High field carrier transport properties of Al$_{0.45}$Ga$_{0.55}$N

Wesley Ooi Tat Lung, Cheang Pei Ling, You Ah Heng*, Chan Yee Kit

Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia

*Corresponding author: ahyou@mmu.edu.my

INTRODUCTION

Wide-bandgap semiconductor materials have been researched as early as in the 1980s and it has been continued to mature until recent year. Materials such as Gallium Nitride (GaN) and Silicon Carbide (SiC) have been extensively studied and encouraging results have been reported. Ultra-wide-bandgap materials are the stages after wide-bandgap which the material has a larger bandgap than 3.4 eV of GaN. Those materials with bandgap larger than of GaN can benefit applications such as switching power conversion, pulsed power, RF electronics, Ultraviolet (UV) optoelectronics, and quantum information (Tsao et al., 2017; Kaplar et al., 2017). Besides, wide-bandgap semiconductor can contribute to UV radiation detection as UV detection is important for various civil and military applications such as chemical and biological analysis, flame detection, optical communications, emitter calibration, and astronomical studies (Monroy et al., 2003).

Aluminium Gallium Nitride (Al$_x$Ga$_{1-x}$N, 0 < x < 1) avalanche photodiodes (APDs) usage for detection of light in UV regions has garnered great interests due to the properties of having low dark current, high optical gain, and high sensitivity (Huang et al., 2013). Furthermore, AlGaN alloy has large direct band-gap energy (3.4 eV to 6.2 eV) while also having good chemical and thermal stability (Qu et al., 1998). These properties combined with the solar-blind property of AlGaN for AI content above 40% make it a very good candidate for UV APD detection (Dong et al., 2016).

AlGaN direct band-gap enables it to have high quantum efficiency which results in high gain. High gain is usually a result from the electron and hole impact ionization coefficient where one of the coefficients is larger than the other (Yuan et al., 1999). Therefore, the performance of AlGaN is largely dependent on the impact ionization coefficient.

While numerous studies have been conducted on AlGaN, majority of those researches are about the gain and noise of the AlGaN, where the researchers are trying to optimize the gain of AlGaN with limited attention was paid to AlGaN transport properties especially AlGaN homostructure. The transport properties such as drift velocity, energy, and impact ionization coefficients are crucial to the performance of the AlGaN. This is due to higher electron saturation drift velocity can lead to higher performance of the material (Farahmand et al., 2001) and the first spike in energy shows when the carrier starts to move to another valley as the electric field increasing whereas the second spike shows the impact ionization at higher electric field (El-Ela et al., 2013). Furthermore, impact ionization coefficient is able to show the trend of the gain and excess noise of the APD (Bellotti et al., 2014).

In order to get a better understanding on the carrier transport properties of the AlGaN APDs, Monte Carlo (MC) method was employed to develop a model to simulate the carrier transport properties (velocity, energy, carrier occupancy, impact ionization rate and coefficient for both electron and hole). The drift velocity, impact ionization rate, and coefficient were also compared with other previous studies.

MONTE CARLO SIMULATION

In the present work, both electron and hole transport properties were simulated together with two non-parabolic bands, respectively. The simulation began with setting the initial condition of the carrier by the process of selection of a random wave vector, \mathbf{k}^*. The carrier was then accelerated in the k-space during free flight by conservation of momentum (Tomizawa, 1993):
\[k_f = k_i + eFt / h \] \hspace{1cm} (1)

where \(k_f \) and \(k_i \) are final and initial wave vector respectively, \(F \) is the applied electric field, and \(h \) is the reduced Planck constant. The duration of free flight time, \(\tau \) in each iteration was determined by
\[\tau = \ln r / T_\alpha \] \hspace{1cm} (2)

where \(r \) is the random number between 0 and 1 which represents the probability per unit time of a carrier scatters depending on the initial scattering rate \(T_\alpha \). For the initial condition of the simulation to have as little influence as possible on the final results, the total flight time had to be long. This flight time was used to calculate the velocity and the energy of the drift process. After the free flight process, any carrier containing energy greater than the band gap of the APD would scatter.

During the scattering process, the wave vector was updated and the scattering mechanism was chosen. Using Fermi Golden’s rule, the scattering mechanisms that were considered in this MC simulations were polar and non-polar optical phonon, acoustic phonon and impurity scattering. After each scattering process, the carrier’s state and its wave vector after scattering were identified, then the scattering process is repeated until the end of the flight time. The simulation process was repeated under constant electric field up to the electric field of 1000 kV/cm to evaluate the drift motion.

