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Abstract 
 
We study the 𝑍𝑄-symmetric model with the nearest neighbour interaction between molecular dipole 

of five spin directions i.e. Q=5 which called as the 𝑍5-symmetric model on a triangular lattice. We 
investigate the zeros of partition function and the relationship to the phase transition. Initially, the 
model is defined on a triangular lattice graph with the nearest neighbour interaction. The partition 
function is then computed using a transfer matrix approach. We analyse the system by computing the 
zeros of the polynomial partition function using the Newton-Raphson method and then plot the zeros 
in a complex plane. For this lattice, the result shows that for specific type of energy level there are 
multiple line curves approaching real axis in the complex plane. The equation of the specific heat is 
produced and then plotted for comparison. Motivated from the work by Martin (1991) on models on 
square lattice, we extend the previous study to different lattice type that is triangular lattice. 
 
Keywords: statistical mechanics, 𝑍𝑄-symmetric model, partition function, crystal lattice, phase 

transition, exact result 
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INTRODUCTION 
 

The 𝑍𝑄-symmetric model [1] is one of the models in statistical 

mechanics, an area of physics where mathematical modelling is used to 

investigate physical system [2, 3]. The 𝑍𝑄-symmetric model is related 

to the Q-state Potts model [3] where Q is the number of possible spin 

orientations. One interesting problem is in modelling a phase transition 

phenomena [2, 4, 5]. For Q=2, this model corresponds to the Ising 

model [2]. For Q=3, this model corresponds to the 3-state Potts model. 

For the one-dimensional Ising model, Ising [2] showed that it has no 

phase transition. Later Peierls showed the existence of ferromagnetism 

in higher dimension at sufficiently low temperature [6]. Then Onsager 

[7] successfully described the exact solution of the Ising model on 

square lattice and showed the result related to the phase transition 

critical point. The models spin directions are presented using discrete 

numbering but for this research, the model involves angle between 2 

variables. Without loss of generality, the angle is represented in discrete 

numbering with specific model parameters and rescaling factors.  

The study of complex-temperature zeros of partition function was 

first discussed by Fisher [8] for square lattice Ising model and also 

separately by [9, 10, 11]. The singularity of specific heat, which 

corresponds to the existence of the phase transition is discussed by 

observing the arc in the zeros distribution. The zeros of the partition 

function are studied in order to find the analytic properties of the phase 

transition in a finite size system [12,13]. The phase transition point is 

determined from the zeros distribution in a pattern [8] that consists of 

subsets of set of zeros called locus of zeros.  

At the thermodynamic limit for square lattice Ising model, the locus 

cuts the real axis of the complex plane at the thermodynamic critical 

point [8, 14]. The zeros will always lay-off the real axis of the complex 

plane for a finite system but may very close to the real axis in 

thermodynamic limit – specifically very close to the critical point of 

phase transition (for finite lattice we will never find this, but for limiting 

size approaching infinity case, we may determine this like Onsager’s 

solution). Also, this locus of zeros is supported by a theorem called Lee-

Yang theorem where Lee and Yang [15] proved that the zeros of square 

lattice Ising model must be lie in a unit circle. 

The critical point at positive real axis is the exact point where 

specific heat given by the logarithm of partition function has a 

singularity. This point is determined by the locus of zeros (as in Fisher’s 

zeros on square lattice Ising model) or by the limiting equation of the 

largest eigenvalue Ising model matrix [1]. For the zeros distribution of 

finite lattice, although we cannot directly determine this critical point, 

as mentioned earlier it will approach the value as the size increases. A 

locus of point is expected to be observed as we increase the size (need 

to have specific boundary condition which will give line distribution). 

Onsager in his square lattice Ising model showed that the phase 

transition is observed when there is a singularity in the graph of the 

specific heat [1, 7]. 

Based on the work by Martin [1] and Zakaria [16] on the 𝑍𝑄-

symmetric model on a square lattice, they suggested that the emergence 

of multiple line curves on the complex-temperature plane can also 

predict the existence of multiple phase transitions. In this study, we 

extend the study to a different lattice type.  

Here, we study for Q=5, the 𝑍5-symmetric model on triangular 

lattice in increasing lattice sizes. We study a model of spin variables on 

graph representing the molecular dipole on a crystal lattice of a physical 

system.  

