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Abstract 

Sin Nombre virus (SNV), a virus that can cause fatal disease among humans, is primarily hosted by 
the deer mouse, Peromyscus maniculatus. To better understand the biodiversity effect in curbing the 
prevalence of the SNV infection in the deer mouse population, we analyze the Peixoto & Abramson 
(2006) “one host, one non-host alien” deterministic model. In this study, we focus on the relationship 
of carrying capacity and interspecific competition strength of both host and non-host species in 
relation to the prevalence of the infection. Bifurcation analysis is carried out to examine the dynamics 
of this eco-epidemiological system. Our results show that the non-host species have a certain degree 
of influence in suppressing the SNV prevalence, given that the environmental conditions are similar 
and the interspecific competition strengths are relatively weak between the host and non-host 
species. 
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INTRODUCTION 

In the spring of 1993, the local authorities were alerted by the 
presence of a strange respiratory disease in the Southwestern United 
States after receiving death reports with the disease as its cause. 
Investigations were probed, and the disease was identified as hantavirus 
cardiopulmonary syndrome (HCPS) or hantavirus pulmonary 
syndrome (HPS). HPS primarily targets the lungs and may cause 
complications such as renal insufficiency, thrombocytopenia, myalgia 
and lethal outcomes (Jiang et al., 2017). The mortality rate was reported 
to be around 40% in HPS cases (MacNeil et al., 2011). The virus which 
caused HPS in that region was later termed as Sin Nombre virus (SNV) 
and the deer mouse, Peromyscus maniculatus, was later identified as 
the primary host of SNV (Jonsson et al., 2010). SNV can be transmitted 
to humans through contacts with the saliva, excreta and urine of the 
infected animals (Jiang et al., 2014). The outbreak of SNV was 
hypothesized to be linked to the large density increase in deer mouse 
population. This was confirmed through the Sevilleta LTER rodent 
studies where researchers were managed to observe 3-20 folds of 
density increment between 1992 and 1993 (Yater et al., 2002). The 
occurrence of El Niño Southern Oscillation (ENSO) event, which 
brought favourable environmental conditions for the deer mouse 
population, in that period was attributed as the cause of the density 
increase (Dearing & Dizney, 2010). To our knowledge, Abramson & 
Kenkre (2002) were the first researchers that proposed a deterministic 
susceptible-infected mathematical model (AK model) to explain the 
dynamics of the SNV prevalence in the deer mouse population. Based 
on the AK model, they observed a critical carrying capacity threshold 
that needed to be attained for the infected population to prevail in the 
system, which coincided with the empirical observations after the 
ENSO event. The authors also extended the AK model in spatial term 
and managed to show the presence of “refugia” for the infected 
population when the environmental condition was less optimal. 
Abramson (2004) later tested the AK model with the empirical data 

from the Zuni capture sites in New Mexico. The AK model proved to 
be credible as the empirical data was well fitted. Thus, the AK model 
has become one of the pioneer models to many other variants; for 
example, the consideration of internal fluctuations in deer mouse 
population (Escudero et al., 2004), the incorporation of age structural 
design (Reinoso & de la Rubia, 2015; Kenkre et al., 2007), the 
extinction of SNV “refugia” in spatially heterogeneous environment 
(Kumar et al., 2010). Furthermore, there are other researchers who 
studied the influence of external factors in suppressing the SNV 
prevalence; for example, Yusof et al. (2010) investigated several 
population harvesting strategies. They concluded that population 
harvesting could only reduce the intensity of the SNV prevalence when 
the environmental condition was favourable, and SNV prevalence 
could only be fully suppressed in the case of sub-optimal environmental 
condition. Following the case of biodiversity protects against Lyme 
disease (Ostfeld & Keesing, 2000), researchers such as Yusof et al. 
(2014) and Peixoto & Abramson (2006) modified the AK model by 
incorporating the biodiversity effects. Yusof et al. (2014) studied the 
effect of predator on the SNV prevalence and their simulation results 
showed the system stabilised at the extinction of both deer mouse and 
predator species. In our opinion, such situation is less ideal as we only 
want the SNV infection to subside while preserving the deer mouse 
species. On the other hand, Peixoto & Abramson (2006) studied the 
dynamics of SNV prevalence in the presence of a non-host alien species 
(which we will term it as PA model). Despite the interspecific 
competition strength between the deer mouse and non-host species was 
rather weak, they managed to observe the presence of the non-host 
species that was able to suppress the SNV prevalence while preserving 
the deer mouse population. Empirical studies such as (Dizney & 
Ruedas, 2009; Suzan et al., 2009; Clay et al., 2009; Luis et al., 2018) 
managed to observe a negative relationship between rodent species 
diversity and SNV prevalence which supported the theoretical results 
of Peixoto & Abramson (2006). Hence, our goal in this paper is to 
provide a comprehensive analysis on the PA model, especially in terms 
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of the combined effects of carrying capacity and interspecific strength 
of both deer mouse and non-host species using bifurcation analysis 
techniques.  

