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Abstract 
 
In this research, we construct a class of quadratic stochastic operator called Geometric quadratic 
stochastic operator generated by arbitrary 2-partition  of infinite points on a countable state space 

, where . We also study the limiting behavior of such operator by proving the existence 

of the limit of the sequence  through the convergence of the trajectory to a unique fixed point. It is 
established that such operator is a regular transformation. 
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INTRODUCTION 
 

It is widely recognized that the theory of quadratic stochastic 
operator frequently arises due to its enormous contribution as a source 
of analysis for the investigation of dynamical properties and modeling 
in diverse domains.  

A quadratic stochastic operator (qso) is also known as an 
evolutionary operator since it is used to present the time evolution of 
differing species in biology. Let us shortly mention on how such kind 
of operators arise in population genetics. We consider biological 
population, that is, a community of organisms that closed with respect 
to reproduction. Assume that every individual in this population 
belongs to one of the species . We denote the probability that 
the species of parents  and  interbreed to produce species  via 

 and  be a probability distribution of species at 

an initial state. Hence,  is the total probability of 

the species in the first generation of direct descendants.  

The idea of qso was initiated by Bernstein in 1924. Since then, a lot 
of papers are devoted to study such operators (Ganikhodjaev, 1993, 
1994; Kesten, 1970; Lyubich, 1978, 1992). Note that one of the main 
problems in the nonlinear operator theory is to study the asymptotical 
behaviour of nonlinear operators. Even in the class of quadratic 
stochastic operator which is the simplest nonlinear operators, the 
problem remains open. The difficulty of the problem in qso depends on 
the given cubic matrix , where  is the dimensional 

simplex. In order to study this problem, many researchers are devoted 
to construct several classes of qso. They describe and study their 
properties, then investigate their trajectory behaviour. 

Generally, the study of qso can be divided into two main cases, i.e. 
Volterra and non-Volterra quadratic stochastic operators. The idea of 
Volterra quadratic stochastic operators can be reinterpreted in terms of 

its biological view in which the offspring repeats one of its parents. The 
trajectory behavior of such operators has been studied in many previous 
works (Ganikhodjaev & Hamzah, 2015c; Ganikhodzhaev, 
Mukhamedov, & Rozikov, 2011; Kesten, 1970; Losert & Akin, 1983; 
Lyubich, 1978, 1992; Mukhamedov, 2000; Zakharevich, 1978).  

In the case of non-Volterra quadratic stochastic operators, the study 
of such operators is still an open problem where new classes of 
quadratic stochastic operator are continuously constructed and further 
investigated in many papers. In Ganikhodjaev & Hamzah (2014c, 
2014a, 2014b, 2015a), the authors introduced and studied Poisson and 
Geometric qso on countable state space and Gaussian qso on continual 
state space. Another class of qso which called as Lebesgue qso on the 
segment  generated by 2-partition  is introduced and studied by 
Ganikhodjaev & Hamzah (2015b). 

In this paper, we are motivated to introduce another class of 
quadratic stochastic operator called Geometric quadratic stochastic 
operator generated by 2-partition  of infinite points defined on 
countable state space. In the next section, we provide the concept of 
quadratic stochastic operator on the set of all probability measures and 
the definition of Geometric quadratic stochastic operator in details. 

 
PRELIMINARIES 
 

Let  be a measurable space, where  is a state space,  

is a -algebra on , and  be a set of all probability 

measures on a measurable space . We consider a family of 

functions  on  where 

 for fixed  is regarded as a measurable 

function of two variables and  for any  

and .  
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A nonlinear transformation called quadratic stochastic operator 
(qso)  is defined by  

             ,                      (1) 

where  and . 

Note that in this paper, we consider a countable set  where 
 is the set of all nonnegative integers. On  state space, one 

can consider a discrete probability distribution, i.e. Poisson distribution, 
Geometric distribution, etc. Throughout this paper, we consider a 
Geometric distribution which has the following form 

                                  , 

for any . 
 Since we consider the case where the state space , 

then we can define a measure  as  and by additivity, we 
have  

, 

where we denote  as . 

