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ABSTRACT 
 
The quality of a manufacturing process usually depends on more than one quality characteristic. Thus, most process monitoring data are multivariate in 
nature. The assumption that the underlying process follows a multivariate normal distribution is usually required by most multivariate quality control 
charts. However, in most process monitoring situations, the multivariate normality assumption is often violated. Multivariate control charts for skewed 
distributions have been suggested to enable process monitoring to be made when the underlying process distribution is skewed. Among the recent 
heuristic multivariate charts for skewed distributions suggested in the literature are those based on the weighted standard deviation (WSD) approach. 
This paper compares the performances of three multivariate charts for skewed distributions incorporating the WSD method, namely, the WSD 2T , 
WSD multivariate cumulative sum (WSD MCUSUM) and WSD multivariate exponentially weighted moving average (WSD MEWMA) charts. These 
heuristic charts are compared based on the multivariate lognormal, gamma and Weibull distributions. The charts’ performances are evaluated using the 
false alarm rates, computed via a Monte-carlo simulation. The chart with the lowest false alarm rate for most of the skewness levels and sample sizes 
will be identified as the chart having the best performance.  
 
|  Multivariate control charts | Skewed distributions | Weighted standard deviations | WSD 2T  | WSD MEWMA| WSD MCUSUM |  
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1. INTRODUCTION 

 
In process monitoring, we often deal with two or 

more related variables [1]. An individual might have a false 
understanding that by applying univariate control charts to 
each of the variables, instead of a multivariate chart, the 
same results can be obtained. Previous studies have shown 
that using separate univariate charts are not only inefficient 
and time consuming, but they also lead to misleading or 
erroneous conclusions. Multivariate statistical quality 
control charts which consider different variables 
simultaneously are required [2].  

Three common types of multivariate control charts 
are the Hotelling’s 2T , multivariate exponentially weighted 
moving average (MEWMA) and multivariate cumulative 
sum (MCUSUM) charts. The Hotelling’s 2T  chart is the 
most common multivariate process monitoring procedure in 
controlling the mean vector of a process. This control chart 
is actually an analog of the univariate Shewhart mean chart 
[2]. The MEWMA chart has been developed to overcome 
the disadvantages of the Hotelling’s 2T  chart, such as its 
insensitivity to small and moderate shifts. A MEWMA chart 
is a logical extension of the univariate EWMA chart. Like 
MEWMA,  the MCUSUM chart is  also a useful chart in  
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detecting small shifts. There are two versions of the 
MCUSUM charts, namely the MCUSUM#1 (MC1) chart 
and the MCUSUM#2 (MC2) chart. Pignatiello and Runger 
[2] stated that comparatively for both MC1 and MC2 charts, 
the MC1 chart seems to be more efficient in detecting small 
shifts than the MC2 chart. As for the MC2 chart, it appears 
to be more efficient in detecting large shifts compared to the 
MC1 chart. 

The multivariate charts that are mentioned above are 
confined to multivariate normal populations. However, the 
normality assumption is found to be difficult to justify and 
is often violated [3]. 

Chang and Bai [3] proposed a heuristic method for 
constructing the multivariate 2T  control chart for skewed 
populations. Chang [4] also suggested a heuristic method of 
constructing the MEWMA and MCUSUM charts for 
skewed distributions. 

 The layout of this paper is as follows: Section 2 
explains the weighted standard deviation method, Sections 
3, 4 and 5 discuss the WSD 2T  chart, WSD MEWMA chart 
and WSD MCUSUM chart, respectively. Section 6 
compares the performances of the three types of 
multivariate charts for skewed distributions. Conclusions 
are drawn in Section 7. 

 

http://dx.doi.org/10.11113/mjfas.v6n1.170
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2. WEIGHTED STANDARD DEVIATION (WSD) 
METHOD  

 
Chang and Bai [3] proposed the WSD method for 

constructing the multivariate 2T  control chart for skewed 
populations. The WSD method approximates the probability 
density function (pdf) of a v-variate skewed distribution 
with segments from 2v  multivariate normal distributions by 
modifying the variance-covariance matrix according to the 
estimated degree and direction of the skewness. 

