
Manshur et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 16, No. 3 (2020) 264-270 

264 

The 𝒁𝟔-symmetric model partition function on triangular lattice 
Nor Sakinah Mohd Manshur, Siti Fatimah Zakaria*, Nasir Ganikhodjaev 

Department of Computational and Theoretical Science, Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, 25200 
Kuantan, Pahang, Malaysia 

* Corresponding author: fatimahsfz@iium.edu.my

Article history 
Received 17 August 2019  
Revised 15 January 2020  
Accepted 28 January 2020 
Published Online 15 June 2020 

Graphical abstract 

Abstract 

There is a study on a square lattice that can predict the existence of multiple phase transitions on a 
complex plane. We extend the study on the different types of ZQ-symmetric model and different 
lattices in order to provide more evidence to the existence of multiple phase transitions. We focus 
on the ZQ-symmetric model with the nearest neighbour interaction on the six spin directions 
between molecular dipole, i.e. Q = 6 on a triangular lattice. Mainly, the model is defined on the 
triangular lattice graph with the nearest neighbour interaction. By using the transfer matrix 
approach, the partition functions are computed for increasing lattice sizes. The roots of polynomial 
partition function are also computed and plotted in the complex Argand plane. The specific heat 
equation is used for further comparison. The result supports the existence of the multiple phase 
transitions by the emergence of the multiple line curves in the locus of zeros distribution for 
specific type of energy level.  
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INTRODUCTION 

We study a complex system of mathematical model in statistical 
mechanics [1]. The study is inspired from the case of well-known Ising 
model [2] of 2 spin states to the case with more than 2 spin states that 
is Q-state Potts model of a physical system. The Q in both Q-state Potts 
and 𝑍$-symmetric models is the number of possible spin directions of 
a physical state. In contrast to the Q-state Potts model, our model also 
considers the interaction between nearest neighbour spin states but with 
additional relation to angle of the spin directions. The energy from the 
interaction is depends on this assumption.  

Our interest here is for Q = 6 (the case Q = 5 has been studied and 
discussed in separate paper [3]). In 𝑍$-symmetric model, the Q = 2 and 
4 are related to Ising model and Q = 3 is related to 3-state Potts model 
[1]. One of the most celebrated results for phase transition is discussed 
in work by Onsager and his student Kaufmann [4, 5, 6]. They described 
the exact solution for the Ising model on square lattice.  

The study of zeros of partition function was first discussed by 
Fisher [7] on the Ising model on square lattice, where the loci of 2 
circles were found  in the distribution. One of the circles was cut at the 
real axis at exactly the phase transition point in the ferromagnetic 
region. This study on zeros distribution was also done in many other 
cases for the Ising model and the Q-state Potts model, for example work 
by [1, 8, 9 10, 11, 12]. For the 𝑍$-symmetric model, Martin [1] and 
Zakaria [8] suggested that the existence of the multiple phase 

transitions could be predicted by the emergence of the multiple linear 
curves on the complex temperature plane.  

In this study, we extend our previously studied 𝑍%-symmetric 
model [3] in order to put more evidence regarding the existence of the 
multiple phase transitions of the 𝑍$-symmetric model on triangular 
lattice. We study specifically for the partition function of the 𝑍&-
symmetric model on triangular lattice.  

We initially present the definitions of the graph and the 𝑍$-
symmetric model. The Hamiltonian on the triangular lattice is defined 
and its function is computed for several cases of energy level. The 
partition functions of these many cases of energy level are computed in 
increasing lattice sizes. The zeros of the partition functions are 
computed and their results are analysed in the complex Argand plane. 
Finally, we compute and plot the specific heat equation for comparison. 

Graph 
The magnetic dipole moments of atomic spins are represented by 

discrete variables. The graph represents the spin particles on a lattice 
where each spin interacts with its nearest neighbours. 

Definition 1 [13] A directed graph 𝛬 is a triple 𝛬	 = 	(𝑉, 𝐸, 𝑓). The 𝑉 
is a set. The elements 𝑣	 ∈ 	𝑉 are called vertices. The 𝐸 is also a set. 
The elements 𝑒	 ∈ 	𝐸 are called edges. The 𝑓 is a function 𝑓	 ∶ 	𝐸	 →
	𝑉	 × 𝑉. Given 𝑒	 ∈ 	𝐸 and 𝑣6, 𝑣7 ∈ 	𝑉, the images 𝑓(𝑒) = 	˂𝑣6, 𝑣7˃ 
give the `source' and `target' vertex of edge e. 

A triangular lattice 
with the nearest 

neighbour 
interaction is 

defined and the 
partition functions 
are computed with 

different energy 
levels.

