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ABSTRACT 
 
In order to establish an algorithm for bounding the global minimizers of a twice continuously differentiable function 

1RR:f n → in a given box ( a compact interval in Rn ) using interval  arithmetic,  which  is superior in the sense of less  
time needed compared to other method ([2]),  in this paper  we will attempt to describe as much as possible the ideas 
which presents and fulfill the explicitly mentioned algorithm. 
 
| Interval mathematics |  Symmetric operator |  Lagrange multiplier | Gauss algorithm | 
 
 
1. Introduction  
 
Hansen [2] has described an algorithm, H, for bounding the global minimizers of a twice continuously 

differentiable function 1RR:f n → in a box that is a parallelepiped with sides parallel to the coordinate axes. 
In the algorithm H, an interval form of Newton’s method for bounding critical points of f, together with 
monotonicity and convexity tests and a continually-updated upper bound on the least value of f in the box are 
used to delete sub-boxes which cannot contain global minimizers of f.  
 

Robinson [14] has described a technique for bounding a Kuhn-Tucker (KT) point TT*T*T** )w,u,x(z = for 
the nonlinear programming problem  
 

)x(fmin  

)m,...,i()x(ctosubject i 10 =≥ , 

)r,...,j()x(h j 10 == , 
 

 

by using a result from Nickel [13] to obtain a computable interval-arithmetic test for the existence of a unique KT 

point *z  in a given box in rmnR ++  centred about an estimate of *z  which is obtained by using any convenient 
algorithm. 
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Shearer and Wolfe [15] have described some computable existence and uniqueness tests for solutions of systems 
of nonlinear algebraic equations, and have also described an improved form of the Krawczyk-Moore algorithm, 
KMSW [16],  and an improved form of the Alefeld-Platzoder algorithm, MAP [17]. 
  
Ismail [6] has described how some of the ideas of Hansen [2], and Shearer [15, 16] have been used in an 
algorithm, HM, for computing and bounding the global minimizer(s) of a twice continuously differentiable 

function 1RR:f n → in a box. 
 
The purpose of this paper is to describe how some of the ideas of Hansen [2],  Ismail [4, 5, 6, 7, 8, 9], Robinson 
[14], and Shearer and Wolfe [15][16[17] have been used in an algorithm named MI, for bounding the global 

minimizers of 1RR:f n →  in a given box. 
 
 
2.  Notation 
 
An interval number denoted by x , is defined by 
 

}xxx|x{]x,x[x SISI ≤≤==                                                                                                         

 
where Ix  and Sx  are called infimum and supremum, respectively. An nx1 interval vector ( a box)  
 

)R(I)x(x n
nxi ∈= 1   

 
has ith element  
 

)R(I]x,x[x iSiIi ∈=   
 
An nxn interval matrix  
 

))R(M(I)a(A n
nxnij ∈=   

 
has (i,j)th element  
 

)R(I]a,a[a ijSijIij ∈=   
 
The magnitude |.| , width (.)w , and midpoint (.)m  mappings for )R(Ix∈ are defined by  
 

|}x|,|xmax{||x| SI= , IS xx)x(w −= , and 
2

SI xx
)x(m

+
= ,  

 

respectively; for )R(Ix n∈  they are defined by 
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1nxi )|x(||x| = , 1nxi ))x(w()x(w = , and 1nxi ))x(m()x(m =     
 

respectively; and for ))R(M(IA n∈  they are defined by 
 

nxnij |)a(||A| = , nxnij ))a(w()A(w = , and nxnij ))a(m()A(m =   ,  
 
respectively. 
 
The norm mappings ||.||  are defined by 
 

|}x{|max||x|| ini≤≤
=

1
  ))R(Ix( n∈   

and 

∑
=≤≤

=
n

j
ijni

|)a|(max||A||
11

   )))R(M(IA( n∈ .  

 

If nRV ⊆  and )R(MM n⊆  are given sets of nx1 real vectors and nxn real matrices respectively, then 

}Vx|)R(Ix{)V(I n ⊆∈= , and }MA|))R(M(IA{)M(I n ⊆∈= . 
 