The outline of this paper is as follows: The basic definition of the 

graph and the 𝑍𝑄-symmetric model are initially presented. The lattice  

The partition functions are 
computed and the energy list is 

chosen.

The Newton-Raphson method is 
used for zeros finding. The zeros are 

plotted in the complex plane.

The partition function and its zeros 
are computed for increasing lattice 

sizes and different energy list.

The behaviour of zeros distribution is 
observed and the graph of specific 
heat is described for comparison.
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model Hamiltonian on triangular lattice is introduced with some 

examples. Then, we compute the partition function on several cases of 

energy level in increasing lattice sizes. The list of the computed cases 

is presented in a table. The partition function is then analysed for its 

complex zeros and we present the result in complex Argand plane. The 

specific heat equation is computed and plotted for comparison. 

 

Preliminaries 
The model consists of discrete variables representing magnetic 

dipole moments of atomic spins. The spins are placed on a lattice 

represented by a graph. All vertices of the graph are referring to the spin 

variables, where they are embedded to the Euclidean space ℝ3. Each 

spin interacts with its nearest neighbors and the external magnetic field 

h is assumed to be zero. The graph is defined as below. 
 

Definition 1 [17]  A graph 𝛬 is a triple 𝛬 =  (𝑉, 𝐸, 𝑓). The 𝑉 is a set. 

The elements 𝑣 ∈  𝑉 are called vertices. The 𝐸 is also a set. The 

elements 𝑒 ∈  𝐸 are called edges. The 𝑓 is a function 𝑓: 𝐸 →  𝑉 ×  𝑉. 

Given 𝑒 ∈  𝐸 and 𝑣1, 𝑣2 ∈  𝑉, the images 𝑓(𝑒) =  ˂𝑣1, 𝑣2˃ give s the 

`source' and `target' vertex of edge e. 

 

Definition 2 [16] The distance 𝑑(𝑢, 𝑣) is the number of edges in the 

shortest path from 𝑢 to 𝑣. Two vertices 𝑢, 𝑣 ∈  𝑉 are called nearest 

neighbours if 𝑓(𝑒)  =< 𝑣1, 𝑣2˃  for some 𝑒 ∈  𝐸 i.e. when 𝑑(𝑢, 𝑣) =
1. 

 

Definition 3 Consider a set 𝑊 of lattice sites, each with a set of adjacent 

sites (nearest neighbours) forming a d-dimensional lattice. For each 

lattice site 𝑘 ∈  𝑊 there is a discrete variable 𝜎𝑘 such that 𝜎𝑘 ∈
{1,2, … , 𝑄}, representing the site's spin. A spin configuration, 

𝜎 =  (𝜎𝑘)𝑘 ∈ 𝑊  is an assignment of spin value to each lattice site. 

 

For any two adjacent sites 𝑖, 𝑗 ∈  𝑊, 𝑑(𝑖, 𝑗) = 1, there is an 

interaction strength 𝐽. The interaction between two adjacent sites will 

produce energy called Hamiltonian. The Hamiltonian is one of the 

physical observables [7, 11] that can be experimentally measured, 

which represents the total energy of a system.  

Similar with the Ising model [4], if 𝐽 > 0, then the system is in a 

ferromagnetic state. The energy of the system is at the lowest where all 

spins variables are oriented in the same direction. Conversely, if 𝐽 < 0, 

then the system is in an antiferromagnetic state, where the orientation 

of each spin variable is different to its nearest neighbours. 

 

MATHEMATICAL MODEL 
 

The 𝒁𝑸-symmetric Model 

The 𝑍𝑄-symmetric model can be illustrated by the idea of a clock-

like circle, for spin directions. The 𝑍𝑄 in 𝑍𝑄-symmetric is referred to 

the symmetry group that is the discrete rotation group of order Q. The 

interaction between one spin to another gives an energy value. Due to 

the arrangement of energy in a clock-like circle – which for literal clock 

has 12 points marked around the face, this model sometimes called a 

clock model. The spins take values from 𝑍𝑄 transformation and the 

Hamiltonian is invariant under a global 𝑍𝑄 transformation [1]. The 

energy difference remains the same when any pair of the spin direction 

is moved with fixed angle around the clock. This fixed energy 

difference is then characterised the symmetry of the model [17]. 

