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Abstract 

Let 0 (mod1)tf f t  be one-parameter family of circle homeomorphisms with a break point, that is, 

the derivative 0Df has jump discontinuity at this point. Suppose Df satisfies a certain Zygmund 

condition which is dependent on parameter 0  . We prove that the renormalizations of circle 

homeomorphisms from this family with rational rotation number of sufficiently large rank are 

approximated by piecewise fractional linear transformations in 11 L
C


and 

2C -norms, depending on 

the values of the parameter (1/ 2,1]    and (1, )   , respectively. 
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INTRODUCTION 

One of the most studied classes of dynamical systems are 

orientation-preserving homeomorphisms of the circle 
1 1 1/ ZS R . 

Poincaré (1885) noticed that the orbit structure of an orientation-

preserving diffeomorphism f is determined by some irrational mod 

1, the rotation number ( )f  of f , in the following sense: for 

any 
1S  the mapping  

1( ) (mod 1), j Zjf j   is 

orientation-preserving. Denjoy proved that if f is an orientation-

preserving 
1C - diffeomorphism of the circle with  irrational rotation 

number  and log f  has bounded variation, then the orbit 

1{ ( )}j

j Z
f 


is dense and the mapping ( ) (mod 1)jf j    can 

therefore be extended by continuity to a homeomorphism h of circle 

which conjugates f to the linear rotation : (mod 1)f     . 

In this context, it is a natural question to ask, under what conditions 

the conjugation is smooth. The first local results, that is the results 

requiring the closeness of diffeomorphism to the linear rotation, were 

obtained by Arnold [1] and Moser [17]. Next, Herman [10] obtained a 

first global result (i.e. not requiring the closeness of diffeomorphism 

to the linear rotation) asserting regularity of conjugation of the circle 

diffeomorphism. His result was developed by Yoccoz [19], Stark [18], 

Khanin and Sinai [13, 14], Katznelson and Ornstein [12], Khanin and 

Teplinsky [15], Akhadkulov et al. [3]. They have shown that if f is 

3C or 
2C 

and rotation number  satisfies certain Diophantine 

condition, then the conjugation will be at least 
1C . Notice that the 

renormalization approach used in [14] and [18] is more natural in the 

spirit of Herman’s theory. In this approach, regularity of the 

conjugation can be obtained by using the convergence of 

renormalizations of sufficiently smooth circle diffeomorphisms. In 

fact, the renormalizations of a smooth circle diffeomorphism converge 

exponentially fast to a family of linear maps with slope 1. Such a 

convergence together with the condition on the rotation number (of 

Diophantine type) imply the regularity of conjugation. A natural 

generalization of diffeomorphisms of the circle are homeomorphisms 

with break points, i.e., those circle diffeomorphisms which are smooth 

everywhere with the exception of finitely many points at which their 

derivatives have jump discontinuities. Circle homeomorphisms with 

breaks were investigated by Herman [10] in the piecewise-linear (PL) 

case. The studies of more general (non PL) circle diffeomorphisms 

with a unique break point started with the work of Khanin and Vul 

[16]. Apparently, the renormalizations of circle homeomorphisms 

with break points are rather different from those of smooth 

diffeomorphisms. Indeed, the renormalizations of such a circle 

diffeomorphism converge exponentially fast to a two-parameter 

family of Möbius transformations. Applications of their result are very 

wide in many branches of one-dimensional dynamics, examples are 

the investigation of the invariant measures, nontrivial scaling and 
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prevalence of periodic trajectories in one parameter families. In 

particular, they investigated the renormalization in the case of rational 

rotation number. Using convexity of the renormalization analyzed 

positions of periodic trajectories of one parameter family of circle 

maps and they proved that the rotation number is rational for almost 

all parameter values. 