The proposed WSD method assumes that a v-variate 
random vector ( )1,..., T

vX XX =  is distributed with a 
multivariate skewed distribution having a mean vector  

 
( )1= µ ,...,µ T

vµ                (1) 

and variance-covariance matrix, 
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where σ j  is the standard deviation of jX  and ρij  is the 
correlation coefficient of iX  and jX . 

The WSD method works by adjusting the variance-
covariance matrix. Hence, the variance-covariance matrix of 
the 2v multivariate normal distributions for the 
approximation is [3] 
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where ( ) ( ){ }1 1 1diag µ ,..., µv v vW X W X= − −W , and 
 
 

( ) ( )
2 if 0

2 1 otherwise
j

j
j

P x
W x

P

>⎧⎪= ⎨ −⎪⎩
                                (4) 

 

  
 

Note that ( )σ µ σW
j j j j jW X= − ⋅  and ( )Pr µj j jP X= ≤ . 

This means that if a skewed distribution is found to be 

skewed to the right, then 1
2jP >  and ( )2 σ 2 1 σj j j jP P> − . 

However, the correlation matrix { }ρij=ρ  does not change. 
 

3. THE WSD T 2  CHART 
 

Chang and Bai [3] proposed the 2T  statistic based on 
the WSD method by defining 1−=WZ W Z , where the jth 
element of WZ  is  
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                                     (5) 
 
Then the WSD 2T  statistic is defined as  
 

( )2 1
,

TW W
W i i iT n −= Z Zρ ,        (6) 

 
where ( )1 ,...,

TW W W
i i viZ Z=Z . An out-of-control signal is 

detected when ( )2 2
,W iT vα> χ , where ( )2

α vχ  is defined as the 

100(1–α)th percentile of the 2χ  distribution with v degree of 
freedom. 

 
 

4. THE WSD MEWMA CHART 
 

The performance of the MEWMA chart for skewed 
populations can be improved by applying the WSD method. 
The WSD MEWMA statistic is defined as [4]: 

 
( ) 1λ 1 λW W W

i i i−= + −M Z M , (7) 
 

where i = 1, 2, … and 0
W = 0M . 

Since W
iZ  follows a multivariate normal distribution 

with mean vector 0 and variance-covariance matrix, ρ 
approximately, then the asymptotic variance-covariance 
matrix of W

iM  is 
 

( )
λ

2 λ
⎡ ⎤

= ⎢ ⎥
−⎢ ⎥⎣ ⎦

ρΜΣ ,  (8) 

 
which is the same as that of the standard MEWMA statistic. 
Hence, when the charting statistic exceeds Eh , that is  
 

( ) 1W W W
i i M i EE h−= >

Τ
M MΣ ,             (9) 

 
the WSD MEWMA chart issues an out-of-control signal. 
When the distribution is symmetric, the proposed WSD 
MEWMA chart reduces to the standard MEWMA chart [4]. 
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5. THE WSD MCUSUM CHART 
 

The WSD MCUSUM chart modifies the MCUSUM 
charting statistic with the degree and direction of the 
skewness. Based on the WSD method, the sample 
observations are first standardized as 1W −=Z W Z , of 
which the jth element is defined as [4] 

 
 

( )

1 if µ
2µ µ
1σ σ , otherwise
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  (10) 
 
 
Note that WZ  follows a multivariate normal distribution, 
approximately. The cumulative statistic at i is defined as 
 
 

1
W W W
i i i−= +A S Z ,           (11) 

 
 

where the length of W
iA  is ( )

1
21TW W W

i i iC −⎡ ⎤= ⎢ ⎥⎣ ⎦
A Aρ , and 

W
iS  is the cumulative sum at i. The size of the mean shift 

( )1d µ  is also modified according to the adjusted variance-
covariance matrix, using the WSD method as follows: 
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Let W = ⋅ ⋅W WΣ Σ  (see Equation (3)) and 
( )1

2

W
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µ

 

be the reference value. Chang [4] mentioned that when 
W W
iC k> , the cumulative sum will shrink towards 0. He 

pointed out that the same direction and size cannot be 
applied to all the variables because the upper and lower 
WSDs of each of the variables are not the same. Hence, the 
jth element of the cumulative sum W

iS  is defined as [4] 
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If ( )
1

21TW W W
i i iY −⎡ ⎤= ⎢ ⎥⎣ ⎦

S Sρ  exceeds Ch , the WSD MCUSUM 

chart will issue an out-of-control alarm. Here, Ch  is 
determined based on a desired in-control ARL. When the 
distribution is symmetric, the proposed WSD MCUSUM 
chart reduces to the MCUSUM chart [4]. 