Since AlGaN is a ternary alloy, the material parameters largely depend on the percentage of Al where if the Al is 0%, the parameters will be that of GaN and 100% is that of Aluminium Nitride (AlN). Due to there being many percentages of Al content, the material parameters are not constant. There is a lack of definite knowledge on most of the parameters of Al0.45Ga0.55N which necessitate the usage of linear interpolation obtained from the parameter of the binary parameter, GaN and AlN. The energy band gap however was deduced using the formula (Lee et al., 1999; Zhang et al., 2009; Dridi et al., 2002; González et al., 2008; Joachim, 2007)
\[E_g(x) = xE_g(AlN) + (1-x)E_g(GaN) - bx(1-x) \] \hspace{1cm} (3)

where \(E_g(AlN) \) and \(E_g(GaN) \) are the energy band gap of AlN and GaN respectively, \(x \) is the percentage of aluminium content, in this case 0.45 and \(b \) is the experimental bowing parameter. The bowing parameter differs from different researchers and some of the values from literature review are 0.62 (Lee et al., 1999), 0.69 (Lee et al., 1999), 1.3 (Angerer et al., 1997), 0.75977 (Zhang et al., 2009), 1.0 (Yun et al., 2002), 0.71 (Dridi et al., 2002), 1.3 (Stutzmann et al., 1998) and 0.74 (González et al., 2008). In this work, the bowing parameter was estimated to be 0.8 based on the consistent finding of bowing parameter above 0.7 (Joachim, 2007). The parameters of the Al0.45Ga0.55N used in this simulation are linear interpolated (Coltrin et al., 2017) and the result is as shown in Table 1.

During the simulation time \(t_{max} \), the carrier mean drift velocity and average energy were simulated respectively with the formula (Tomizawa, 1993)
\[v = \sum (E_f - E_i) / qFt_{max} \] \hspace{1cm} (4)

and
\[E = \tau \sum (E_i + E_f / 2) \] \hspace{1cm} (5)

where \(E_i \) is the carrier’s energy at the beginning of the flight, \(E_f \) is the carrier’s energy at the end of the flight, \(q \) is the charge of the carrier and \(F \) is the uniform electric field.

The impact ionization was categorized as a scattering mechanism and was represented in impact ionization rate and impact ionization coefficient. The impact ionization rate was modelled based on modified Keldysh equation (Keldysh, 1965; You et al., 2008)
\[1 / \tau_i(E) = P_i(E - E_{th}^i)^\gamma_i \] \hspace{1cm} (6)

where \(i \) is the band index, \(P_i \) is the softness coefficient, \(E_{th}^i \) is the ionization threshold energy, and \(\gamma_i \) is the power exponent. The material parameters used in this equation are listed in Table 2.

Table 1 Material parameters for wurtzite Al0.45Ga0.55N.

<table>
<thead>
<tr>
<th>Carrier Type</th>
<th>Electron</th>
<th>Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Band Gap (E(_g)) (eV, 300K)</td>
<td>4.46 (a, b)</td>
<td>4.46 (a, b)</td>
</tr>
<tr>
<td>Effective Mass (m(_i))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Valley</td>
<td>0.26 (c)</td>
<td>2.36 (c)</td>
</tr>
<tr>
<td>Second Valley</td>
<td>1.23 (d)</td>
<td>1.75 (d)</td>
</tr>
<tr>
<td>Dielectric Constant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static relative permittivity ((\varepsilon_r))</td>
<td>9.22 (c)</td>
<td>9.22 (c)</td>
</tr>
<tr>
<td>Optical relative permittivity ((\varepsilon_r))</td>
<td>5.01 (c)</td>
<td>5.01 (c)</td>
</tr>
<tr>
<td>Density (g cm(^{-3}))</td>
<td>4.84 (c)</td>
<td>4.84 (c)</td>
</tr>
<tr>
<td>Wave Velocity (m s(^{-1}))</td>
<td>9104 (c)</td>
<td>5071 (c)</td>
</tr>
<tr>
<td>Acoustic Deformation Potential (eV)</td>
<td>8.84 (c)</td>
<td>19.60 (c)</td>
</tr>
<tr>
<td>Polar Optical Phonon Energy (meV)</td>
<td>99.64 (c)</td>
<td>99.64 (c)</td>
</tr>
<tr>
<td>Energy separation between T and M-L valley (eV)</td>
<td>1.36 (c)</td>
<td>0.006 (c)</td>
</tr>
</tbody>
</table>

(a) Lee et al., 1999; (b) Zhang et al., 2009; (c) Morkoc, 2008; (d) Bulutay, 2002; (e) Litvinov, 2003.