Our model (also known as clock model due to this illustration of 

energy) categories a different type of energy by a list of energy 𝜒. It is  

the list of possible choices of energy values written as 𝜒 =
(𝜒[0], 𝜒[1], 𝜒[2], … ) ∈ [0,1], for 𝑄 spin directions. We initially 

assume the energy is positive between [0,1] and because of the 

symmetry, we only list half of the different interactions i.e. for Q=5, 
(𝜒[0], 𝜒[1], 𝜒[2]) – we need QxQ matrix of values for completely 

general Q case. The list is arranged by the increasing order of angle 

relative to 1 spin direction.  

Figure 1 shows the examples of the clock interaction of a spin 

direction relative to another spin denoted as spin 1. Together in the 

clock, their energy are also described illustratively. The direction is  

 

 

written inside the clock and the energy is written outside the clock. 

Here, the energy is written as (1, 𝛾1, 0).  
For model (a), the spins are oriented in the same direction whereas 

for model (b) and (c), the spins are oriented in the different directions 

in which is the spin 1 interacts with the spins 3 and 5, respectively. The 

energy is written based on the spins interaction relative to spin 1. Due 

to symmetry, the energy between interactions of spins 1-3 is equal to 

spin 1-4, and by rotational transformation, is equal to spins 2-4 and 

spins 3-5. Their energy is 0. In these cases, the spin difference is the 

same, that is 2. 
 

 

 
Figure 1 Examples (a, b, and c) of the interaction of a spin relative to 
spin 1 represented by a pair of arrow. 

 
 For 2 spin variables oriented in the same direction, the energy for 

this nearest neighbour is equal to 𝜒[0] = 1. If it differs by 1 (e.g. for 

Q=5, 1-2, 1-5, 2-3 etc) the energy is 𝜒[1]. Note that by symmetry and 

the clock circle, for Q=5, 1-5 is differed by 1. Similarly, when it differs 

by 2 (e.g. for Q=5, 1-3, 1-4, 2-4 etc) ) the energy is 𝜒[2]. The energy 

penalty of 𝜒 is the energy difference between the energy values of two 

spin configurations, given by (𝜒[0] − 𝜒[1], 𝜒[1] − 𝜒[2], . . . )-step. We 

describe the specific energy penalty and its zeros distribution in the 

result section. 

In general, the Hamiltonian function (defined for energy value 

between spins) can be written as 

 

ℋ(𝜎) = −𝐽 ∑ 𝑔(𝜎𝑖, 𝜎𝑗).

<𝑖,𝑗> =𝑓(𝑒),
𝑒∈𝐸

 
(1) 

To ease the computation, the function 𝑔 is rescaled to discrete value to 

𝑔𝑟
′ (𝜎𝑖 , 𝜎𝑗) = 𝛾𝑟 𝑔𝑟(𝜎𝑖 , 𝜎𝑗) + 𝛾̃𝑟 where 𝛾𝑟 , 𝛾̃𝑟 ∈ ℝ are the rescaling 

factors. 

We define the Hamiltonian for 𝑍𝑄-symmetric model as the 

following. The value of the Hamiltonian in the equation (2) depends on 

the angle between two adjacent spins or by the distance of two spin 

directions. If the angle between two spin directions is small, it will 

contribute to a lesser energy loss as compared to the large angle. This 

energy loss is called the energy penalty. The energy is equivalent to the 

Potts model when the pair of spin variables (𝜎𝑖,𝜎𝑗) is pointed in the 

same direction [1, 2]. For the Potts model, the energy value is 1 when 

two nearest neighbour spins are pointed at the same direction and 0 

otherwise.  
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Definition 4 For any microstate 𝜎 ∈ 𝛺, the Hamiltonian of the 𝑍𝑄-

symmetric model is defined as, 

     𝐻𝜒(𝜎) = −𝐽 ∑ 𝜒[𝜎𝑖 − 𝜎𝑗]

〈𝑖,𝑗〉=𝑓(𝑒).
𝑒∈𝐸

 

 

 

= −𝐽 ∑ ∑ 𝛾𝑟 cos (
2𝜋𝑟(𝜎𝑖 − 𝜎𝑗)

𝑄
)

[
𝑄
2

]

𝑟=1〈𝑖,𝑗〉=𝑓(𝑒).
𝑒∈𝐸

+ 𝛾̃𝑟 

 

(2) 

where [
𝑄

2
] is the discrete value of the division and 𝛾𝑟 , 𝛾̃𝑟 ∈ 𝑅 are model 

parameters that fixed for a given model. 