 
 

6. A COMPARISON OF THE PERFORMANCES 
OF THREE TYPES OF MULTIVARIATE 
CHARTS FOR SKEWED DISTRIBUTIONS 

 
This section compares the performances of three 

different types of multivariate control charts for skewed 
distributions, namely the WSD 2T , WSD MEWMA and 
WSD MCUSUM charts. The skewed distributions 
considered are the lognormal, gamma and Weibull 
distributions. The Statistical Analysis System (SAS) version 
9 is used to conduct the simulation studies of the charts 
based on the bivariate case, which involves two quality 
characteristics (p = 2).  

In general, all the three bivariate WSD charts for 
skewed distributions are compared based on the skewness 
coefficients of ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2γ ,γ 1,1 , 1,2 , 1,3 , 2,2 , 2,3 and 3,3=  
and correlation coefficients of ρ = 0.3, 0.5 and 0.8. The 
sample size, n, for all the three WSD charts are fixed as n = 
1, 5 and 10. 

From the simulation results in Tables 1 – 3, it is 
found that the false alarm rates for all the three types of the 
bivariate WSD charts, based on the bivariate lognormal, 
gamma and Weibull distributions increase as the level of 
skewness increases. For example, the false alarm rate for 
( ) ( )1 2γ , γ 2, 2=  is higher than that of ( ) ( )1 2γ , γ 1,1= . Note 
that for all three types of the bivariate WSD charts, based 
on gamma distribution (see Tables 1 – 3), the symbol “*” is 
used to represent the false alarm rate that cannot be 
computed by SAS as there exists a negative value in the 
shape parameter of the gamma distribution. 

The results in Table 1 shows that the false alarm rate 
of the WSD 2T  chart decreases as the sample size 
increases. In contrast, the results in Tables 2 and 3 show 
that, generally, the false alarm rates of the WSD MEWMA 
and WSD MCUSUM charts increase with the sample size.  

In general, the WSD MCUSUM chart has the lowest 
false alarm rate while the WSD 2T  chart has the highest, 
when the same level of skewness, sample size and 
underlying distribution are considered. 
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Table 1: False alarm rates for the WSD 2T  chart, based on the  
bivariate lognormal, gamma and Weibull distributions for ρ ∈ 
{0.3, 0.5, 0.8} and n ∈ {1, 5, 10} 

 

ρ n ( )1 2γ γ,  Distribution 
lognormal gamma Weibull 

 
 
 
 
 
 
 
 

0.3 

 
 

1 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.008700 
0.010960 
0.011739 
0.013349 
0.014127 
0.014899 

0.008185 
0.010507 
0.011331 
0.013173 
0.014343 
0.015441 

0.007923 
0.010959 
0.012168 
0.013951 
0.015145 
0.016313 

 
 

5 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.003317 
0.004250 
0.005221 
0.005278 
0.006267 
0.007314 

0.003122 
0.003459 
0.004100 
0.004210 
0.004840 
0.005696 

0.002835 
0.003576 
0.004567 
0.004330 
0.005392 
0.006623 

 
 

10 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.002992 
0.003376 
0.003994 
0.003834 
0.004487 
0.005129 

0.002832 
0.002992 
0.003762 
0.003184 
0.003841 
0.004274 

0.002749 
0.003174 
0.003778 
0.003590 
0.004240 
0.004884 

 
 
 
 
 
 
 
 

0.5 

 
 

1 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.008949 
0.011290 
0.011868 
0.013750 
0.014400 
0.015158 

0.009151 
0.010907 

* 
0.014903 
0.015704 
0.016691 

0.011196 
0.014008 
0.014971 
0.016789 
0.017804 
0.018735 

 
 