METHODOLOGY 

To provide a better understanding for the readers, we shall first 
briefly present the AK model before going into the PA model. The AK 
model is built upon on the characteristics of the SNV transmission; such 
as, SNV can only be transmitted horizontally (physical contact between 
the susceptible and infected, for example fighting), the SNV infection 
is life-long (once the deer mouse is infected, it cannot recover), the 
SNV infection does not induce death in the infected deer mouse, and 
infected deer mouse can give births to healthy individuals (no 
horizontal transmission). The AK model is given as below: 

𝑑𝑆
𝑑𝑡

= 𝑏(𝑆 + 𝐼) − 𝑑𝑆 −
𝑆(𝑆 + 𝐼)

𝐾
− 𝑎𝑆𝐼 		(1)

𝑑𝐼
𝑑𝑡
= −𝑑𝐼 −

𝐼(𝑆 + 𝐼)
𝐾

+ 𝑎𝑆𝐼

where 𝑆 and 𝐼 represent the susceptible and infected deer mouse 
population, 𝑏 is the birth rate, 𝑑 is the death rate, 𝐾 is the carrying 
capacity, and 𝑎 is the SNV transmission rate, which is the result of the 
product between the contact rate and the probability of being infected. 

By setting /0
/1

and /2
/1

equal to 0 in system (1), we obtain the 
equilibrium points through some algebraic manipulations. There are 3 
nonnegative equilibrium points; namely, the trivial solution, existence 
of susceptible population only, and existence of both susceptible and 
infection. Furthermore, it can be easily shown that the critical carrying 
capacity, 𝐾3 =

4
5
6 7
783

9 for the infection to exist in the system. 
Interested readers can refer to Abramson & Kenkre (2002) for more 
details. 

Now, we shall introduce the PA model. The PA model is 
constructed based on the idea of AK model but with the inclusion of a 
non-host alien species to account for the biodiversity effect. The non-
host alien species is defined as a rodent species other than the deer 
mouse which cannot be infected by the SNV. The deer mouse and non-
host species can influence each other by pressuring the other party 
through their corresponding interspecific competition strength. Thus, 
the PA model is formulated as below:  

𝑑𝑆
𝑑𝑡

= 𝑏4(𝑆 + 𝐼) − 𝑑4𝑆 −
𝑆(𝑆 + 𝐼 + 𝑞4𝑍)

𝐾4
− 𝑎𝑆𝐼

𝑑𝐼
𝑑𝑡
= −𝑑4𝐼 −

𝐼(𝑆 + 𝐼 + 𝑞4𝑍)
𝐾4

+ 𝑎𝑆𝐼																					(2)

𝑑𝑍
𝑑𝑡

= 𝑏=𝑍 − 𝑑=𝑍 −
𝑍[𝑍 + 𝑞=(𝑆 + 𝐼)]

𝐾=

where 𝑆, 𝐼 and 𝑍 represent the susceptible deer mouse, infected deer 
mouse and non-host alien population. The description of the other 
parameters is presented in Table 1 along with the values which will be 
used in the subsequent analysis and results section. 