Newton-
Raphson 

method is used 
to find the 
zeros. The 
zeros are 

plotted in the 
complex Argand 

plane.

The zeros 
distributions are 
analysed and the 

specific heat graph is 
plotted for 

comparison.
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Definition 2 [8] The distance 𝑑;(𝑢, 𝑣) is the number of edges in the 
shortest path from 𝑢 to 𝑣. Two vertices 𝑢, 𝑣	 ∈ 	𝑉 are called nearest 
neighbours if 𝑓(𝑒) =< 𝑣6, 𝑣7 >  for some 𝑒	 ∈ 	𝐸 i.e. when 𝑑;	(𝑢, 𝑣) =
1. 

Definition 3 [3] Consider a set Λ of lattice sites, a d-dimensional lattice 
is formed from each site of the nearest neighbours. There is a discrete 
variable 𝜎B such that 𝜎B ∈	 {1,2,… , 𝑄} for each lattice site 𝑘 ∈ 	𝛬 which 
representing the site's spin. A spin configuration, 𝜎	 = 	 (𝜎B)B	∈	I	 is an 
assignment of spin value to each lattice site. 

The triangular lattice 
We consider the triangular lattice (a connection of 3 edges formed 

a triangle shape – see [6] for different examples and shapes) with the 
nearest neighbour interaction between molecular dipole in increasing 
lattice sizes.  

Figure 1 Triangular lattice with system size N x M’ = 3 x 3’. 

Figure 1 shows 3 by 3 triangular lattice with N and M represent the 
number of row vertices and column vertices, respectively. The dash dot 
lines and the dot lines correspond to the edges that connecting the upper 
and lower vertices, giving a cylindrical triangular lattice. This 
cylindrical shape corresponds to the periodic boundary condition. The 
symbol prime in M’ shows that it is an open boundary condition 
whereas the number without prime indicates that it is periodic boundary 
condition. 

We study the periodic boundary condition for the vertical direction 
and the open boundary condition for the horizontal direction. 

METHODS 

The 𝑍$-symmetric model’s energy relation is represented by the 
idea of a clock-like circle. The energy is depended on the interaction 
between one spin to another. The difference of the energy is always the 
same when any pair of the direction is moved with a fixed angle around 
the clock. This angle is associated to the symmetry of the model [14].  

Figure 2 The spin directions of one spin relative to spin 1 represented by 
a pair of arrow. 

Figure 2 shows the example of the interaction of two spin directions 
represented by two arrows relative to spin 1. The numbering inside the 
clock corresponds to the spin direction while outside the clock 
corresponds to the energy.  

We define the Hamiltonian function of the 𝑍$-symmetric model as 
follows. Let 𝜎 ∈ Ω. 

Definition 4 The Hamiltonian of the 𝑍$-symmetric model is defined as 

																		𝐻L(𝜎) = −𝐽	 O 𝜒Q𝜎R − 𝜎ST
〈R,S〉WX(Y)

Y∈Z

 

																														= −𝐽	 O 	O𝛾\ cos	 `
2𝜋𝑟c𝜎R − 𝜎Sd

𝑄 e

f$7g

\W6〈R,S〉WX(Y)
Y∈Z

+ 𝛾i\
(1) 

where f$
7
g is the discrete value of the division and 𝛾\, 𝛾i\ ∈ ℝ are model 

parameters fixed for a given model. 

The Hamiltonian depends on the angle between two spins. A small 
angle will contribute to lesser energy loss as compared to a large angle. 
The energy list is written as 𝜒 = (𝑥6, 𝑥7, 𝑥l, 0). And its energy loss is 
called an energy penalty, that is given by the absolute value of energy 
differences,  (|𝑥7 −	𝑥6|, |𝑥l −	𝑥7|, |𝑥o − 	𝑥l|).  

Partition function and transfer matrix approach 

Definition 5 For a given Q and  Λ, the partition function is defined as 

Ζ;(𝛽) = O expc−𝛽ℋ;(𝜎)d ;
x∈yz

 (2) 

where 𝛽 = 1 ⁄ (𝑘|	𝑇) in which 𝑘| refers to the Boltzmann’s constant 
and 𝑇 refers to the absolute temperature. 

The partition function is a function that relates temperature and 
other parameters with the states of a spin system [15, 16], which allows 
the energy transfer to its neighbour and environment. 

The partition function of 𝑍&-symmetric model, 𝑍(𝑥) is computed 
by transfer matrix approach [1, 8, 15]. 