The purpose of the present work is to study the asymptotical 

behavior of the renormalizations of circle homeomorphisms with 

rational rotation number of enough large rank and satisfying a certain 

Zygmund condition dependent on a parameter 0  . In Theorem 1, 

we show that if (1/ 2, 1]  , then the renormalizations converge to 

the piecewise Möbius transformations with  speed (n )O 
in 

1C -

norm and the second derivative of the renormalizations converge to 

the piecewise Möbius transformations with  speed   
( 1)(n )O  

in 
1L

-norm. Moreover, we show that if (1, )   , then the second 

derivative of the renormalization convergence to the piecewise 

Möbius transformations with speed  
( 1)(n )O  

in 
0C -norm. Since 

the speed of convergence of renormalizations is shown in explicit 

form. we believe that this result will have many applications in the 

future. 

Renormalizations of circle maps with rational rotation 
numbers  

Consider one-parameter family of circle homeomorphisms 
1( ),tf x x S with a break point bx , that is, 

                                             

1

0( ) ( ) (mod 1), x S , [0,1), (1)tf x f x t t   

where 0f satisfies the following conditions: 

1

0(i) ([x , x 1])b bf C  ; 

0(ii) inf 0f   ; 

0(iii) f has one-sided derivatives 0 (x 0) 0bf    and 

0 0(x 0) / f (x 0) 1b bf      . 

The number  is called size of break. The rotation number 

(f )t t  is defined as follows: 

1( )
lim (mod1), x R ,

n

t

t
n

F x

n



     where 0ftF t  . 

Fixing an arbitrary rational number / (0,1)p q , then it can be 

expressed as a finite continued fraction expansion: 

1 2/ [k ,k ,...,k ], k 1n np q   . We refer to the number 

( / )r p q n as the rank of rational number /p q . To be emphasize 

that the rational number depends on its rank n , we set 

: , :n np p q q  . Let 1 2/ [k ,k ,...,k ], 1m m mp q m n   be 

“rational convergence” for /p q . The denominators mq satisfy the 

recursive relations: 1 2m m m mq k q q   for 1 m n  , with initial 

conditions 0 11, 0q q  . Now consider the circle 

homeomorphisms tf from the family (1), with rational rotation 

number /t p q  . Let ( / ) {t : p/ q}tI p q   . Fix 

( / )t I p q and denote : tf f . Since the rotation number 

/t p q  is rational, for each ( / )t I p q the map tf admits at 

least one periodic orbit with period : nq q . Let 

0 0(r , q ) {r f (r ), i 0,1,..., (q 1)}i

f n i nO     be an arbitrary 

periodic orbit with period 
nq . Taking an arbitrary point on the orbit 

0 0(r , q )f nx O , below we define the finite sequence of dynamical 

partitions 
1 2, ,..., nP P P of the circle. Denoted by 

(m)

0 the intervals 

0[x , x ]
mq , for m odd, and 

10[x , x ]
mq 

, for m even. The intervals 

(m 1) ( 1)

0( )i m

i f    , for 0,1,..., mi q and 
(m) ( )

0( )j m

j f   , for 

10,1,..., mj q  , cover the whole circle (without overlapping except 

at end points) and form the m th dynamical partition {P }m
, for 

0,1,..., 1m n  . Consider the system of intervals: 

(n 1)P { , i 0,1,...,(q 1)}n i n

    . Endpoints of the intervals  

1

(n 1)

0[f (x ), f (x )], 0 1
n

i i

i q ni q


     are periodic points with 

period 
nq and the system of intervals 

nP , cover the whole circle and 

it is called partition generated by periodic orbit 0(r , q )f nO . Denoted 

by 1 2[y , y ] , the interval formed by consequent points of the orbit 

0(r , q )f nO which contains the break point bx . Introduce normalized 

coordinates z in the interval 1 2[y , y ] by the formula 

1 2 1x y z(y y )   . Now we define the function ( )nf z

corresponding to the return map ( )nq
f x in the normalized coordinate 

system: 

1 2 1 1

2 1

(y z(y y )) y
( ) , [0, 1]

nq

n

f
f z z

y y

  
 



The map ( )nf z is called renormalization of homeomorphism f on 

the interval 1 2[y , y ] . Notice that here n is the rank of rational 

rotation number / , (p/ q)t p q t I   . 