The sets nR  and )R(M n  are partially ordered through ))n,...,i(yx()yx( ii 1=≤⇔≤  and 

))n,...,j,i(ba()BA( ijij 1=≤⇔≤  respectively. 
 
 
3.  The Global Optimization Problem 
 

Let 1RRD:f n →⊆  be a given function with )D̂(Cf 2∈  where DD̂ ⊂  is an open convex set. Let 

)D̂(Ix̂∈  be a given box. Let the nonlinear programming problem P be defined by 
 





=≥ )n,...,i()x(ctosubject
)x(fmin

i 210
                 (problem P)  

                                          
Where 
 

  )n,...,i(x̂x)x(c iIii 1=−=             (3.1) 
                                                                                                          
and 
 

)n,...,ni(xx̂)x(c ninSii 21+=−= −− .      (3.2) 
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A global minimizer *x  of f in x̂  is a solution of problem P with Lagrange multipliers *
iu  )n,...,i( 21= such 

that 
 

0=)z(F * , (3.3) 

0≥)x(c * ,    (3.4) 

0≥*u ,      (3.5) 
 
and 
 

)x̂x()x(f)x(f * ∈∀≤ ,      (3.6) 
 

where nn RR:F 33 →  is defined by 
 



















 ′−′

=

)x(cu

)x(cu
))x(cu)x(f(

)z(F

nn

TT

22

11

M
    (3.7) 

                                                                                                                     
in which  
 

TTT )u,x(z = , xni ))x(f()x(f 1∂=′ , and nxnij ))x(c()x(c 2∂=′ .  

                         

 The global optimization problem which is solved by MI is equivalent to determining n* Rz 3∈  such that (3.3) 
– (3.6) hold. 
 
 
4.  Bounding the Lagrange Multipliers 
 

Given a box TTT )û,x̂(ẑ =  containing the KT points for problem P, the algorithm MI deletes sub-boxes of ẑ  

which do not contain KT points corresponding to global minimizers of f in x̂ . 
 

     Initially, )R(Iû n2∈  must be determined. Let )R(I)D̂(I:f n' →  be a continuous inclusion monotonic 

interval extension of n' RD̂:f → , and let T' )x̂(fd̂ = . Then by (3.1) - (3.3), (3.5) , and (3.7), for n,...,i 1= , 
we obtain (for detail see [5]) 
 

0=iû                        )d̂( iS 0≤     (3.8) 

]d̂,[û iSi 0=              )d̂d̂( iSiI << 0         (3.9) 
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ii d̂û =                     )d̂( iI≤0     (3.10) 

ini d̂û −=+              )d̂( iS 0≤  (3.11) 

]d̂,[û iIni −=+ 0       )d̂d̂( iSiI << 0  (3.12) 

0=+niû                  )d̂( iI≤0  (3.13) 
 
The formulae (3.8) – (3.13) are used in MI to determine û . 
 
 
5. Constructing Sub-boxes Which Might Contain KT Points 
 
If each side of a box is divided into two parts, then this could give rise to n2  sub-boxes. Therefore, in order to 
prevent the generation of too many sub-boxes, Hansen [2] has suggested that only one side of the box with largest 
width is divided into two parts.  
 
In [5], since we can avoid the disadvantage mentioned by Hansen [2], Ismail has shown how to derive a method 

for obtaining and computing n2  sub-boxes )i(ẑ  ),...,i( n 120 −=  of ẑ  which might contain the KT point  
  

ẑ)u,x(z TT*T** ∈=  for problem P.   

 
As explained in [5], let xnj )b(b 1=  be the n-digit binary integer corresponding to the decimal integer i .  For 

n,...,j( 1= ), if 1=jb , then  
 

)i(
jx̂ = )]x̂(m,x̂[ jjI ,   j

)i(
j ûû = ,  and  0=+

)i(
jnû ,  

 
and if 0=jb , then 

)i(
jx̂ = ]x̂),x̂(m[ jSj ,   0=)i(

jû    and  jn
)i(

jn ûû ++ = .  