Definition 6 Let 𝐺,𝐺� be two lattice graphs. Let 𝐸 be the set of edges 
and 𝑉 be the set of vertices. For the union of two graphs 𝐺 ∪ 𝐺� we 
have 

𝑉�∪�� = 𝑉� ∪ 𝑉�� 
and 

𝐸�∪�� = 𝐸� ∪ 𝐸��, 
where 𝐸� ∩ 𝐸�� = ∅. 

Based on the Chapman-Kolmogorov theorem [17], the summation 
of the product of partition vectors for graph Λ and Λ′ can produce the 
partition function of a new combined graph ΛΛ′. 

The partition vector is reorganised into a matrix called a transfer 
matrix. Let 𝑇 be a transfer matrix. Each entry in matrix 𝛵 is given by  

𝛵RS = 𝑍;�|x�∈���,x�∈��� , (3) 

in which 𝑉� represents the incoming site and 𝑉� represents the outgoing 
site such that 𝑉 = 𝑉� ∪ 𝑉�. The row matrices correspond to the set of 
all possible configuration states Ω�� while the column matrices 
correspond to the set of all possible configuration states Ω��. See Figure 
3. 

Figure 3 A new lattice graph ΛΛ’ is formed from the combination of 
graphs Λ and Λ’. 
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The dot circles in Figure 3 correspond to incoming and outgoing 
spins which denoted as 𝑉�z and 𝑉�z respectively for Λ, and 𝑉�z� and 𝑉�z�
respectively for Λ′. A new graph ΛΛ′ is formed when the graphs Λ and 
Λ′ are connected.  

Based on equation (3) and Chapman-Kolmogorov Theorem [17], 
the transfer matrix multiplication can be used to combine two graphs 
where the function is given by, 

Τ;;� = Τ;Τ;� (4) 

where 𝑉�zz� = 𝑉�z and 𝑉�zz� = 𝑉�z�. 

Then, the new partition function is given by 

𝑍;;� =OO(Τ;;�)R,S

�

SW6
,

�

RW6
(5) 

where 𝑖, 𝑗 is the index of matrix 𝛵;;� and 𝑑 is the dimension of the 
matrix. 

Computation of the zeros 
The Newton-Raphson method and a C++ programming language 

are used for computation in finding the zeros of the partition function 
(with the Gnu multiple precision library as another essential tool). 
Then, the zeros are plotted in the complex Argand plane. 

RESULTS AND DISCUSSION 

Zeros distribution 
The results of the zeros distribution of the partition function are 

presented in this section. The zeros are plotted in the complex-
temperature Argand plane. 

The zeros of the partition functions are studied for some energy list 
𝜒 in increasing lattice sizes. The largest possible triangular lattice (due
to limitation of our available computing resources) is size 8 by 8. 

The ferromagnetic region is enclosed by the real part [1,∞) with 
𝐽 > 0 while the antiferromagnteic region is enclosed by the real part 
[0,1] with 𝐽 < 0. The other region is unphysical.

We list the considered cases which give results of the zeros 
distribution of the partition function for 𝑍&-symmetric model in Table 1.  

Table 1 The zeros distribution computed cases with 
specific energy list 𝜒 = (𝑥1, 𝑥2, 𝑥3, 0). 

𝜒 5 × 5’ 6 × 6’ 7 × 7’ 8 × 8’ 

𝑄 = 6 

(2,1,0,0) ü ü 
ü ü 

(2,1,1,0) ü ü 
ü ü 

(3,1,0,0) ü ü 
ü ü 

(3,2,0,0) ü ü 
ü ü 

(3,2,1,0) ü ü 
ü ü 

The zeros distributions for several cases of size 8 by 8 triangular 
lattice are presented in Figures 4 through 8.  

Figure 4 shows the zeros distribution for energy level χ = (2,1,0,0). 
As the size increases, the zeros in the positive real axis form some linear 
arcs. The arcs of zeros are approaching the real axis in both 
ferromagnetic and antiferromagnetic regions. We can see some zeros 
outside the linear arc in ferromagnetic part. It may be due to the lattice 
size and boundary effects, but may be also forming another linear arc. 
This observation will be clearer if we can compute for bigger cases. 

The zeros distribution for χ = (2,1,1,0), N = 7 and 8 are shown in 
Figure 5. The appearance of the arcs is clear as the lattice size increases. 
There are branches of zeros that approaching the origin. In 
antiferromagnetic region, the existence of phase transition behaviour is 
not clear since we do not have enough zeros in this region.  

(a) 

(b) 

Figure 4 Zeros distribution for 
𝜒 = (2,1,0,0); a) N=7, b) N=8. 