Zygmund class and main results 

In order to formulate our result, we have to define a new class of 

circle maps. For this, we consider the function :[0,1) (0, )Z  

such that (0) 0Z  and  ( ) log ,Z x x





  (0,1)x ,  0  . 

Let f be the circle homeomorphism with a break point bx . Without 

loss of generality we assume 0bx  . Denote by 
2 ( , )f   the 

second symmetric difference of f  on [0, 1] i.e., 

2 ( , ) f ( ) f ( ) 2f ( )f               

where [0, 1]  and  [0, 1/ 2]  such that , [0, 1]      . 

Suppose that there exists a constant 0C  such that the following 

inequality holds: 

                                                         

([0,1])

2|| ( , ) || ( ). (2)
L

f C Z  


  

We remind that the class of real functions satisfying (2) with 

( ) 1Z   is called the Zygmund class [20]. Hu and Sullivan [11] 

applied this class to the theory of circle homeomorphisms for the first 

time. Denoted by 
1 1(S \{x })

Z

bH 
, the class of circle 

homeomorphisms f with a break point bx , whose derivative f  has 

bounded variation and satisfying conditions (i)-(iii), and the inequality 

(2). Piecewise Möbius transformation is defined as follows: 
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3

2 2

2

2

, [0, d],
( 1)z d( 1) 1

( )
( 1)

, [d, 1].
( 1)z d ( 1) 1

d

z
if z

G z
z d

if z



  

  

  




   
 

  
    

where 1 2 1(x y ) / (y y )bd    .  Our main result is the following 

Theorem 1. Let  
1 1(S \{x }), 0, (p / q )

Z

t b n nf H t I 


   be 

circle homeomorphisms from the family (1) with rational rotation 

number /t p q  of rank n . Then, there are constant 0C  and 

natural number 
0 0( )n n f such that, for all 

0n n the following 

inequalities hold: 

1
1 ([0,1],d ) 1([0,1]\{d})

|| f G || , || f || , [1/ 2, 1),n d n d LC

C C
G when

n n 



     

1 0 1([0,1]\{d}) С ([0,1])
|| f G || , || f || , (1, )n d n dC

C C
G when

n n 



      

where the constant C is not depend on n , t and chosen periodic 

orbit. 

In the next sections, we will give a sketch of proof of Theorem 1.

Note that the class 
1 1(S \{x }), 0

Z

bH  


 is wider than 
2C 

, but 

our estimations are weaker than Khanin and Vul’s [16]. The proofs of 

main theorems based on distortion estimates. Zygmund condition 

plays an important role in the estimation the distortion. This allows for 

a considerable simplification of the proof and essentially makes it 

easier. Note also that similar results are obtained in [8], [9] with 

weaker estimation.  

Estimates for the ratio of  nq
f -distortions and comparing 

relative coordinates with möbius functions 

The distortion of the interval I with respect to the function f is 

| ( ) |
(I;f)

| |

f I
R

I
 . The distortion is multiplicative with respect to 

composition: for any two functions f and g we have 

(I;f ) (I; ) R(g(I);f)R g R g  . For any [a, b]x we can consider 

the distortions: ( ) ([a,x];f)aR x R and ( ) ([x, b]; f)bR x R . 