 
 
6. Ideas due to Hansen 
 
The monotonicity and convexity tests which are described in Section 9 and 5 of [2] , and HM [6] respectively, are 
used in MI. 
 
The interval form of Hansen’s method which is used in H [2], HM [6], and also in MI has the form 
 













−+−+−= ∑ ∑
−

= +=

−
1

1 1

1
k

j

n

kj
jjkjj

'
jkjkkkkk )xx(a)xx(ab)a(xy  (6.1) 
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kk
'
k xyx ∩= , }n,...,{k 1∈ ,         (6.2) 

 

where { } J)J(m)a(A nxnij
1−== , { } { }T' ))x(m(f)J(mb 1−= , and )x(mx kk = , n,...,k 1= . 

 

If kka∉0 , then ky  consists of one interval and hence '
kx  consists of at most one interval provided that 

≠'
kx ∅; but if kka∈0 , then ky  consists of at most two intervals say )(

ky 1  and )(
ky 2 ([5]). Therefore, Hansen 

[2] uses (6.1) and (6.2) for the cases kka∉0  and kka∈0 , dealt with separately. 
 

A degenerate interval f  such that S
* ff ≤  where *f  is the globally minimum value of f  in x̂ , is determined 

initially from ))x̂(m(ff = , where )R(I)D(I:f →  is a continuous inclusion monotonic interval extension of 

RD:f →  and is updated at several points in MI. The interval f  is used to delete sub-boxes x  of x̂  such that 
*f)x(f >  )xx( ∈∀  using, in particular, the so-called quadratic method which is described in Section 7 of [2].  

7.  The Symmetric Operator Test  

Let ẑ)u,x(z TTT ⊆=  and suppose that 1txi )z(z =  )ntn( 3≤≤  is obtained from z  by deleting the 

zero intervals iz  corresponding to the zero Lagrange multiplier intervals from the last 2n elements of z . 
 

Let ))R(M(I)R(I:F tt' →  be a continuous inclusion monotonic interval extension of )R(MR:F tt' →  

where tt RR:F →  is defined by (3.7) , and let 
 

1−== ))}z(F(m{)a(A '
txtij , (7.1) 

)z(FAI)r(R '
txtij −== ,      (7.2) 

)z(mz = ,         (7.3) 
)z(AFb = ,        (7.4) 

)zz(Rbz)z(K −+−= ,   (7.5) 

)zz(r)z)z(H(rbz)z(H jj

t

ij
ijj

'
j

i

j
ijiii −+−+−= ∑∑

=

−

=

1

1
,       (7.6) 

)t,...,i(z)z(H)z(H ii
'
i 1=∩= ,        (7.7) 

)z)z(S(r)z)z(H(rbz)z(S j
'
j

t

ij
ijj

'
j

i

j
ijiii −+−+−= ∑∑

+== 11
,   (7.8) 

),...,ti()z(H)z(S)z(S '
ii

'
i 1=∩= ,           (7.9) 
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where I is the identity matrix. 
 
Then K , H , and S  are the Krawczyk, Hansen, and Symmetric operation respectively. The following theorems 
are proved in [15]. 
 
Theorem 7.1.  
(i) )z(K)z(H)z(S ⊆⊆ .  

(ii) If zz* ∈  and 0=)z(F * , then  )z(Sz* ∈ . 

(iii) If ≠)z(S ∅ and z)z(S ⊆ , then )z(Sz* ∈∃  such that 0=)z(F * . 

(iv) If  ≠)z(S ∅, z)z(S ⊆ , and ))(())(( ' zHwzSw < , then )z(Sz* ∈∃ , 0=)z(F *  and *z  is unique 

in z .♦ 
 
Theorem 7.2.  

