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ABSTRACT 
 
The resultant matrix of a polynomial system depends on the geometry of its input Newton polytopes. Therefore for sparse inputs, the matrix is lower in 
dimension. The aim of the study is to infer conditions on the class of polynomial systems that can give a resultant matrix whose size is minimized, that is 
an optimal or Sylvester-type sparse resultant matrix. From the work of Emiris, the ‘incremental algorithm’ has been claimed to produce optimal matrices 
for the class of multi-homogeneous (or multigraded) systems of special structure. Cyclic polynomial systems for n-root problems also fall under this 
classification. We have applied the Maple multires package to obtain Sylvester-type matrices for some examples. The ultimate aim of the study is to 
verify whether the multigraded systems constitute to the only class of polynomial systems that can give sparse resultant optimal matrix; hence giving a 
necessary and sufficient condition for producing exact sparse resultants. 
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1. INTRODUCTION 

 
The problem of solving a system of nonlinear 

polynomial equations 0...21 ==== mfff  over a 
field X such that the system has a solution, arise in many 
application domains. For instance, in algebra, mechanics, 
kinematics, robotics, structural molecular biology, logic, 
geometric and solid modelling, image understanding and 
vision have been well-documented [1, 6, 12, 19, 21].  It is 
for this reason that techniques of resultant for solving such 
applications as above have received considerable research 
attention due to its efficientness and robustness to certain 
problems (e.g. [2, 4, 7, 9, 16, 22]).  Many of these studies 
have reported on the success of the method being used in 
the applications.   
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si ZaaaA ⊆= ,...,, 21 is the set of exponent vectors or 

support ia  for if . Resultant is a single polynomial (i.e. an 
irreducible polynomial) derived from the original system of 
polynomial equations that encapsulates the solution to the 
system (refer to e.g. [13,14,17,20]). A matrix is sparse if it 
consists of entries which are mostly zeroes. A sparse 
resultant matrix is a sparse matrix such that the nonzero 
coefficients consist of terms in the polynomial system.   
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The size of the resultant matrix is determined by the input 
polytopes, named Newton polytopes, denoted 
as n

i XiAQ ⊆= )(conv  where iA  denotes the support of 
the ith polynomial of the system [6]. 

Sparse resultant matrices are of any of different 
types: Sylvester-type matrices (e.g. [6,7,13]), where the 
polynomial coefficients fill in the nonzero entries of the 
matrix; Bezout-type matrices, where the coefficients of the 
Bezoutian associated to the input polynomials fill in the 
nonzero entries of the matrix (e.g. [6, 18]) and hybrid 
matrices (e.g. [5, 10] ). This study focuses on Sylvester-type 
matrices for sparse resultant.  

In Emiris [12], two effective methods for 
constructing sparse resultant matrices were described based 
on discrete geometric operations, namely the subdivision-
based method and the incremental algorithm. The first 
approach (called greedy version), relies on a mixed 
subdivision of the Minkowski sum; Q = Q0 + … + Qn, 
which generalizes the sparse elimination theory [2, 3, 4].  
The theory uses combinatorial and discrete geometry to 
exploit the structure of a given polynomial system. The 
methods had been applied in computing mixed volume and 
formulating sparse resultant matrices for problems in three 
different areas of research, namely camera motion from 
point matches, cyclic molecules and Stewart platform 
kinematics.  

The main idea is to decrease the size of the matrix 
which defines the resultant. For certain class of systems a 
single matrix whose determinant equals the resultant can be 
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constructed; that is, a Sylvester type formula can be derived. 
In addition, the resultant matrix is optimal when its 
dimension is minimal, that is when the size of the matrix is 
equal to the degree of the resultant so that any entry is either 
zero or is an input coefficient. The incremental approach is 
able to derive an optimal Sylvester-type matrix for certain 
problems [13].  

Almost all polynomial systems modelled in 
applications are sparse. Therefore, it is necessary to 
encounter sparse polynomials, which involve only 
exponents lying in a finite set [8].  In addition, it is 
necessary to utilize the sparsity structure of polynomials 
which are prevalent in almost all real life problems, yielding 
a generalized resultant, named the sparse resultant.  

Several studies have established necessary and 
sufficient conditions that can give exact resultants using the 
Dixon resultant formulation [5, 6, 18, 19, 22]. Based on the 
ideas that have been presented in the analysis of the Dixon 
case, the research is conducted with the aim of inferring and 
characterizing sparseness conditions on the structure of the 
Newton polytopes and support interiors of the class of 
polynomial systems that produce exact resultants for sparse 
systems. In this preliminary work, Maple multires package 
is used to compute the resultant matrices of some 
multivariate polynomial systems.  The class of each 
polynomial system is first determined.  Comparisons of the 
size of the resultant matrix with the mixed volume of the 
Newton polytopes of the corresponding multigraded system 
are made to check whether the matrix obtained is optimal. 
An optimal matrix formula is expected from the class of 
multigraded systems. 