Another interesting point to note is that by adding up the susceptible 
and infected equation in system (2), we will then get the 2-species 
Lotka-Volterra competition model as shown below: 

𝑑𝑁
𝑑𝑡

= 𝑏4𝑁 − 𝑑4𝑁 −
𝑁(𝑁 + 𝑞4𝑍)

𝐾4
																																(3)

		
𝑑𝑍
𝑑𝑡

= 𝑏=𝑍 − 𝑑=𝑍 −
𝑍(𝑍 + 𝑞=𝑁)

𝐾=

where 𝑁 = 𝑆 + 𝐼. This suggests that a bistability steady state will occur 
when the interspecific competition strength exerted by the deer mouse 
and non-host species are intense (meaning 𝑞4, 𝑞= > 1 in cases where the 
environmental conditions (carrying capacity) of both deer mouse and 
non-host species are similar). Hence, the initial population density of 

both deer mouse and non-host species will dictate the presence-absence 
of the said species in the ecosystem. 

Table 1 Descriptions and values of the parameters in system (2). 

Parameters Descriptions Values 

𝑏4 The birth rate of deer mouse population 1.0 
𝑑4 The death rate of deer mouse population 0.6 
𝐾4 The carrying capacity of the deer mouse 

population 
50 

𝑎 The SNV transmission rate among deer 
mouse population 

0.1 

𝑏= The birth rate of the non-host population  1.0 
𝑑= The death rate of the non-host population 0.5 
𝐾= The carrying capacity of the non-host 

population 
30 

𝑞4 The interspecific competition strength 
exerted by the non-host population onto the 
deer mouse population 

0.4 

𝑞= The interspecific competition strength 
exerted by the deer mouse population onto 
the non-host population 

0.3 

RESULTS 

The equilibrium points of system (2) can be found by setting the 
left-hand side equals to 0. There are a total of 6 nonnegative equilibrium 
points which includes (𝑆∗, 𝐼∗, 𝑍∗) = (0,0, 0), F0, 0,𝐾=(𝑏= − 𝑐=)H,
(𝐾4(𝑏4 − 𝑐4), 0, 0), 67I

5
, 𝐾4(𝑏4 − 𝑐4) −

7I
5
, 09,

6JI(7I83I)8KIJL(7L83L)
48KIKL

, 0, JL(7L83L)8KLJI(7I83I)
48KIKL

9 and 
67I
5
, JI(7I83I)8KIJL(7L83L)

48KIKL
− 7I

5
, JL(7L83L)8KLJI(7I83I)

48KIKL
9. To determine 

steady state of the system, we would                                                                                                     need to solve for the corresponding 
eigenvalues of the equilibrium points. The Jacobian matrix for system 
(2) is given by

⎝

⎜
⎜
⎜
⎛𝑏4 − 𝑐4 −

𝑆 + 𝐼 + 𝑞4𝑍
𝐾4

−
𝑆
𝐾4
− 𝑎𝐼 𝑏4 −

𝑆
𝐾4
− 𝑎𝑆 −

𝑞4𝑆
𝐾4

−
𝐼
𝐾4
+ 𝑎𝑆 −𝑐4 −

𝑆 + 𝐼 + 𝑞4𝑍
𝐾4

−
𝐼
𝐾4
+ 𝑎𝑆 −

𝑞4𝐼
𝐾4

−
𝑞=𝑍
𝐾=

−
𝑞=𝑍
𝐾=

𝑏= − 𝑐= −
𝑍 + 𝑞=(𝑆 + 𝐼)

𝐾=
−
𝑍
𝐾=⎠

⎟
⎟
⎟
⎞

Due to the complexity of the equations, we utilise Maple 2016 to 
solve for the eigenvalues in which the stable steady state is identified 
when all 3 eigenvalues are less than 0 for the choice of parameter values 
used. 

Fig. 1 Time series graph of 𝑆, 𝐼 and 𝑍 with parameter values in Table 1 
and initial (𝑆, 𝐼, 𝑍) = (10, 10, 10).  