If (1) ≠)z(S ∅, (2) z)z(S ⊆ , (3) ))z(H(w))z(s(w '< , (4) the sequence )z( )k(  is generated from  
 

)k()z(AFzz )k()k()k( 01 ≥−=+  (7.10) 
 

with )z(Sz∈  arbitrary, then )z(Sz )k( ∈  )k( 0≥∀ , and *)k( zz → )k( ∞→  where *z  is the unique 

zero in z .♦ 
 

If =)z(H'  ∅ or if =)z(S' ∅, then by Theorem 7.1(i) and (ii) there is no zero of F in z , so z  may be deleted 

from ẑ .  
 

If )z(Sz ⊆  then z  is bisected into )(z 1  and )(z 2  for subsequent use in MI. If zzS ⊆)(  and 

))z(H(w))z(s(w '<  then z  is replaced with )z(S  because from Theorem 7.1(iv) )z(S  contains the 

unique zero *z  of F in z . Also, from Theorem 7.2, the sequence )z( )k(  generated from (7.10) with 

))z(S(mz )( =0  remains in )z(S  and converges to *z .  
 
If also )zint()z(S ⊂  then (7.10) is equivalent to  
 

)k()x(fA~xx T)k(')k()k( 01 ≥−=+      (7.11) 
 

where nxnij )a(A~ = , and 1
0

nxi
)( )))z(S(m(x = . The procedure (7.11) may be used to update f  by iterating 

until, for some 1≥k , 
 

}|,)x(fmax{||)x(f)x(f| )k()k()k( 12
1 ε≤− −     (7.12) 
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where 10 2 <ε< , in which case f has effectively ceased to change, or until for some 2≥k , )k(
S

)k(
I ff 1−>  

and )k(
S

)k(
I ff 21 −− >  where )x(ff )k()k( =  )k( 0≥ , in which case *z  probably corresponds to a maximizer 

or to a saddle point of f. If )k(x  satisfies (7.12) and I
)k(

S ff <  then f  is replaced with ]f,f[ )k(
S

)k(
S . 

 

If z)z(S ⊆  but ))z(H(w))z(s(w '≥  then z  is replaced with )z(S  because from Theorem 7.1 (ii), (iii) 

every zero of F in z  lies in )z(S  and there is at least one zero of F in z .  
 

If ≠)z(S' ∅ then z  is  replaced with )z(S'  because from Theorem 7.1(ii) if zz* ∈  and 0=)z(F *  then 

)z(Sz '* ∈ . 
 
The preceding ideas constitute the Symmetric Operator Test, which is used in MI to delete sub-boxes of ẑ  which 

do not contain KT points for problem P, and to update f . If A defined by (7.1) does not exist, then the 

Symmetric operator Test cannot be used, so z  is bisected into )(z 1  and )(z 2  for subsequent use in MI. 
 
 
8.  Using KMSW and MAP to Bound KT Points 
 

Let )R(Iz t∈  and t* Rz ∈  be as in the Symmetric Operator Test. It is shown in [16] that if z)z(S ⊆ , 

))z(H(w))z(s(w '< , 1<||R|| , and the sequence )z( )k(  is generated from the algorithm KMSW [16] with 

zz )( =0  then )k(zz )k(* 0≥∀∈  and )k(zz *)k( ∞→→  at least quadratically. Then KMSW may be 
used in MI to compute sharp bounds on KT points. 
 

Suppose that )R(Iz t∈  and t* Rz ∈ are as in the Symmetric Operator Test and let )z(FG '= , )G(mB = , 

)z(mz = , and 
 

)})zz)(GB()z(F{,B(gz)B,G,z(KN −−−−=   
 

where )R(I)b,A(g t∈  is the result of applying the Gauss algorithm to the linear system bxA =  in which 

)R(MA t∈  and )R(Ib t∈ . It is shown in [17] that if B is nonsingular, ),[ 10∈α∃  such that 

)z(w))B,G,z(K(w N α≤ , and the sequence )( )(kz  is generated from the algorithm MAP [17] with 

zz )( =0 , then )k(* zz ∈  )k( 0≥∀  and *)k( zz →  )k( ∞→ .  
 