We define a family of functions  which satisfies 

the following conditions: 

i.  is the probability measure,  

ii. . 

Hence, a qso (1) can be written as 

                           ,                            

(2) 
where  for a measure .  
 
Definition 1: A qso  (2) is called as a Geometric quadratic 
stochastic operator, if for any , the probability measure 

 is the Geometric distribution  with a real parameter 

, . 
 

Assume that  is a trajectory of the 

initial measure , where  for all 

 with . The definitions of fixed point and 

regularity of qso  are presented in the following. 
 
Definition 2: A point  is called a fixed point of a qso , 

if .  

Let  be a set of all fixed points of qso . 
 
Definition 3: A qso  is called a regular if for any initial point 

, the limit  

                                               ,                                        (3) 

exists. 
 

Limit behaviour of the trajectories and the fixed points of the qso 
have been studied in many publications (Akin & Losert, 1984; Akin, 
1993; Bernstein, 1924; Ganikhodjaev, Ganikhodjaev, & Jamilov, 2015; 
Ganikhodjaev, 1993, 1994; Ganikhodzhaev & Zanin, 2004; 
Ganikhodzhaev et al., 2011; Hofbauer & Sigmund, 1998; Jenks, 1969; 

Kesten, 1970; Lyubich, 1978, 1992; Mukhamedov & Embong, 2015; 
Ulam, 1960; Volterra, 1931; Zakharevich, 1978). 

Suppose that  be a measurable 2-partition of the state 

space , where , , and  with 

 and .  Then, we 

define the family  as follows: 

                                               (4) 

where  is a real parameter. 

The study of Geometric qso was introduced and studied by 
Ganikhodjaev & Hamzah (2015a) where it has been proven that such 
operator generated by 1-partition was a regular transformation with up 
to three parameters. Motivated by the study by Ganikhodjaev & 
Hamzah (2015b, 2015a), the authors in Karim, Hamzah, & 
Ganikhodjaev (2019) constructed and investigated a Geometric 
quadratic stochastic operator generated by 2-partition of singleton.  

In this present paper, we intend to study a Geometric quadratic 
stochastic operator generated by 2-partition of infinite points by 
considering  as a set of all nonnegative integers divisible by 3 and 
following the case where  consists of arbitrary infinite points. 

 
GEOMETRIC QUADRATIC STOCHASTIC OPERATOR 
GENERATED BY 2-PARTITION OF MODULUS 3 
 

Let  is a set of infinite points with modulus 3 to generate 
the 2-partition  while . Now, we consider a Geometric 
quadratic stochastic operator such that as defined in (4). For any 

measure , consider that  and 

, where 

. We can easily verify for Geometric distribution , 

 and . Thus, we have 
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. 

 
Next, by simple calculations, it is given that  

 

, and 

 

.                (5) 

 
Simply by using mathematical induction on the sequence , we 
attain the following 

  

               ,  (6) 

for . Moreover, for parameters  and , they 

follow that  

 

, and 

 

.  (7) 

Notice that the limit behaviour of the recurrent equation (6) is bounded 
by the limit behaviour of recurrent equations (7). 

We have  where  and 

. Hence, as  the recurrent equations (7) can be 

rewritten as follows: 
, and 

,   (8) 

 
where  and  are represented as variable  and 

respectively  with ,  , and . 

It is sufficient to solve for the first equation in (8). Hence, we may 
rewrite the mentioned equation as follows:  
                   .  (9) 

 
Obviously, the equation (9) is a quadratic equation. We may rewrite the 
right-hand side equation as follows:  

,  (10) 

where . Then, the equation (10) can be regarded as a 
function, where  

. 