We remove the quotient value of the 𝑍𝑄-symmetric model by 

rescaling the Hamiltonian function. We introduce a new notation 𝜒 by 

denoting that the energy is in discrete value after the rescaling. Our 

model is focused on this positive discrete energy list 𝜒 assumption (the 

value is initially chosen from quotient value in range [0,1] and then 

rescaled into integer value). By this assumption, we study the partition 

function for different and computable 𝜒. 
In a slightly different setting, without the positive assumption, see 

Example 1. For each interacting pair of spins, the Hamiltonian is 

calculated and rescaled to get the integer value. 

 

Example 1 Let Q=5 and the energy value for each pair of spin variables 

is represented by Table 1. Let 𝑔𝑟(𝜎𝑖 , 𝜎𝑗) = cos (2𝜋𝑟(𝜎𝑖 − 𝜎𝑗) 𝑄)⁄  and 

[𝑄 2⁄ ] = 2. 

 

Table 1 The 𝒈𝒓(𝝈𝒊, 𝝈𝒋) for 𝒁𝟓-symmetric model. 

 

𝜎 1 2 3 4 5 

1 2 −1 2⁄  −1 2⁄  −1 2⁄  −1 2⁄  

2 −1 2⁄  2 −1 2⁄  −1 2⁄  −1 2⁄  

3 −1 2⁄  −1 2⁄  2 −1 2⁄  −1 2⁄  

4 −1 2⁄  −1 2⁄  −1 2⁄  2 −1 2⁄  

5 −1 2⁄  −1 2⁄  −1 2⁄  −1 2⁄  2 

 

The value of  𝑔𝑟(𝜎𝑖 , 𝜎𝑗) in Table 1 can be rescaled to 𝑔𝑟
′ (𝜎𝑖 , 𝜎𝑗) =

𝛾𝑟𝑔𝑟(𝜎𝑖 , 𝜎𝑗) + 𝛾̃𝑟 =
2

5
𝑔𝑟(𝜎𝑖 , 𝜎𝑗) +

1

5
. This energy is reduced to the 5-

state Potts model shown in Table 2. 

 
Table 2 The 𝒈𝒓

′ (𝝈𝒊, 𝝈𝒋) for 𝒁𝟓-symmetric model. 

 
𝜎 1 2 3 4 5 

1 1 0 0 0 0 

2 0 1 0 0 0 

3 0 0 1 0 0 

4 0 0 0 1 0 

5 0 0 0 0 1 

 

Models on triangular lattice 
The model is defined on a triangular lattice with the nearest 

neighbour interaction. The triangular lattice has discrete variables 

called vertices with associated spin which can take any value of {1, 2, 

… Q} that represents the spin direction. In this paper, we consider Q = 

5. The lattice site and the interaction of the nearest neighbour are 

represented by the vertex and the edge of the graph, respectively. 

Each lattice site has three successive nearest neighbours. See Figure 

2 for illustration. Figure 2 (left) is the triangular lattice 3 by 4 (or 3×4 

– 3 row and 4 column vertices). That lattice is then rearranged as in 

Figure 2 (right) for computing purposes (for transfer matrix approach – 

will be explained after this). 

 

 
Figure 2 The 3 by 4 triangular lattices. 

 

 Consider a model of n vertices and Ω be the set of all possible 

configurations; 

 Ω = { 𝜎(𝑥) = (𝜎1, … , 𝜎𝑛): 𝜎𝑖 = {1,2, … , 𝑄}, 𝑖 ∈ 𝑉, 𝑖 = 1, . . . , 𝑛 }. 