5 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.003345 
0.004376 
0.005391 
0.005459 
0.006499 
0.007531 

0.003398 
0.003963 

* 
0.005159 
0.006036 
0.007221 

0.003444 
0.004472 
0.005900 
0.005667 
0.007189 
0.008770 

 
 

10 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.002986 
0.003381 
0.004034 
0.003915 
0.004556 
0.005271 

0.002985 
0.003579 

* 
0.004026 
0.005182 
0.005997 

0.002934 
0.003569 
0.004668 
0.004308 
0.005470 
0.006650 

 
 
 
 
 
 
 
 

0.8 

 
 

1 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.009382 
0.011369 
0.011167 
0.014180 
0.014583 
0.015405 

0.013133 
* 
* 

0.020178 
* 

0.021604 

0.022012 
0.023218 
0.023560 
0.023732 
0.023662 
0.023395 

 
 

5 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.003489 
0.004689 
0.005761 
0.005835 
0.006929 
0.008033 

0.004908 
* 
* 

0.020178 
* 

0.021604 

0.007392 
0.010716 
0.014355 
0.013566 
0.016718 
0.019283 

 
 

10 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.003058 
0.003580 
0.004417 
0.004094 
0.004917 
0.005676 

0.004048 
* 
* 

0.008394 
* 

0.015986 

0.004894 
0.007581 
0.011791 
0.009848 
0.013451 
0.016788 

 
 
 

 

Table 2: False alarm rates for the WSD MEWMA chart, based on     
the bivariate lognormal, gamma and Weibull distributions for ρ ∈ 
{0.3, 0.5, 0.8} and n ∈ {1, 5, 10} 

 
ρ n ( )1 2γ γ,  Distribution 

lognormal gamma Weibull 
 
 
 
 
 
 
 
 

0.3 

 
 

1 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.003042 
0.003434 
0.003700 

0.0036990 
0.003925 
0.004098 

0.003009 
0.004167 
0.006534 
0.004740 
0.006530 
0.008636 

0.003215 
0.004212 
0.005158 
0.004967 
0.005877 
0.006882 

 
 

5 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.004071 
0.005698 
0.007511 
0.00711 
0.008732 
0.010366 

0.004202 
0.007949 
0.015924 
0.010586 
0.01773 

0.023721 

0.004419 
0.007847 
0.012554 
0.010526 
0.014738 
0.018382 

 
 

10 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.004340 
0.006409 
0.008862 
0.008114 
0.010297 
0.012359 

0.004594 
0.008839 
0.018181 
0.012147 
0.010446 
0.027005 

0.004820 
0.008820 
0.014634 
0.011973 
0.017103 
0.021457 

 
 
 
 
 
 
 
 

0.5 

 
 

1 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.002909 
0.003264 
0.003518 
0.003256 
0.003355 
0.003413 

0.002886 
0.004288 

* 
0.004092 
0.006037 
0.006870 

0.002988 
0.003931 
0.005133 
0.004303 
0.005111 
0.005702 

 
 

5 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.003853 
0.005425 
0.007305 
0.006356 
0.007796 
0.009052 

0.003989 
0.007994 

* 
0.009752 
0.016576 
0.021121 

0.003977 
0.007359 
0.012743 
0.009478 
0.013414 
0.016431 

 
 

10 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.004158 
0.006215 
0.008715 
0.007420 
0.009406 
0.010991 

0.004436 
0.009018 

* 
0.010989 
0.019249 
0.024673 

0.004281 
0.008543 
0.014895 
0.010870 
0.015809 
0.019531 

 
 
 
 
 
 
 
 

0.8 

 
 

1 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3)

0.002773 
0.003240 
0.003787 
0.002826 
0.002878 
0.002755 

0.003283 
* 
* 

0.004385 
* 

0.006216 

0.003464 
0.005210 
0.008147 
0.004642 
0.005537 
0.005498

 
 

5 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.003647 
0.005659 
0.008696 
0.005619 
0.007042 
0.007583 

0.004062 
* 
* 

0.009255 
* 

0.019161 

0.003579 
0.008457 
0.018611 
0.008604 
0.013355 
0.014879 

 
 