We present the zeros distribution for χ = (3,1,0,0) in Figure 6. The 
arcs of zeros are approaching the real axis in both ferromagnetic and 
antiferromagnetic regions. There is a branch of zeros in non-physical 
region that is moving closer to the real axis as the lattice sizes increases. 
We can also clearly see that the graph of the zeros distribution in N = 8 
lattice size gives a better illustration as compared to the smaller lattice 
size, especially in antiferromagnetic part. The zeros are distributed in 
line.   

We continue to further study the zeros distribution for χ = (3,2,0,0), 
as referred to Figure 7. At this energy level, the zeros distribution is 
more complicated as compared to the previous energy levels. In both 
ferromagnetic and antiferromagnetic regions, as the lattice size 
increases, we can see that there are multiple arcs of zeros in the 
ferromagnetic region but it is not very clear either the zeros will merge 
into one line or remain in multiple lines for larger lattice sizes. In the 
non-physical region, some branches of zeros are moving towards the 
real axis. 

http://www.foxitsoftware.com/shopping
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(a) 

(b) 

Figure 5 Zeros distribution for 𝜒 = (2,1,1,0); a) N=7, b) N=8. 

(a) 

(b) 

Figure 6 Zeros distribution for 𝜒 = (3,1,0,0); a) N=7, b) N=8. 

(a) 

(b) 

Figure 7 Zeros distribution for 𝜒 = (3,2,0,0); a) N=7, b) N=8. 

http://www.foxitsoftware.com/shopping
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Lastly, as seen in Figure 8 for χ = (3,2,1,0), we observe that the 
zeros have a unique distribution as compared to the previous energy 
levels. Here, we have symmetry (left and right) in the zeros distribution. 
Other cases that we have covered do not have this symmetry. This χ = 
(3,2,1,0) is the only case we considered                                                               that has energy penalty that is 
fairly distributed (1,1,1) – one additional value of energy is lost for each 
addition of a fixed angle. This characterises the partition function to 
exhibit a symmetry. In the ferromagnetic region, the arcs of zeros are 
approaching the real axis but it is not so clear to determine either it has 
one single curve or multiple curves.  

(a) 

(b) 

Figure 8 Zeros distribution for 𝜒 = (3,2,1,0); a) N=7, b) N=8. 

The observation for ferromagnetic and antiferromagnetic regions is 
important since we can determine the behaviour of zeros approaching 
the real axis. The locus of zeros at thermodynamic limit for this finitely 
many zeros will determine the existence and number of phase transition 
for the physical systems. Multiple loci or arcs of zeros suggest for 
multiple phase transitions illustratively [1]. However, for the other 
regions that are unphysical, the questions regarding the pattern and 
locus of zeros distribution are still unknown. The physical region is 

interesting due to the information it gives us that is related to physical 
observables.  

The bigger lattice is also needed in all these cases in order to see a 
better illustration. For further investigation of the existence of phase 
transition due to number of curves, this can be done by using the 
equation of physical observable, called specific heat [18]. 

Energy penalty 
Based on the result, we compare with previously studied 𝑍%-

symmetry model [3] relating the energy penalty for each of the energy 
level to the number of curves in the zeros distribution (refer Table 2).  

Table 2 Relationship between the energy penalty and the number of 
curve in the zeros distribution; (a) 𝑍%-symmetric model, b) 𝑍&-symmetric 
model. 

𝜒 Penalty 1 curve Double 
curve Unsure 

(2,1,0) (1,1) ü 
(3,1,0) (2,1) ü 
(3,2,0) (1,2) ü 
(4,1,0) (3,1) ü 
(4,3,0) (1,3) ü 
(5,1,0) (4,1) ü 
(5,3,0) (2,3) ü 
(5,4,0) (1,4) ü 
(6,1,0) (5,1) ü 
(6,5,0) (1,5) ü 

(a) 

𝜒 Penalty 1 curve Double 
curve Unsure 

(2,1,0,0) (1,1,0) ü 
(2,1,1,0) (1,0,1) ü 
(3,1,0,0) (2,1,0) ü 
(3,2,0,0) (1,2,0) ü 
(3,2,1,0) (1,1,1) ü 

(b) 

Table 2 shows the number of curves approaching real axis in the 
ferromagnetic region of the zeros distribution for specific energy level 
𝜒 and the value of its energy penalty. The small loss of energy is 
obtained for the first energy step (between 𝑥6	and 𝑥7) as compared to 
the second energy step (between 𝑥7	and 𝑥l) for Q = 5, suggesting an 
existence (by illustration of the zeros distribution) of the multiple 
curves in the zeros distribution. This observation can be seen especially 
for the cases (3,2,0), (4,3,0), (5,4,0), (6,5,0) where their first energy step 
is exactly 1. Similarly, the possibility of multiple curves approaching 
real axis in ferromagnetic region is observed for the case (5,3,0) and for 
(3,2,0,0) for Q = 6 when the second energy step is greater than the first 
energy step.  