By substituting the parameter values as in Table 1 into system (2) 
with the initial (𝑆, 𝐼, 𝑍) = (10,10, 10), a time series graph is plotted 
(refer to Fig. 1). From Fig. 1, we can see that the system achieves a 
stable steady state of the coexistence of the susceptible, infected and 
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non-host species. The corresponding equilibrium values are 
(𝑆∗, 𝐼∗, 𝑍∗) = (10,5.91,10.23) and all 3 eigenvalues are indeed 
negative as shown in Table 2. 

Table 2 The stability of system (2)’s equilibrium points based on 
parameter values as in Table 1. 

Equilibrium Point Eigenvalues Stability 

(𝑆, 𝐼, 𝑍) = (0, 0, 0) 𝜆4 = −0.60, 𝜆= = 0.50,	 
𝜆X = 0.40 

Unstable 

(𝑆, 𝐼, 𝑍) = (0, 0, 15) 𝜆4 = −0.50, 𝜆= = −0.72,	 
𝜆X = 0.28 

Unstable 

(𝑆, 𝐼, 𝑍) = (20, 0, 0) 𝜆4 = −0.40, 𝜆= = 1.00, 
𝜆X = 0.30 

Unstable 

(𝑆, 𝐼, 𝑍) = (15.91, 0, 10.23) 𝜆4 = −0.44, 𝜆= = −0.21, 
𝜆X = 0.59 

Unstable 

(𝑆, 𝐼, 𝑍) = (10, 10, 0) 𝜆4 = −0.40, 𝜆= = −1.00,	 
𝜆X = 0.30 

Unstable 

(𝑆, 𝐼, 𝑍) = (10, 5.91, 10.23) 𝜆4 = −0.44, 𝜆= = −0.21, 
𝜆X = −0.59 

Stable 

Fig. 2 Time series graphs of bistability steady state with 𝑞4 = 1.5, 𝑞= =
1.3, initial (𝑆, 𝐼, 𝑍) = (10, 10, 135) for case 1 (a) and initial (𝑆, 𝐼, 𝑍) =
(10, 10, 136) for case 2 (b). 

To showcase the possibility of a bistability steady states of system 
(2), we plot two additional time series graphs with the same parameter 
values as in Table 1 but with 𝑞4 = 1.5, 𝑞= = 1.3, initial (𝑆, 𝐼, 𝑍) =
(10,10, 135) for case 1 and initial (𝑆, 𝐼, 𝑍) = (10,10, 136) for case 2 
instead. By comparing Fig. 2(a) and 2(b), we clearly see that the system 
is either converged to (𝑆∗, 𝐼∗, 𝑍∗) = (10,10, 0) as seen in Fig. 2(a) or 
converged to (𝑆∗, 𝐼∗, 𝑍∗) = (0,0, 15) as seen in Fig. 2(b). The 
numerical values of the equilibrium points along with their respective 
stability properties are calculated using Maple 2016 as shown in Table 
3. These results agree with our hypothesis of the bistability steady state
existence, in which it exhibits sensitivity to the small change in initial
population. Unfortunately, the bistability steady state is not an ideal

situation in epidemiological ecology point of view. This is because the 
SNV infection either persists in the case where the deer mouse triumphs 
over the non-host or be eradicated but at the cost of the deer mouse 
extinction. This does not align to our goal of suppressing SNV infection 
while preserving the deer mouse and non-host population. 

Table 3 The stability of system (2)’s equilibrium points based on 
parameter values as in Table 1 except for 𝑞4 = 1.5, 𝑞= = 1.3. 