Table 2 Parameter for impact ionization rate for Al0.45Ga0.55N.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>i</th>
<th>(P_i (\times 10^{10} \text{s}^{-1}))</th>
<th>(E_{th}^i) (eV)</th>
<th>(\gamma_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron</td>
<td>1</td>
<td>1</td>
<td>4.50</td>
<td>6</td>
</tr>
<tr>
<td>Hole</td>
<td>1</td>
<td>1</td>
<td>4.55</td>
<td>6</td>
</tr>
<tr>
<td>Hole</td>
<td>2</td>
<td>2</td>
<td>4.65</td>
<td>7</td>
</tr>
<tr>
<td>Hole</td>
<td>2</td>
<td>2</td>
<td>4.70</td>
<td>7</td>
</tr>
</tbody>
</table>

Impact ionization coefficients are the number of electron-hole pairs generated per unit distance traveled by a solitary carrier between two collisions. The coefficients were computed based on the number of times the carrier is scattered due to impact ionization. The coefficients are separated into electron (α) and hole (β) and is computed based on
\[\alpha = \left[\sum_{i=1}^{n_e} \frac{l_i}{n_i} \right] \cdot 1 \text{ cm}^{-3} \] \hspace{1cm} (7)
\[\beta = \left[\sum_{i=1}^{n_h} \frac{l_i}{n_i} \right] \cdot 1 \text{ cm}^{-3} \] \hspace{1cm} (8)
where \(n_e \) and \(n_h \) are the number of times the electron or hole scattered respectively while \(l_e \) and \(l_h \) are the travelling distance of electron and hole.

RESULTS AND DISCUSSION

In this study, MC method was applied with the parameters provided in Table 1 to simulate the velocity, energy, and the flight time of the carriers in Al\(_{0.45}\)Ga\(_{0.55}\)N. The impact ionization rates were simulated using modified Keldysh equation with the parameters shown in Table 2. The gain and noise of the APD were determined by the ratio between \(\alpha \) and \(\beta \), thus the \(\alpha \) and \(\beta \) were simulated under various electric fields.

![Image 1](attachment:image1.png)

Fig. 1 Al\(_{0.45}\)Ga\(_{0.55}\)N electron drift velocity as function of electric field of our work (solid line) compared to Anwar et al. (2001) (Al\(_{0.4}\)Ga\(_{0.6}\)N, circle), Bachir et al. (2012) (Al\(_{0.5}\)Ga\(_{0.5}\)N, square; Al\(_{0.4}\)Ga\(_{0.6}\)N, upright triangle), Yarar et al. (2010) (Al\(_{0.6}\)Ga\(_{0.4}\)N, inverted triangle), Farahmand et al. (2001) (Al\(_{0.5}\)Ga\(_{0.5}\)N, diamond).

Fig. 1 shows the comparison between our electron drift velocity with other researchers. As the drift velocity of homojunction Al\(_{0.45}\)Ga\(_{0.55}\)N specifically cannot be found, it was compared with two closest percentage of Al content, which are Al\(_{0.4}\)Ga\(_{0.6}\)N and Al\(_{0.5}\)Ga\(_{0.5}\)N. All the literature results are from simulation using MC methods as there is no experimental data for drift velocity on Al\(_{0.45}\)Ga\(_{0.55}\)N. As shown in Fig 1, our result is comparable to various other researchers (Farahmand et al., 2001; Anwar et al., 2001; Bachir et al., 2012; Yarar et al., 2010). At a lower electric field, from 75 kV/cm to 170 kV/cm our result is close to the results from Yarar et al. (2010) and Farahmand et al. (2001). At a higher electric field, from 350 kV/cm to 600 kV/cm our result is between Bachir et al. (2012) result from their Al\(_{0.6}\)Ga\(_{0.4}\)N and Al\(_{0.4}\)Ga\(_{0.6}\)N work which is agreeable compared to our Al\(_{0.45}\)Ga\(_{0.55}\)N. The difference in results might be due to the difference of the binary material parameters for AlGaN. The electron drift velocity in our work increases with electric field and achieves a maximum value of 2.70 × 10\(^9\) cm/s at an electric field of 240 kV/cm. As the electric field increases, the electrons gain more energy and are excited to the higher valley where their effective mass increases. This increases the possibility of their collisions in the higher valley thus slowing them down. The further increase in the electric field beyond 500 kV/cm results in the saturation of the electron drift velocity at 2.10 × 10\(^9\) cm/s.

