which consist of 57n = and  8p = . Since the 
beltline moulding data set is multivariate setting, it is not 
easy to realize outliers in SUS.   

Firstly, we will show the difference in SUS between 
classical estimation and robust estimation. The mean vector 
and covariance matrix based on classical estimation are  
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The determinant value is 93.266 10S −= × .  
Figure 1 visualizes the SUS based on classical 

approach or non-robust MSD. From the table of Beta 
distribution with degree of freedom p = 8 and probability of 
false alarm 0.0027, UCL = 21.6134 and LCL = 0.9959. We 
see that no observation lies outside the control limits. 

However, some observations are of large variation. In the 
next sub-section we continue to further analyse the start-up 
stage using robust MSD to see whether masking and 
swamping effects occur. The mean vector and covariance 
matrix based on robust estimation by using MVV data 
concentration 
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The determinant value of robust estimation is 112.74 10−× . 
The value of determinant calculated from robust estimation 
is small compared to classical estimation. The variability of 
covariance matrix of robust estimation is less. The above 
parameter estimation, is calculated from sample 
subset, 33.h =  

Figure 2 shows the SUS control chart based on robust 
MSD. From the table of F distribution, with p =8, 
probability of false alarm = 0.0027, c = 1.06455 and 

predm = 41.67, then UCL = 51.8580 and LCL = 1.3322. 
Observations 24, 38, 43 and 50 have the largest MSD and  

 
 
lie outside the control limits. Furthermore, observations 1 to 
19 have small values of MSD but observations 20 to 51 
have large variation. This figure presents the information 
that cannot be provided by non robust MSD chart. Figure 1 
does not signal any out of control condition. Consequently, 
we already obtained the best parameter estimation by using 
robust approach. 

Removing all four outlying observations and 
recalculating the parameter estimates with  53n =  
and 8p = , the new mean vector and sample covariance 
were obtained by using the classical estimation of equation 
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(1). The corresponding control limits for this sample of size 
53 follow the approximate distribution of  
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as explained by Hardin and Rocke (2005). Then, with 
probability of false alarm = 0.0027, the UCL = 21.4812 and 
LCL = 0.9985.  

 

 
 

Reconstructing the control chart, we observe as in 
Figure 3 that none of the observations are outside the 
control limits. The new control chart has been established 
by eliminating the special cause of variation from outlying 
observations at Figure 2. 

 

This beltline moulding data illustrates the effectiveness of 
the robust MVV estimator compared to the classical 
estimator in detecting process variability.   

 
5. CONCLUSION 

 
 The monitoring variability during SUS by using 

beltline data indicates that VV is effective as CD as one of 
robust method. It is practically approved to be used as one 
of method for engineering consideration in control the 
production process because of the computational efficiency 
and easy to implement. Since the engineering experiments 
are quite particular with number of sample, VV can be 
applied in both conditions, either sub grouped observations 
or individual observations.    

 
6. PROBLEM TO SOLVE 

 
In view of the fact that in this paper, we just show the 
approach of MVV estimator during Phase I or SUS, we will 
further analyse in the process Phase II monitoring.  
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