Furthermore, if 0>λ∃  such that  
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||)z~(w||||))z~(F(w|| ' λ≤     )zz~( ∈∀   
 

then *)k( zz →  )k( ∞→  at least quadratically. Thus MAP may be used in MI with 
 









=α
≤≤ )z(w

)B,G,z(K(w
max

i

iN
ti1

  

 
to compute arbitrarily sharp bounds on KT points. 

 
 

9.  Bisection and Selection Rules 
 

Suppose that the Symmetric Operator Test cannot guarantee the existence of a KT point *z  in z  = 

ẑ)u,x( TTT ⊆ . Therefore z  is bisected into )(z 1  and )(z 2  along the coordinate direction }n,...,{j 1∈  so 
that  
 

)(
iz 1  = )(

iz 2  = ix  )ji;n,...,i( ≠= 1 ,  

)]x(m,x[z jjI
)(

j =1 ,  

                                            
and  
 

=)(
jz 2  ]x),x(m[ jSj .  

                                            
Also  
 

)(
iz 1  = )(

iz 2  = niu −  )jn,jni;n,...,ni( ++≠+= 231 ,  

j
)(

jn uz =+
1 ,  01

2 =+
)(

jnz ,    

                                            
and 
 

02 =+
)(
jnz ,  jn

)(
jn uz ++ =2

2   

                                            
since  
 

)zx( )(
j

*
j

1∈  ⇒ ))x(c( *
jn 0>+  ⇒ )u( *

jn 0=+   

 
and  
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)zx( )(
j

*
j

2∈  ⇒ ))x(c( *
j 0>  ⇒ )u( *

j 0=   

 

if TT*T** )u,x(z =  is a KT point for problem P. 
 

The value of j, and which of )(z 1  and )(z 2  is to be processed next in MI are determined by using ideas from 
[10] and [12]. 
 
 
10.  A Sub-box Deletion Test 
 

 Let )i(z  = TT)i(T)i( )u,x(  ),i( 21=  be sub-boxes of z  = ẑ)u,x( TTT ⊆  which are produced either from 
the strategy which is described in Section 7 of [2] or from the bisection rules which are mentioned in the 

preceding section of this paper. It is possible to delete at least one of )i(z ),i( 21=  as follows.   
 

     Let )x(ff )i()i( = ),i( 21= . If, for },{i 21= , )i(
IS ff < , then delete )i(z .  

     If )(
I

)(
S ff 12 < , then delete )(z 1 .  

     If )(
I

)(
S ff 21 < , then delete )(z 2 .  

     If )(
I

)(
I ff 12 ≤ , )(

S
)(

S ff 12 ≤  and )(
I

)( f))x(m(f 12 < , then delete )(z 1 .  

     If )(
I

)(
I ff 21 ≤ , )(

S
)(

S ff 21 ≤  and )(
I

)( f))x(m(f 21 < , then delete )(z 2 .  
 
These tests have also been used by Ichida and Fujii [3]. 
  
 
11.   A Strict Complementary Slackness Test 
 

Suppose that z  = ẑ)u,x( TTT ⊆  and zz* ∈∃  such that 0=)z(F *  and ii uc ∩∉0  )n,...,i( 21= , 

where )x(cc ii =  )n,...,i( 21= . Then from ([4][14]), strict complementary slackness holds at *z . On the 

other hand, ii uc ∩∉0  )n,...,i( 21=  is not necessary for strict complementary slackness.  
 

If, however, it is known that  )x̂int(x* ∈  where TT*T** )u,x(z = , and  )ẑint(zz* ⊂∈  then 

0>)x(ci  )xx( ∈∀ )n,...,i( 21=  whence ii uc ∩∉0  )n,...,i( 21= .  
 