![Image 2](attachment:image2.png)

Fig. 2 Al\(_{0.45}\)Ga\(_{0.55}\)N electron energy as function of electric field.

![Image 3](attachment:image3.png)

Fig. 3 Al\(_{0.45}\)Ga\(_{0.55}\)N electron occupancy as function of electric field. Circles: Occupancy of electron at first valley. Triangles: Occupancy of electron at second valley.

![Image 4](attachment:image4.png)

Fig. 4 Al\(_{0.45}\)Ga\(_{0.55}\)N hole drift velocity as function of electric field.

Fig. 2 plots the average electron energy as a function of electric field for Al\(_{0.45}\)Ga\(_{0.55}\)N in our work. At a lower electric field, below 170 kV/cm, the average electron energy remains low due to the electrons losing all the energy gained from the electric field through polar optical phonon scattering. After the 170 kV/cm point, the average electron energy increases exponentially. This is due to the excessive energy from the electric field where the polar phonon scattering mechanism is unable to absorb and therefore other scattering mechanisms start to happen (El-Ela et al., 2013). The average electron energy at this point increases almost linearly to increasing electric field. The average electron energy increases exponentially at electric field greater than 700 kV/cm with the average electron energy of 3.6 eV from the occurrence of impact ionization.

The occupancy of electron as a function of electric field for our Al\(_{0.45}\)Ga\(_{0.55}\)N model shows in Fig. 3. These electrons are completely occupied in the first energy valley when the electric field is below 170 kV/cm. When the electric field is above 170 kV/cm, the electron obtained sufficient energy from the electric field and begin to move towards the higher valley. The occupancy of electron at the first valley decreases to 60% while the electron at the second valley increases to 40% at electric field greater than 560 kV/cm. These shows that at high electric field, electrons are moving from the lower energy valley to the higher energy valley and the ratio of 40-60 is kept at saturation.
Fig. 5 $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$ hole energy as function of electric field.

Fig. 5 plots the average hole energy of $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$ as a function of electric field in our work. It is evident that the average hole energy is much lower than the average electron energy. The average hole energy increases slowly from 0.04 eV to 0.065 eV when the electric field increases from 50 kV/cm to 1 MV/cm.

The hole occupancy of $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$ as a function of electric field is plotted in Fig. 6. It is shown that all the holes reside on the first valence valley which is the heavy band due to the hole being too heavy to move to the second valence valley which is the light band.

![Graph](image)

Fig. 6 $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$ hole occupancy as function of electric field. Circle: Occupancy of hole at first valley. Triangle: Occupancy of hole at second valley.

Fig. 7 and Fig. 8 show the impact ionization rate as a function of impacting carrier energy of both electron and hole, respectively, for $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$ in our work. There is very limited result on impact ionization rate for $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$ especially on hole. Since the result of impact ionization rate of $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$ cannot be found, it is compared with the closest Al content which is $\text{Al}_{0.4}\text{Ga}_{0.6}\text{N}$ and $\text{Al}_{0.5}\text{Ga}_{0.5}\text{N}$. So far, only Bellotti et al.’s (2012) work on electron impact ionization rate can be found. A power exponent of 6 is used in the modified Keldysh formula to generate the impact ionization rate in the first and second conduction valley in our model while a power exponent of 7 is used for the first and second valence valley. It is shown that the impact ionization rate at higher energy valley is higher compared to the lower energy valley especially at a high impact energy. This is due to the larger amount of energy possessed by the carriers at the higher valley. It is also noted that the hole impact ionization rate is higher than of electron.