Now, we define relative coordinates on the intervals of dynamical 

partition nP and the ratio of nq
f - distortions, i.e. distortions of 

intervals with respect to nq
f .  Then, we describe the ratio of nq

f - 

distortions by initial relative coordinates and we provide estimates for 

this description and its derivatives. Consider the dynamical partition 

nP which is generated by periodic orbit 0(r , q )f nO . Let 1 2[y , y ]

the interval of nP which contains the break point bx . If the point lies 

on the periodic orbit, then two intervals of the partition nP cover the 

point bx with endpoints. In this case as 1 2[y , y ] we take such that 

1y bx . To simplify, we take 0 1x y . By assumption 

(n 1)

0 1 2[y , y ]  and consequently 
(n 1) (n 1)

0 0( )nq
f     . Notice that 

the renormalization map nf is represented as a composition 

2 1( ) ( ( ))nf z F F z of two functions 1F and 2F , corresponding to 

maps 
( 1) ( 1)

0 1: n nf    and  
1 ( 1) ( 1) ( 1)

1 0:n

n

q n n n

qf
        , 

respectively. Introduce the relative coordinates 
( 1) ( 1)

1z : n n

i i i

 

 

for all 0 1ni q   , by the formula: 

( 1)1

0

2 1

( ) (y )
z , .

(y ) f ( )

i i
n

i i i

f x f
x

f y


 



To simplify notions, we denote:  

                                      

( 1)

1 2: (y ), : (y ), : (x) , 0 1. (3)i i i n

i i i i na f b f x f i q      

Put 

1

1

(b ) f (a )
exp

2 (b )

nq

i i

n

i i

f
m

f





   
  

 


Since 
( 1)

0 1 2[ , ]n

bx y y  , we consider intervals 

( 1) , 1 1n

i ni q    which no contain the break point. Denote 

                                  

1

( 1)1

01

2

([f( ), f( )]; f )
(f(x)) log log , . (4)

([f( ), f( )]; f )

n

n

q

n

n nq

R y x
U m x

R x y






  

Since 1 1 1 1( ) ( )f x a z b a   , we set  

1 1 1 1 1(z ) : U ( z (b a ))n nU a   . 

In the following lemma, it is provided the estimation for 1(z )nU , 

which are proved analogously as in [2], Lemmas 5.1.-5.4. 

Lemma 1. Let 
1 1(S \{x }), (p/ q)

Z

bf H t I
  be circle 

homeomorphisms from the family (1) with rational rotation number 

/p q  of rank n . Then there are constant 0C  and natural 

number 0 0( )n n f such that, for all 0n n the following inequality 

holds: 

1 1

1

1 1 1
[0,1] [0,1]

1

dU (z )
max | U (z ) | , max | z (1 z ) | , (0, ),n

n
z z

C C
when

dzn n 


 
    

1 1

2

1 1

1 11 2 1[0,1] [0,1]
1 1

dU (z ) d U (z )
max | | , max | z (1 z ) | , (1, ).n n

z z

C C
when

dz n dz n 


  
    

Next define relative coordinates of points of the intervals 

( 1) ( 1)

0n

n n

q

      by 

1

1

1

2 1

( )
ẑ ,

n

n

q

q

f y y

y y









   where   1 1 1 1( )y a z b a   . 

We show that relative coordinates 1ẑ
nq  are approximated by Möbius 

transformations of 1z for sufficiently large n .  To characterize these 

approximations more precisely, we define a Möbius transformation as 

follows:  

( )
1 (N 1)

N

zN
M z

z


 
. 

Lemma 2. Let 
1 1(S \{x }), (p/ q), (0, )

Z

bf H t I 


    be 

circle homeomorphisms from the family (1) with rational rotation 

number /p q  of rank 
n . Then, there are constant 0C  and 

natural number 0 0( )n n f
such that, for all 0n n the following 

inequalities hold: 
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11 ([0,1])
ˆ|| z M || .

n nq m C

C

n  

Proof. First, we will find the explicit form of 1z
nq  . A not too hard 

calculation shows that 

1
1 1 2

1

1 1 1

ˆ1 ([f( ), f( )]; f )

ˆ 1 ([f( ), f( )]; f )

n

n

n

n

q
q

q

q

z z R x y

z z R y x









 


On the other hand, relation (4) implies that 

1

2

11

1

([f( ), f( )]; f ) 1
exp{ U (z )}.