Equilibrium Point Eigenvalues Stability 

(𝑆, 𝐼, 𝑍) = (0, 0, 0) 𝜆4 = −0.60, 𝜆= = 0.50,	 
𝜆X = 0.40 

Unstable 

(𝑆, 𝐼, 𝑍) = (0, 0, 15) 𝜆4 = −0.50, 𝜆=
= −1.05,	 
𝜆X = −0.05 

Stable 

(𝑆, 𝐼, 𝑍) = (20, 0, 0) 𝜆4 = −0.40, 𝜆= = 1.00, 
𝜆X = −0.37 

Unstable 

(𝑆, 𝐼, 𝑍) = (2.63, 0, 11.58) 𝜆4 = 0.04, 𝜆= = −0.48,	 
𝜆X = −0.74 

Unstable 

(𝑆, 𝐼, 𝑍) = (10, 10, 0) 𝜆4 = −0.40, 𝜆= = −1.00, 
𝜆X = −0.37 

Stable 

(𝑆, 𝐼, 𝑍) =
(10,−7.37, 11.58)* 

𝜆4 = 0.04, 𝜆= = −0.48,	 
𝜆X = 0.74 

Unstable 

*Ecologically infeasible.

To further explore the dynamical system (2), bifurcation analysis 
up to co-dimension 2 is carried out on 𝐾4, 𝐾=, 𝑞4 and 𝑞= with the values 
indicated in Table 1, unless stated otherwise, through the utilisation of 
XPPAUT. The co-dimension 1 results can be found in Fig. 3 while the 
co-dimension 2 results can be seen in Fig. 4. 

Co-dimension 1 bifurcation analysis 
In Fig. 3(a), we can see that a minimum 𝐾= (reference to the first 

transcritical bifurcation point, 𝛼 = 12) is required for the non-host 
population to exist. For any value of 𝐾= below 𝛼 = 12, the system will 
only reach a stable steady state at (10,10,0), indicating the absence of 
the non-host population. When 𝐾= is in between 𝛼 = 12 and 𝛽 = 56, 
the system will reach the coexistence of susceptible, infected and non-
host stable steady state and the population density of the infected deer 
mouse starts to decrease along with increasing 𝐾=. When 𝐾= is beyond 
𝛽 = 56, the infected population will be eradicated, leaving behind the 
coexistence of the susceptible and non-host population only. This 
indicates that a critical carrying capacity threshold for the non-host 
species, 𝛽 = 56 needs to be attained in order to fully eliminate the SNV 
while any 𝐾= between 𝛼 = 12 and 𝛽 = 56 will only reduce the 
infection intensity in the system. 

For the bifurcation analysis of 𝑞4 (Fig. 3(b)), we can see that the 
inclusion of a non-host population interacting with the deer mouse 
population will reduce the prevalence of SNV even if the interspecific 
competition pressure exerted by the non-host species is relatively weak. 
Furthermore, the system reaches a coexistence of susceptible and non-
host population stable steady state when 𝑞4 is larger than 𝛾 = 0.833. 
This indicates that a relatively moderate interaction strength 𝑞4 is 
required to eliminate the infected population when the carrying 
capacity of the non-host is less abundant than the deer mouse 
population (𝐾= <	𝐾4) given that the interspecific competition pressure 
exerted by the deer mouse is relatively weak (𝑞= = 0.3). 

In Fig. 3(c), a co-dimension 1 bifurcation diagram for 𝑍 is plotted 
against 𝑞4 with the parameter values as in Table 1 but 𝑞= = 1.3 instead. 
There are two stable steady states in the figure, where one corresponds 
to the coexistence of the susceptible and infected deer mouse while the 
other corresponds to the survival of the non-host population only. As 
these two branches of stable steady state do not intersect with one 
another, this indicates the presence of the bistability steady states and 
the initial abundance of either the deer mouse or non-host population 
will dictate the presence-absence of one another. It is also interesting to 
note that the transcritical bifurcation point 𝜃 = 1.333 represents the 
switch of stable steady states from a negative solution branch to 
(0, 0, 𝑍∗) branch. This indicates that it is ecologically infeasible for 𝑍
to exist when 𝑞4 < 𝜃 and care should be given on the initial population 
density as bistability occurs when 𝑞4 > 𝜃. 

(a) 

(b)
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Fig. 3 Co-dimension 1 bifurcation diagrams where (a) and (b) are plotted 
by varying 𝐾= and 𝑞4 against the infected population while (c) is plotted 
by varying 𝑞4 against the non-host population with 𝑞= = 1.3. The red solid 
lines represent the stable steady state while the black dashed lines 
represent the unstable steady state. 