 
2. EXPERIMENTAL  
 

As a preliminary work, Maple multires package is 
used to compute the resultant matrices of nonlinear 
polynomial systems. The greedy variant of the subdivision 
based algorithm is named after Pederson [3]. The algorithm 
starts with a single row, corresponding to some integer 
point, and proceeds iteratively by adding new rows and 
columns. For a given set of rows, the column set comprises 
all columns required to express the row polynomials. For a 
given set of columns, the rows are updated to correspond to 
the same set. The algorithm continues by adding rows and 
corresponding columns until a square matrix has been 
obtained. The algorithm computes resultant matrices of the 
greedy version. 

In this paper, the greedy algorithm is applied to 
several multihomogeneous systems of three polynomials 
with two variables. Multihomogeneous structure is a first 
step away from the classical theory of homogeneous 
systems towards fully exploiting arbitrary sparse structure 
[11] and are encountered in several areas including 
geometric modelling [5, 19, and 21].  
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of type 1 1( ,..., ; ,..., )r rl l d d  is called multigraded if for each 

ri ,...,2,1= , either 1=il  or 1=id [15], and it is an unmixed 
system of 1+n generic multigraded polynomials in n 
variables, where ∑=

=
r

i i nl
1

 [6]. 

In this paper we illustrate the results of the size of the 
resultant matrices of the greedy version for certain types of 
multigraded systems.  The matrix size is compared to the 
mixed volume of the corresponding Newton polytopes of 
the system, applying Theorem 1 and Theorem 2 given 
below. 

Theorem 1 (Bernstein’s Theorem)[8].  
If 321 ,, fff are three generic polynomials in two variables, 
then the number of solutions of 

0),(),(),( 321 === yxfyxfyxf in ( )2*C , equals the mixed 
volume, ),,( 321 QQQMV where )(conv ii AQ = . 

Theorem 2 [2].  The sparse resultant is separately 
homogeneous in the coefficients ci of each fi and its degree 
in these coefficients equals the mixed volume of the other n 
Newton polytopes, ),,,,,( 1111i- ++−= nii QQQQMVMV KK , 

1,,1 += ni K  that is )(deg iMVR
if = . 

Sturmfels and Zelevinsky showed that every 
multigraded system has at least one Sylvester type formula 
for its sparse resultant . Emiris and Canny proved that, 
for any multigraded system, an initial vector can be defined 
from the sequence kl , the Newton polytopes, and a scaled 
down copy of these polytopes where the scaling has 
occurred by a different factor for every group of  

kl coordinates.  Consequently, the first matrix constructed 
by the resultant matrix algorithm has determinant equals to 
the sparse resultant of the system. More precisely, for every 
multigraded system, an optimal matrix formula can be 
constructed [13, pg 25]. 

 
3. RESULTS & DISCUSSION 
 

The computation of mixed volume is obtained using 
formula [24],  
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Considering over constrained system with two variables, 
equation (1) reduces to 

).Vol()(Vol)(Vol),( 212121 QQQQQQMV −−+=  Here “Vol” is 
referred to usual area measure of plane Euclidean geometry.  
 
Example 1. Consider the following generic polynomial 
system with generic coefficients, 

 

2
635343

2
3323133

2
625242

2
3222122

2
615141

2
3121111

xaxyaxayayaaf

xaxyaxayayaaf

xaxyaxayayaaf

+++++=

+++++=

+++++=



S.N. Ahmad and N Aris. / Journal of Fundamental Sciences Vol. 6, No. 1 (2010) 37-41. 

| 39 | 
 

 
  
 
 
 
 
        
 
 
 
 
   

    Ai = {(0,0), (1,0), (1,1), (0,1), (2,0), (0,2)}, i = 1, 2, 3         Q1 + Q2 = conv (A1 + A2) 
 
Figure 1: Newton polytopes (convex hull) of each polynomial for multihomogeneous polynomial of type (1,1;2,2) and  

Minkowski sum of any two-fold and subdivision
 
The system is a multigraded polynomial of type (1,1;2,2). 
The Newton polytopes or the convex hull of each 
polynomial of this system and its Minkowski sum of 
subdivision can be depicted respectively, by Figure 1.  

The system is unmixed and the mixed volume of any 
two of the polynomials is 4. Hence the resultant matrix has 
at least 4 rows coming from each polynomial, implying that 
it must have 12 rows to be the exact resultant matrix or 
optimal matrix of Sylvester-type. In particular, by mixed 
volume computation of its Newton polytopes, the degree of 
the sparse resultant is 12. However, the Maple multires 
package, through function spresultant, gives a sparse ma- 

 

trix of size 14.  An optimal matrix of size 12 can actually be 
derived since the system is multigraded. 
 