([f( ), f( )]; f )

n

n

q

nq

n

R x y

mR y x




  

Therefore, the last two relations give us 

1 1

1

1 1

ˆ1 1
exp{ U (z )}.

ˆ 1

n

n

q

n

q n

z z

z z m






   


Solving last equality for 1ẑ
nq  gives 

1

1 1

1 1 1

ẑ (z ) . (5)
(1 z )exp{ U (z )} zn

n

q

n n

z m

m
 

  

By Lemma 1, we have 1

1
exp{ U (z )} 1 ( )n O

n
   . Then equality 

(5) implies that  

                                                                   

1

1 1 1
[0,1]

ˆmax | z (z ) M (z ) | . (6)
n nq m

z

C

n


 

for all 0n n . By differentiating equality (5) we obtain 

                  1 1 1 1

1 1 2

1 1 1

(1 (1 z ) U (z )) exp{ U (z )}
ẑ (z ) .

((1 z )exp{ U (z )} z )n

n n n

q

n n

z m

m


  
 

  

By Lemma 1, we have 1

1
exp{ U (z )} 1 ( )n O

n
   and 

1 1 1

1
| (1 ) U (z ) | ( )nz z O

n
  . Then last equality implies that  

                                                                 

1

1 1 1
[0,1]

ˆmax | z (z ) M (z ) | . (7)
n nq m

z

C

n


  

for all 
0n n . Inequalities (6) and (7) imply the assertion of Lemma 

2. 

The following lemma shows that for sufficiently large n , the 

relative coordinates ẑ
nq are approximated by Möbius transformations 

in 
2C -norm when 1  .   

Lemma 3. Let 
1 1(S \{x }), (p/ q), (1, )

Z

bf H t I 


    be 

circle homeomorphisms from the family (1) with rational rotation 

number /p q  of rank n . Then there are constant 0C  and 

natural number 
0 0( )n n f such that, for all 

0n n the following 

inequalities hold: 

                                         

1 01 1 1([0,1]) ([0,1])
ˆ ˆ|| z M || , || z M || . (8)

n n n nq m q mC C

C C

n n   
    

Proof. First inequality in (8) immediately follows from Lemma 2.  To 

prove second inequality of lemma we find explicit form for 1ẑ
nq 
 : 

  

 

  

 

1 1 1 1 1 1 1 1 1

1 2

1 1 1

1 1 1 1 1 1 1

3

1 1 1

exp{ U (z )} (z ) 2z z (1 z ) U (z ) (1 z ) U (z )
ẑ

(1 z )exp{ U (z )} z

2 exp{ U (z )} 1 z (1 z ) U (z ) exp{ U (z )} (1 z ) U (z )
.

(1 z )exp{ U (z )} z

n

n n n n n

q

n n

n n n n n n

n n

m U z

m

m m

m



      
 

  

       


  

This equality and Lemma 1 imply second inequality in (8).  We are 

done. 

It follows from the definition of relative coordinates of zi

that the functions 
1F and 

2F can be written as follows: 

1 0 2 1 1

1 0

2 1

1

1 1 2 1 1

2 1

2 1

(y (y y )) f(y )
(z ) ,

(y ) f(y )

(f(y ) (f(y ) (y ))) y
(z )

y y

nq

f z
F

f

f z f
F



  




  




and 
2 1(z) (F (z))nf F . Define the following piecewise fractional 

linear function: 

2

0

02

0 2

0

02

, [0, d],
1 ( 1)

(z )
( 1)

, (d, 1].
1 ( 1)

d

z
if z

d
h

z d
if z

d












 
 

  
  

Lemma 4. Let 
1 1(S \{x }), (p/ q), (0, )