In contrary, when the first energy step is greater than the second 
energy step as in (3,1,0), (4,1,0), (5,1,0), (6,1,0), (2,1,1,0) and (3,1,0,0), 
only single curve is possible for the zeros distribution.  

For the cases (2,1,0), (2,1,0,0,) and (3,2,1,0), the number of curves 
in the graph is not very clear. These cases have equal value of energy 
loss between two different energy steps, that is between 𝑥6	and 𝑥7	and 
also between 𝑥7	and 𝑥l. The bigger lattice sizes are needed to see the 
zeros distribution – more points will be available in the bigger cases. 
Only 5 cases for Q = 6 are managed to be considered as compared to 
many other cases for Q = 5.  

Graph of specific heat 
We continue with the interpretation of our zeros result with respect 

to physical observable of specific heat and phase transition. A specific 
heat is the value of the heat required to raise the temperature by one 
degree Celcius. Discontinuity of the equation of the specific heat at the 
thermodynamic limit shows the existence of the phase transition. Refer 

http://www.foxitsoftware.com/shopping
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[1, 16, 18] for more explanations on specific heat and other functions 
of states. 

From the classical thermodynamic relation, the Helmholtz free 
energy is given by 

𝐹 = 〈𝑈〉 − 𝑇𝑆, (6) 

where 〈𝑈〉 is an internal energy, T is temperature, and S is an entropy 
[16, 19]. It is equivalent to the function given by 

𝐹 = −𝑘|𝑇𝑙𝑛(𝑍). (7) 

The specific heat 𝐶¡ is defined from the second derivative of 
logarithm of the partition function with respect to β as (recall that 𝛽 =
6
B¢£

) 

𝐶�
𝑘|

= −𝛽7
𝑑7 ln𝑍
𝑑𝛽7 = 𝛽7

𝑑
𝑑𝛽𝑈

(𝛽), (8) 

where 𝑈(𝛽) represents the first derivative of the logarithm of the 
partition function which also known as the internal energy. 

At infinite size, the phase transition exists when the graph of 
specific heat is discontinuous at 𝛽¦. This discontinuity point 
corresponds to the phase transition critical temperature 𝑇¦. At the 
thermodynamic limit, the exact critical point of phase transition occurs 
when the peak of the specific heat graph is discontinuous. From our 
result on the zeros distribution, this behaviour is already observed. To 
support our claim and observation, we present the graph of the specific 
heat for our model. 

Figure 9(a) shows the graph of the specific heat for 𝑍&-symmetric 
model with five energy levels, (2,1,0,0), (2,1,1,0), (3,1,0,0), (3,2,0,0) 
and (3,2,1,0). For (2,1,0,0), (2,1,1,0) and (3,1,0,0), there is only one 
peak which corresponds to one phase transition. As the energy level 
increases, the peak becomes steeper. For (3,2,0,0) and (3,2,1,0), there 
are two peaks which correspond to two phase transitions. But the visual 
appearance of the multiple peaks for (3,2,0,0) is clearer when compared 
to the peaks for (3,2,1,0). This is possibly due to the different energy 
steps of the energy level.    

As seen in Figure 9(b), we observe the behaviour of the peaks for 
(3,2,0,0) as the lattice size increases (N = 6,7,8). The peaks become 
steeper when the lattice size increases. 

This observation supports our claim for the existence of the 
multiple phase transitions in this model since there are multiple peaks 
in the specific heat graphs which correspond to the multiple phase 
transitions. 

(a) 

(b) 

Figure 9 Graph of specific heat 𝐶� for (a) 8 × 8′ with different  𝜒 values 
and (b) 6 × 6′, 7 × 7′, 8 × 8′ for 𝜒 = (3,2,0,0). 

CONCLUSION 

We have studied the partition functions and their zeros for 𝑍&-
symmetric models on triangular lattices. It is the extension from the 
study of 𝑍%-symmetric model. The zeros of the partition function are 
computed by Newton-Raphson method, and then are plotted in the 
complex Argand plane in order to study their distributions. From the 
results, the existence of multiple phase transitions is in accordance to 
the multiple numbers of arcs in the graph. The relation to energy penalty 
is also discussed relating to number of possible linear arcs. This result 
is supported through the observation from the peak in the specific heat 
graph. Our study is limited to only for some computable cases. The 
better computing resources (due to Moore’s Law) are needed to 
investigate the larger lattice sizes and also for a bigger type of energy 
loss. 
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