Co-dimension 2 Bifurcation Analysis 
By extending the analysis from the transcriticial bifurcation points 

in Fig. 3, we are able to obtain the co-dimension 2 bifurcation diagrams 
as shown in Fig. 4. In the diagrams, the regions between the lines are 
corresponded to distinct stable steady states of the system for some 
particular choices of parameters; for example, by choosing 𝐾4 = 10
and 𝐾= = 10 in Fig. 4(a), this corresponds to the coexistence of 
susceptible and non-host population stable steady state; and if we 
increase 𝐾4 by 20 (𝐾4 = 30), the system will cross over the 
transcritical bifurcation line and the stable steady state will switch over 
to the coexistence of the susceptible, infected and non-host population. 

In Fig. 4(a), there are five stable steady state regions in total. When 
𝐾4,𝐾= < 20, there is no SNV prevalence, and the coexistence of the 
susceptible deer mouse and non-host can be ensured when 𝐾4 and 𝐾=
are rather similar to each other. However, either the susceptible or non-
host population can survive when carrying capacity of a species is 
relatively much larger than the other in this region; for example, only 
the non-host will survive when 𝐾4 = 5 and 𝐾= = 15 in the system. 

When the value of 𝐾4 is more favourable (e.g, 𝐾4 = 40), the infected 
population starts to prevail. The abundance of  𝐾= can only increase the 
critical carrying capacity of the deer mouse (𝐾4) needed for the infected 
population to exist. This is indicated by the slanted slope separating the 
presence and absence of infected population regions. Hence, the more 
abundant 𝐾= is, the higher the 𝐾4 required for the infected population 
to invade the system when the relatively interspecific competition 
strength between deer mouse and non-host species is relatively weak 
(𝑞4 = 0.4, 𝑞= = 0.3). 

Fig. 4 Co-dimension 2 bifurcation diagrams where (a), (b) and (c) 
investigate the relationship between 𝐾= versus 𝐾4, 𝐾4 versus 𝑞4, and 𝑞4 
versus 𝑞= correspondingly. 

For the relationship between 𝐾4 and 𝑞4, we can refer to Fig. 4(b). 
Based on Fig. 4(b), there are four distinct stable steady state regions. 
When 𝐾4 is very low, the non-host population with moderate or high 𝑞4
can easily triumph over the deer mouse population which leaves us with 
the extinction of the deer mouse in the system. By increasing 𝐾4 slightly 
to the right, the susceptible deer mouse and non-host can coexist. 
However, the region for the coexistence between the susceptible deer 
mouse and non-host gets narrower with the increase of 𝐾4 and 𝑞4. This 
suggests that the interspecific competition strength of the non-host 
population when 𝐾4 is abundant, may not be as effective as when 𝐾4 is 

(a) 

(b) 

(c) 

(b) 

(a) 

(c)
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less than optimal even if the non-host population is very aggressive 
towards the deer mouse population. If we continue increasing 𝐾4 to a 
certain extend (e.g. 𝐾4 = 130), we can see the extinction of the non-
host population irrespective of how strong 𝑞4 is given that 𝐾= is 
relatively low compared to the now abundant 𝐾4. 

In Fig. 4(c), there are five stable steady state regions where the 
upper right region is bistability steady state. For instance, when both 
species have relatively low interspecific competition strength (𝑞4, 𝑞= <
0.6), the SNV prevalence will persist in the system. Only when 𝑞4 is 
moderate or moderately high (e.g., 0.7 < 𝑞4 < 1.3) while 𝑞= is relatively 
low (e.g.,	𝑞= < 0.6), the infected population can only be eradicated 
from the system. When the interspecific competition strength of one 
species is relatively much higher than the other, then only the species 
with the higher interspecific competition strength can survive while the 
other goes extinct (as seen in the upper left and lower right region in 
Fig. 4(c)). However, a bistability will occur when the interspecific 
competition strength of both deer mouse and non-host population are 
high. Thus, the species with a larger initial population density will 
survive in this case. If the initial deer mouse population density 
triumphs over the non-host, then the non-host population will go extinct 
while the susceptible and infected deer mouse population will flourish. 