This implies that such function maps the segment  into itself. 
Therefore, the following statements are established. 
 
Theorem 1:  The transformation (10) has a unique fixed point which 
belongs to the open interval . 
 
Proof Recall that a quadratic equation has at most two roots. In fact, 
it can be easily shown that the equation 

 

  ,  (11) 
 
where  and  has a root in the interval  

and  when  and , respectively. 

Another case to be considered is when , where the 

equation becomes a linear with . Hence, for all considered cases, 
a root in  is unique. Evidently, this root varies from 0 to 1. This 
completes the proof. 

Next, we investigate the local character of the fixed point. Let us 
consider the discriminant of the quadratic equation (11). Hence, we 
have the following,  

                                       ,                         (12) 
 
By simple calculations, it is notable that we have . Now, it 
remains to show that the function converges to a fixed point to describe 
the regularity of such operator, whence the following theorem is given. 
 
Theorem 2: A fixed point of the transformation (10) is attractive, if 

. 
 
Proof Let  be a fixed point of the quadratic equation (11), where 

                                    .                                (13) 

 
Suppose that , where  is a right-hand side of the 

equation (11) and its derivative,  is continuous. Then, one can 
obtain  
                                   .  (14) 
 
By substituting (13) into (14),   
                                             .                                         (15) 

 
It is understood that if   , then  is an attractive point, 

meanwhile if   , then  is a repelling point. Since , 

then we have  which implies that any unique fixed point 
in the open interval  is attractive and the statement of the Theorem 
2 follows from the equality (14).  

It is shown that the trajectory behavior of qso (6) converges to a 
unique fixed point in the open interval . By Definition 3, we say 
that the limit exists if the trajectory converges. Hence, it is a regular 
transformation.  
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In the succeeding section, we will present the generalization for the 
Geometric quadratic stochastic operator generated by 2-partition of 
arbitrary infinite points. 

 
REGULARITY OF GEOMETRIC QUADRATIC STOCHASTIC 
OPERATOR GENERATED BY 2-PARTITION  OF INFINITE 
POINTS 
 

To generate 2-partition  of arbitrary infinite points, assume that
, then we have . Let 

 and  where . It 

is easily verified that  and 

. For any , we consider the 

family of functions (4), then we have the qso as follows: 

  

              

            , and  

  

              

            

Next, by simple calculations, it is given that 

, and   

.            (16) 

Then, by using mathematical induction on the sequence , the 
following recurrent equations are attained 

 

            ,            (17) 

where  and . Moreover, for the parameters  

and , we obtain as follows: 

 , and 

.             (18) 

 
It is obvious that the limit behaviour of the recurrent equation (17) 
depends on the limit behaviour of the recurrent equations (18).  

Since , where  and 

, then as  the recurrent equations (18) can be 

rewritten as follows:  
, and 

,             (19) 

where  and  are represented as variable  and 

respectively with ,   and . 

It is sufficient to solve for the former equation in (19) which can be 
rewritten as follows: 
                  .           (20) 

 
It turns out that the equation (20) is the same quadratic equation as the 
equation (9). Since we are going to prove the regularity of this operator, 
we may apply the same procedure as applied in the case of Geometric 
quadratic stochastic operator generated by 2-partition  of modulus 3.  

The main goal in investigating the regularity of quadratic stochastic 
operator is to show that the trajectory behaviour of such operator 
converges to a fixed point which indicates the existence of the limit of 
the sequence .  

In the previous section, it is proven that the equation (9) has a 
unique fixed point in the open interval . It follows that any fixed 

point belongs to the open interval  is attractive. Hence, Theorem 
1 and Theorem 2 are employed for this particular case.  

Therefore, the Geometric quadratic stochastic operator generated 
by 2-partition of arbitrary infinite points is a regular. 
 
CONCLUSION 
 

A Geometric quadratic stochastic operator generated by 2-partition 
 of infinite points is a regular transformation.  
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