This suggest that it might be beneficial to bisect z  if for some }n,...,{i 21∈ , ii uc ∩∈0  when it is known 

that )x̂int(x* ∈ .  
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If )x̂(x* ∂∈ , so that for at least one }n,...,{i 21∈ , iI
*
i x̂x =  or iS

*
i x̂x =  then 0=)x(c *

i  so if zz* ∈  

then ic∈0 . In this case bisection might not be beneficial because it could occur an indefinite number of times 
and produce an excessively large number of boxes.  
 
In practice, however, it is found to be desirable to check whether  ii uc ∩∉0  )n,...,i( 21=  even when it is 

not known that )x̂int(x* ∈ , and to avoid the excessively large number of bisections which could occur by 

bisecting along the coordinate direction j only if 0ε>)x(w j  where ),( 100 ∈ε  is such that if xx* ∈  and 

0ε≤||)x(w|| then x  is a sufficiently sharp bound on *x . 
  
 
12.    Numerical Examples 
 
The algorithm MI, which incorporates the ideas which are mentioned in the preceding sections, and the algorithm 

H, have been implemented. Convergence is considered to have occurred when each global minimizer *x  is 

bounded within a box x  such that 610−≤||)x(w||  and the globally minimum value *f  of f is bounded within 

an interval f  such that 610−≤)f(w . 
 
The following examples illustrates the behaviour of MI. 
 
Example 12.1 
 

( ) ( ) ( )( ){ }22
212121

2
21 12416 −+−−++++= xxxxxxxx)x(f   

( ) ( ) 1221 424242 x
TT ]),([],[],,[x̂,x̂x̂ −=−−==   

 
Example 12.2 
 

( ) 2
2

1
22

21
2
2

2
1 xcosxsinxxxx)x(f ++++=   

1221 x]),([x̂ −=   
 
The function f has two global minimizers in the interior of x̂ . 
 
Example 12.3 
 

( ) ( ) ( )∑
−

=
+−+−+−=

1

1

2
1

222
1 11

n

i
iin xxxx)x(f   

1150 nx]),.([x̂ =  where n ≥ 2.  
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The function f has one global minimizer 11 nx
* )(x =  on the boundary of x̂  and strict complementary slackness 

does not hold at *x . 
 
 
13.  Discussion and Conclusion 

 
In the Triplex ([1][11]) implementations of both H and MI it is possible to ignore the boundary of x̂ . This is 

useful if it is known that )x̂int(x* ∈  because it usually leads to less computational labour if it is known that the 

boundary of x̂  can be deleted.  
 
Table 13.1 contains the CPU times, in seconds, corresponding to examples 12.1 and 12.2  when it is known that 

)x̂int(x* ∈ , and when it is known only that x̂x* ∈ . 
 

Table 13.1 : Computational time in seconds   
Example )x̂int(x* ∈  x̂x* ∈  

 H MI H MI 
12.1 
12.2 

130.1 
821.0 

99.70 
459.0 

133.0 
811.0 

106.0 
524.0 

 

For Example 12.2,  the CPU time required by H  when )x̂int(x* ∈  is slightly larger than that which is required 

when x̂x* ∈  because 20 more Hessian diagonal evaluations are needed when )x̂int(x* ∈ . 
 
     Table 13.2 contains the CPU times, in seconds, corresponding to Example 12.3 for various values of n. 
 

Table 13.2 : Computational time in seconds   
n )x̂int(x* ∈  x̂x* ∈  
 H MI H MI 

2 
3 
4 
5 

5.98 
19.9 
47.1 
125.0 

7.72 
22.5 
42.1 
73.0 

66.6 
298.0 
748.0 

2820.0 

66.2 
308.0 
893.0 

2080.0 
 
For Example 12.3 for all values of n, both H and MI are able to bound the global minimizer even when it is 

assumed that x̂x* ∈ . 
 
Computational experience with the Triplex implementations of H and MI indicates that, with few exceptions, MI 

requires fewer evaluations of f , 'f , and ''f  than does H. This might account for the increasing superiority of MI 
over H as n increases in Example 12.3, as shown in Table 13.2. 
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