10 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.003971 
0.006592 
0.010563 
0.006646 
0.008785 
0.009539 

0.004240 
* 
* 

0.010338 
* 

0.021977 

0.003739 
0.009785 
0.021683 
0.009895 
0.015942 
0.017833 
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Table 3: False alarm rates for the WSD MCUSUM chart, based on   
the bivariate lognormal, gamma and Weibull distributions for ρ ∈ 
{0.3, 0.5, 0.8} and n ∈ {1, 5, 10} 

 

ρ n ( )1 2γ γ,  Distribution 
lognormal gamma Weibull 

 
 
 
 
 
 
 
 

0.3 

 
 

1 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.002567 
0.002557 
0.002617 
0.002563 
0.002692 
0.002802 

0.002527 
0.002266 
0.002188 
0.002088 
0.002114 
0.002073 

0.002264 
0.002219 
0.002304 
0.002130 
0.002274 
0.002479 

 
 

5 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.002812 
0.002859 
0.002858 
0.002791 
0.002768 
0.002721 

0.002793 
0.003089 
0.003388 
0.003092 
0.003392 
0.003501 

0.002725 
0.003026 
0.003167 
0.003191 
0.003223 
0.003236 

 
 

10 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.002981 
0.003203 
0.003366 
0.003355 
0.003508 
0.003598 

0.002967 
0.003590 
0.004765 
0.003971 
0.004973 
0.005735 

0.002880 
0.003549 
0.004127 
0.003983 
0.004473 
0.004858 

 
 
 
 
 
 
 
 

0.5 

 
 

1 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.002572 
0.002599 
0.002620 
0.002629 
0.002744 
0.002922 

0.002467 
0.002325 

* 
0.002319 
0.002392 
0.002370 

0.002369 
0.002455 
0.002750 
0.002491 
0.003071 
0.003069 

 
 

5 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.002752 
0.002780 
0.002770 
0.002672 
0.002605 
0.002495 

0.002969 
0.003138 

* 
0.003012 
0.003233 
0.003069 

0.002446 
0.002851 
0.003189 
0.002934 
0.003071 
0.003069 

 
 

10 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.002903 
0.003105 
0.003237 
0.003150 
0.003215 
0.003231 

0.002977 
0.003634 

* 
0.003803 
0.004616 
0.005043 

0.002627 
0.003343 
0.004156 
0.003660 
0.004167 
0.004478 

 
 
 
 
 
 
 
 

0.8 

 
 

1 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.002563 
0.002683 
0.002877 
0.002769 
0.002963 
0.003186 

0.002908 
* 
* 

0.003107 
* 

0.003445 

0.003248 
0.003811 
0.004795 
0.003887 
0.004337 
0.004601 

 
 

5 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.002711 
0.002818 
0.002921 
0.002549 
0.002459 
0.002373 

0.002786 
* 
* 

0.003136 
* 

0.003378 

0.002361 
0.003385 
0.005311 
0.003153 
0.003725 
0.003725 

 
 

10 

(1,1) 
(1,2) 
(1,3) 
(2,2) 
(2,3) 
(3,3) 

0.002827 
0.003165 
0.003483 
0.002976 
0.003026 
0.002910 

0.002989 
* 
* 

0.003756 
* 

0.004942 

0.002277 
0.003832 
0.006800 
0.003521 
0.004559 
0.004712 

 
 
 
 

7. CONCLUSION 
 

In statistical quality control, the assumption that the 
underlying distribution is normal is usually made. However, 
this leads to erroneous conclusion if the normality 
assumption is violated. In practice, many processes come 
from skewed populations with multivariable or quality 
characteristics. In this paper, three multivariate control 
charts for skewed populations, namely the Hotelling’s 2T , 
MCUSUM and MEWMA charts using the weighted 
standard deviation (WSD) method, based on the bivariate 
lognormal, gamma and Weibull distributions are 
considered. The false alarm rates of the charts computed 
using the SAS program are compared, for various levels of 
skewness and sample sizes. The WSD MCUSUM chart is 
found to have the lowest false alarm rate for the various 
levels of skewness considered. This study helps 
practitioners in deciding the type of chart to be used in 
process monitoring. 
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