Z

bf H t I 


    be 

circle homeomorphisms from the family (1) with rational rotation 

number /p q  of rank n . Then there are constants 0C  , 

0 1  and natural number 
0 0( )n n f such that, for all 

0n n

the following inequalities hold: 

11 ([0,1]\{d})
|| F || , (0,1/ 2];n

d C
h C if   

21 ([0,1]\{d})
|| F || , (1, );n

d C
h C if    

1
11 1 L ([0,1], d )([0,1]\{d})

|| F || , | F || , (1/ 2, 1].n n

d C
h C C if     

Proof. Let 
1 by x x  . Since f  satisfies the condition (2), we 

obtain 

1

2

1 1 1

1 1 0

(x) f(y ) 1
( ) ( )

2 2

x y

f x y x y
f y f y dy

x y x y



   
      

   


1

2
(n 1) (n 1)1
0 0

1 0

1

0 0

1
2 ( ) (| | Z (| |))

2

(x) f (y )
(| | Z (| |)).

2

x y

x y
f O dy

x y

f
O







  
    

  

 
   



Then we get 

                                 

1
1 1

1 0 0 1

( ) (y )
( ) ( ) (x y )

2

(x y )O(| | Z (| |)), y . (9)b

f x f
f x f y

x x

 
  

     

Similar calculations show that 
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0 0 2

( ) (x 0)
( ) (x ) (x )

2

(x )O(| | Z (| |)), , (10)

b

b b

b b

f x f
f x f x

x x x y

  
  

     

                      

2

2 2

2 0 0

( 0) (y )
(y ) (x ) (y )

2

(y )O(| | Z (| |)). (11)

b

b b

b

f x f
f f x

x 

  
  

   

                      

1

1 1

1 0 0

(y ) (x 0)
(x ) (y ) (x )

2

(x )O(| | Z (| |)), (12)

b

b b

b

f f
f f y

y 

  
  

   

It follows from Theorems  4.1 and 4.3 in [2] that 

                                                        

| f (x) f (y) | C (| I |; ), x,y I, (13)    

where 

11
(log ) , ( , ) (0,1) (0,1),

1
( ; ) (loglog ), ( , ) (0,1) {1},

, ( , ) (0,1) (1, ).

if

if

if

  


    


  


 




   


  



In fact, the function ( ; )  is the modulus of continuity of the 

functions satisfying relation (2) for the different cases of  .  Using 

the bound on continuity intervals of f  , we get 

0 1 0 2( ) (x 0) O( (| |; )), y ; ( ) (x 0) O( (| |; )), ;b b b bf x f x x f x f x x y                 

1 0

2 0

(y ) (x 0) O( (| |; ));

(y ) (x 0) O( (| |; )).

b

b

f f

f f





     

     

It is well known  that 
0 0| | nC  where 1/2

0 (1 )ve    and  v is 

total variation of log 'f (see [3], [8]). It is easy to see that there exists 

0( ,1)  such that 0 0 0| | Z (| |) (| |; ) O( )n

       . 

Using this we can rewrite relations (9)-(12) as:  

                                 

1 1 1 1( ) ( ) (x y )f (x 0) (x y )O( ), y . (14)n

b bf x f y x x       

                               

2( ) (x ) (x )f (x 0) (x )O( ), , (15)n

b b b b bf x f x x x x y       

                              

2 2 2(y ) (x ) (y ) ( 0) (y x )O( ). (16)n

b b b bf f x f x      

                             

1 1 1(x ) (y ) (x ) (x 0) ( y )O( ), (17)n

b b b bf f y f x      

Using the relations (14)-(17) and explicit form of 1 0(z )F we get 

1

1

2 1

1 0

1

2

2 1

( ) ( )
, ,

(y ) ( ) ( ) ( )
(z )

( ) ( ) ( ) ( )
, ,

(y ) ( ) ( ) ( )

b

b b

b b

b

b b

f x f y
if y x x

f f x f x f y
F

f x f x f x f y
if x x y

f f x f x f y


    

 
    