In summary, the bifurcation analysis shows that the presence of the 
non-host population can indeed reduce the intensity of the SNV 
prevalence in the deer mouse population; and to some extent, the SNV 
infection can be fully eradicated if the carrying capacity and 
interspecific competition strength of the deer mouse population is 
rather low and weak, respectively. However, this is not the case when 
the carrying capacity and interspecific competition strength of the deer 
mouse population are abundant and high. The infected population is 
likely to persist in the system despite the influence of the non-host 
population. 

DISCUSSION 

From the aforementioned results, it can be clearly seen that the 
inclusion of the non-host population has a certain effect in regulating 
the SNV prevalence in deer mouse population. When the interspecific 
competition strength of both deer mouse and non-host population are 
relatively weak and the carrying capacity of both species are similar, 
the non-host is able to reduce the intensity of the SNV prevalence and 
in some cases, eliminating the infected population. However, the 
influence of the non-host population on the SNV prevalence is rather 
limited when its carrying capacity is relatively much lower than the deer 
mouse population or the deer mouse population exhibits a rather high 
interspecific competition pressure onto the non-host population. In such 
extreme cases, the infected deer mouse population will still prevail. 
Thus, this shows that the effectiveness of the biodiversity effect in 
reducing SNV prevalence largely depends on the similar environmental 
conditions required by both deer mouse and non-host population, and 
the interspecific competition strength between the two species should 
be relatively weak against each other. 

Our study has a few shortcomings. One of them is that we only 
provide a more comprehensive analysis on the temporal PA model. 
Perhaps the PA model can be further extended in the spatial term like 
what Abramson & Kenkre (2002) did on the AK model. To account for 
the spatial term, the authors included diffusion coefficients into the AK 
model and their simulation result showed the presence of “refugia” for 
the SNV infection when the environmental condition was less 
favourable. Hence, this may explain the reappearance of the SNV in 
some scenarios when the environmental condition for the deer mouse 
has returned to favourable. In another ecological study, Mohd et al. 
(2018) showed that the bistability phenomenon could interact with 
dispersal mechanisms of species to determine multi-species community 
assemblies. Thus, we may have missed some interesting features when 
we omit the spatial term and dispersal effects in the PA model. Besides 
that, our analysis is presented with a hypothetical non-host alien species 
instead of a real one due to the difficulties of obtaining empirical data. 
Hence, our results may differ from the observations of a field 
experimental study, but this can be remedied by varying the parameter 
values in Table 1 for comparison. Furthermore, the PA model only 

considers the interaction with a non-host species; though other 
researchers have pointed out that other Peromyscus species (Abbott  et 
al., 1999) can serve as secondary reservoirs to SNV. In some cases, the 
presence of a secondary host may reduce the SNV prevalence, 
depending on its quality in disease transmission. Interested readers may 
refer to O’Regan et al. (2015) for more details on the dynamics in 
disease transmission between two host species. Perhaps we can also 
explore the PA model through stochastic approach as the stochastic 
framework may better reflect the reality and at times, its result may 
impose a slight difference from the deterministic model; e.g. Mohd et 
al. (2016) managed to observe contrasting results on alternative stable 
states in multiple species between their stochastic model and 
deterministic model. 

CONCLUSION 

Our study was aimed to provide a comprehensive analysis on the 
PA model, especially on the carrying capacity and interspecific 
competition strength of the deer mouse and non-host species, in 
assessing the influence of biodiversity effect on the SNV prevalence. 
We were able to show that the non-host population has a certain degree 
of influence on suppressing the SNV prevalence in deer mouse but its 
effect may seem negligible when the environmental condition very 
much favours the deer mouse population and that interspecific 
competition strength of deer mouse is relatively strong. We hope future 
studies can further analyse the biodiversity effect on SNV prevalence; 
perhaps, by studying the PA model in spatial term or constructing the 
PA model in stochastic frameworks as these may provide interesting 
results compared to the current temporal PA model.  
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