Example 2.  Consider the polynomials 
 

433323342322413121
2

111 ,, axyaxafaxyafaxyaxaxaf ++=+=+++=  
 
The system is multigraded of type (1,1 ; 2,1). The convex 
hull of the supports of this system can be viewed in Figure 
2. Consequently, its Minkowski sum of two-fold and 
subdivision is shown in Figure 3. 
 

 

 

                                                          

                                                            
 
    Q1    Q2       Q3 

Figure 2: Newton polytopes (convex hull) of multigraded system of type (1, 1; 2, 1) 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3: Minkowski sum of two-fold of multigraded system of type (1, 1; 2, 1) and subdivision 
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Q1 + Q2 = conv{(0,0), (1,0), (1,1), (2,0), (2,1), (2,2), (3,1)}           Q1 + Q3 = conv{(0,0), (1,0), (1,1), (2,0), (2,1), (2,2), (3,0), (3,1)} 

 

 
Q2 + Q3 = conv{(0,0), (1,0), (1,1), (2,1), (2,2)} 
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Its sparse resultant matrix given by the Maple 
multires package is a 55×  matrix. The size of this matrix 
equals mixed volumes of two-fold polynomials given by 

5122),(),(),( 323121 =++=++ QQMVQQMVQQMV . Since the 
degree of the resultant is 5, the construction gives an 
optimal or Sylvester-type matrix. In addition, if a system 
with this mixed supports is solvable, Theorem 1 implies that 
it has five nonzero roots.  The results of the computation 
have also shown that the mixed volume expresses the 
sparseness of the system by taking the sublattice of Ζn 
generated by the Minkowski sum of all supports.  
 
Example 3.  Consider the polynomials 
 

3,2,1for   2
9

2
8

2
7

654
2
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2

2
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1
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itsczscysc

xstcxszcxsyctxczxcyxcf

iii

iiiiiii    

 (2) 
 
which is multigraded of type (1,2 ; 2,1). The convex hull of 
the supports of this system can be viewed as in Figure 4. 
The system is unmixed with variable subset x, s and y, z, t. 
The homogenizing variables are s and t in the respective 
block.  The convex hull for the unmixed supports of the 
system is shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Newton polytopes (convex hull) of each polynomial for 
multigraded polynomial of type (1,2;2,1) 

                      
To apply multires package the technique of u-resultant is 
applied to form an over constraint system given by 
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Then multires gives a sparse matrix of size 59. Whereas, the 
sparse resultant’s total degree is the sum of mixed volumes, 

.27333666)()(
)(),(),(),(

4342

41323121

=+++++=+++
+++++

QQMVQQMV
QQMVQQMVQQMVQQMV   

We illustrate the Newton polytopes of this system in Figure 
5. The shaded region is a translation of Q1, Q2, Q3, and Q4 
respectively.  These shaded regions are not counted in the 
computation of mixed volume.  Since the system is 

ultigraded, an optimal matrix of size 27 can actually be 
derived. 

a) Minkowski sum of (Q1 + Q2), (Q1 + Q3) and (Q2 
+ Q3) and its subdivision  

b) Minkowski sum of (Q1 + Q4), (Q2 + Q4) and (Q3 
+ Q4) and its subdivision  

Figure 5: Minkowski sum of two-fold of multigraded system of 
type (1, 2; 2, 1) and subdivision 
 
4. CONCLUSION AND FURTHER WORK 

 
 We have illustrated the implementation of the greedy 
version algorithm on some examples of multigraded 
systems of types (1,1; 2,2), (1,1;2,1) and (1,2;2,1) 
respectively. The first type is an unmixed system. After 
homogenizing variables, the system can be written as 

22
65
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3

2
2

22
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212
1

pp ty=x and 212
2

pp zx=x . The greedy implementation does 
not give an optimal matrix even though we expect an 
optimal matrix can be constructed from the class of 
multigraded systems. Investigation on other types of 
multigraded systems in two variables with one 
homogenizing variable from each class, and with various 
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total degrees in each monomial, needs to be carried out.  
For systems with more than two variables, 1≠il , the 
condition that the total degree of each monomial to be 1, 
i.e. 1=id needs to be satisfied. In addition, the properties 
for unmixed systems need to be independently explored 
from the mixed cases.  
 The methods of constructing optimal matrices from 
multigraded systems need to be studied in the effort of 
finding a general algorithm that can construct a sparse 
resultant for every problem, extending to the case of other 
classes of multihomogeneous systems as well as systems 
for specific application problem.  A resultant matrix for a 

system may not be optimal, but obtaining a matrix whose 
size is minimal is desirable in order to reduce the presence 
of extraneous factors in the formulation and construction of 
sparse resultant matrices, leading to the solutions of 
polynomial equations using the resultant approach. 
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