   
2

0

02

2

0

02

( )
, [0, d],

1 ( 1) ( )

( 1) ( )
, (d, 1],

1 ( 1) ( )

n

n

n

n

z O
if z

d O

z d O
if z

d O

 

 

 

 

 


  


   
   

where 1 2 1(x y ) / (y y )bd    . Differentiating the initial form of 

1 0(z )F and using relations (14)-(17), we have  

2 1
1 0

2 1

(y y ) f (x)
(z )

(y ) f(y )
F

f


  



2

02

02

( )
, [0, d],

1 ( 1) ( )

1 ( )
, (d, 1].

1 ( 1) ( )

n

n

n

n

O
if z

d O

O
if z

d O

 

 



 

 


  


 
   

So, we have proven that if (0, )   , then the function 1 0(z )F is 

approximated by 0(z )dh in  
1C - norm. Suppose that 1  . 

According to Theorem 4.3 in [2], we have that 
2f C . Then it is 

easy to see that 

2

2 1 2 1

1 0

2 1 0

(y y ) | f (x) | (y y ) | f (x) |
| ( ) | ,

| f(y ) f(y ) | | f ( ) |

nF z C


  
   



where 0 1 2(y , y )  and 0 bx  . Similarly, one can show that 

11 0|| ( ) || ,n

LF z C  when (1/ 2, 1]  . This finishes the proof of 

Lemma 4. 

PROOF OF MAIN THEOREM 

To complete the proof of main theorem, we have to compare nm with 

 . 

Lemma 5. Let 
1 1(S \{x }), (p/ q), 1/ 2

Z

bf H t I 


   be 

circle homeomorphisms from the family (1) with rational rotation 

number /p q  of rank n . Then there are constant 0C  , 

0 1  and natural number 0 0( )n n f such that, for all 0n n

the following inequality holds: | m | C .n

n   

Proof. Since 1/ 2  , it is easy to check that the following 

equalities hold: 
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1 1

(b ) (a ) (x ) (a )(y) (y)
.

2 (b ) 2 ( ) 2 ( ) 2 (b )

i ib b

i i i i

i ia a

f f f ff f
dy dy

f f y f y f

      
   

    
 

Since | [a , b ] | C , 0,1,...,(q 1)n

i i ni   , we have 

1

(x ) (a )(y) ( )
| | .

2 ( ) 2 (b ) 2 ( )

i i

i

b b

ni i

ia a

f ff f y
dy O dy

f y f f y

    

          
 

A not hard calculates show that 

(n 1) (n 1)
1 0 0

1 1

1 1

(b ) (a ) (y) (y) (y)
log O( ) log O( ).

2 (b ) 2 ( ) 2 ( ) 2 ( )

in n
bq q

n ni i

n

i ii a

f f f f f
m dy dy dy

f f y f y f y
  

 

 

   

    
      

   
    

Hence, according to the inequality 
(n 1)
0

(y)
| |
2 ( )

nf
dy C

f y








 , we get 

the proof of Lemma 5. From the definitions of 
2 1(z )F and 1 1

ˆ (z )
nqz 

imply that 2 1 1 1
ˆ(z ) (z )

nqF z  . Then Lemmas 3 and 5 imply that 

1 02 2 1([0,1]) ([0,1])
|| F M || , || F M || .

C C

C C

n n
   

    

Hence, according to the relation 2 1(z) (F (z))nf F and Lemma 4, 

we obtain the proof of Theorem 1. 

Remark. The Zygmund class satisfying inequality (2) is applied to 

circle homeomorphisms with irrational rotation numbers in [4]-[8]. 

However, to the best knowledge of authors, this is the first result 

where Zygmund smoothness condition is applied to circle 

homeomorphisms with rotational rotation number. We believe that in 

case of algebraic irrational rotation number, Theorem 1 can be applied 

in finding fixed points of the renormalization operator 1: n nR f f 

. 
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