![Graph](image)

Fig. 7 The electron impact ionization rate as a function of impacting carrier energy for $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$. The solid and dashed lines are the ionization rates from the first and second conduction valleys respectively. The circle ($\text{Al}_{0.4}\text{Ga}_{0.6}\text{N}$) and square ($\text{Al}_{0.5}\text{Ga}_{0.5}\text{N}$) represents the ionization rate by Bellotti et al. (2012) on the first conduction valley.

![Graph](image)

Fig. 8 The hole impact ionization rate as a function of impacting carrier energy for $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$. The solid and dashed lines are the ionization rates from the first and second valence valleys respectively. The circle ($\text{Al}_{0.4}\text{Ga}_{0.6}\text{N}$) and square ($\text{Al}_{0.5}\text{Ga}_{0.5}\text{N}$) represents the ionization rate by Bellotti et al. (2012) on the first valence valley.

The electron and hole impact coefficients were simulated as a function of inverse electric field by using Eqs. (7) and (8) and are plotted in Fig 9. From our result, it is seen that the hole dominates the impact ionization above the electric field of 2.6 MV/cm. At lower electric field however, electron dominates the impact ionization. The hole domination at higher electric field is consistent with the literature reviews (Huang et al., 2013; Bellotti et al., 2012; Hou et al., 2015). The disparity of α and β values are important as it will give us a low noise while having a high gain APD. From our work, it can be seen that the disparity between α and β is quite small at lower electric field which will result in higher noise. This ratio of noise to gain will progressively decreases after the electric field of 2.6 MV/cm when the value of α and β start to have larger disparity. As impact ionization coefficient for $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$ cannot be found, the closest $\text{Al}_{0.4}\text{Ga}_{0.6}\text{N}$ is chosen from other researchers to compare our result. Our electron impact ionization result is very close to the result from Bulutay (2002) and Bellotti et al. (2012) and our hole impact ionization is also close to Bellotti et al. result. Our results agree where the value of β is higher than α at higher electric field from both the result from Bellotti et al. and Tut et al. (2006). However, the both of the coefficient from Tut et al. is much higher than our result, though this might be due to the lattice defect in the AlGaN layer explained in Tut et al. work. Comparing our work with Cheang et al. (2019) GaN impact ionization coefficient, it can be seen that both α and β values of $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$ are lower than that of GaN. For GaN, hole dominate the impact ionization at lower field compared to electron domination for $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$. Since the hole dominates at higher field for $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$, it can be assumed that hole will lead the gain for $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$ where the breakdown voltage for hole will be lower than electron. This will also mean that most of the noise from $\text{Al}_{0.45}\text{Ga}_{0.55}\text{N}$ will result from electron-initiated impact ionization (Bellotti et al., 2014). Based on the impact ionization coefficients in Fig. 9, the electric field dependent expressions of electron and hole impact ionization coefficients have been deduced as
Fig. 9: Electron impact ionization coefficient, α (filled black circle) and hole impact ionization coefficient, β (empty black circle) of AlxGa1-xN from this work are compared with those by Bellotti et al. (2012) A03, GaAs (α: filled red square), Tu et al. (2006) A03, GaAs (α: filled maroon square, β: empty maroon square), Bulutay (2002) A03, GaAs (α: blue triangle), Cheang et al. (2019) GaN (α: filled teal diamond, β: empty teal diamond).

CONCLUSION

In this work, the carrier transport mechanisms for AlxGa1-xN were investigated using Monte Carlo (MC) simulation. Both the electron and hole coupled with two conduction and valence band, respectively, were simulated. The carrier drift velocity, energy, and carrier occupancy with respect to electric field were simulated. The impact ionization rate and coefficient of both electron and hole were also presented. Our drift velocity for electron is comparable to other literature result while no literature review for the hole drift velocity. At the electric field of 170 kV/cm, the electron gains enough energy to be excited to the second valley, maintaining a 40 – 60 ratio of first valley to second valley respectively above the electric field of 560 kV/cm. The hole impact ionization rate is higher than that of electron. The hole dominates the impact ionization process above the electric field of 2.6 M/cm and vice versa as seen in the impact ionization coefficient figure. The impact ionization coefficient will be used to calculate the gain and noise of our model in the future work where we predict that hole will have higher multiplication gain compared to electron and electron-initiated multiplication will have higher noise factor than holes.

ACKNOWLEDGEMENT

This work was supported by MMU/RMC-PL/FRGS/AL/2017/033, MoHE.

REFERENCES