See Figure 3(a) for 2 by 2 triangular lattice example. All vertices are 

labelled by the spin state 𝜎𝑖 .  
For arbitrary N by M triangular lattice (refer to Figure 3b), the N 

corresponds to the number of row vertices while M is the number of 

column vertices. The dash dot lines and the dot lines are edges that 

connecting the lower and upper vertices for the triangular shapes – these 

edges represent the vertical boundary condition. 

 

 

             
        (a)           (b) 

 
Figure 3 (a) 2 by 2 triangular lattice. (b) Triangular lattice with system 

size N × M = 4 × 4.  

                                                

Partition function and transfer matrix  
We study the partition function of 𝑍5-symmetric model. The 

partition function is a function that relates temperature and other 

parameters with the states of a spin system [3, 5]. We define the 

partition function as follows. 

 

Definition 5 For a given Q and  Λ, the partition function is defined as 

 

ΖΛ(𝛽) = ∑ exp (−𝛽ℋΛ(𝜎))

𝜎∈ΩΛ

 (3) 

 

where the summation is over all possible microstates σ of a system, the 

𝛽 = 1 ⁄ (𝑘𝐵  𝑇) in which 𝑘𝐵 is the Boltzmann’s constant and 𝑇 is the 

absolute temperature. 

The partition functions are computed by transfer matrix approach 

[1, 3, 14] for an increasing finite lattice sizes. The 𝑍(𝑥) is written in a 

polynomial form by letting 𝑥 = 𝑒𝛽.   

 

Definition 6 For a given graph G, the partition vector 𝑍𝐺
𝑉′

 is the vector 

arrangement in space of all fixed boundaries or exterior sites, 𝑉′ of a 

lattice system. For boundary configuration 𝜎𝐵 ∈ Ω𝑉′, we have 

 

𝑍𝐺
𝑉′

= {𝑍𝐺
𝑉′

|𝜎1
, 𝑍𝐺

𝑉′
|𝜎2

, … }, 

 

B=1, 2, … is referring to the different configurations of the exterior 

sites. 

 

 

 

 

Then, the full partition function is defined as 

 

𝑍𝐺 = ∑ 𝑍𝐺
𝑉′

|𝜎𝐵
.

𝜎𝐵∈𝛺𝑉′

 (4) 
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For two combined lattice graphs, its partition function can be 

produced by vector arrangement and by combining the two lattices 

through a vector multiplication – a bigger lattice can be formed (see [1, 

3, 14] for details).  

 

Definition 7 Let 𝐺, 𝐺′ be two lattice graphs. For the union of two graphs 

𝐺 ∪ 𝐺′ we have 

𝑉𝐺∪𝐺′ = 𝑉𝐺 ∪ 𝑉𝐺′ 

 

𝐸𝐺∪𝐺′ = 𝐸𝐺 ∪ 𝐸𝐺′ . 
 

The 𝐸 is the set of edges and 𝐸𝐺 ∩ 𝐸𝐺′ = ∅. 
 

A summation of the product of partition vectors for graph 𝐺 and 𝐺′ 
can produce the partition function of the new graph 𝐺 ∪ 𝐺′ denoted as 

𝐺𝐺′. Based on the Chapman-Kolmogorov theorem [18], this partition 

function is given by 

𝑍𝐺𝐺′ = ∑ (

𝜎∈Ω𝑉′

𝑍𝐺
𝑉′

|𝜎) (𝑍𝐺′
𝑉′

|𝜎) = 𝑍𝐺
𝑉′

𝑍𝐺′
𝑉′

. (5) 

 

Lemma 1 (Chapman-Kolmogorov equation [18]) Let 𝐺1and 𝐺2 be two 

graphs such that 𝐸𝐺1
∩ 𝐸𝐺2

= ∅. Let 𝐺1𝐺2 = 𝐺1 ∪ 𝐺2 and 𝑉 = 𝑉𝐺1
∩

𝑉𝐺2
 and 𝑉′ ⊆ 𝑉𝐺1𝐺2

. Then  

 

𝑍𝐺1𝐺2

𝑉′
|𝑐′ = ∑ (𝑍𝐺1

𝑉 |𝑐′,𝑐)(𝑍𝐺2

𝑉 |𝑐′,𝑐)

𝑐∈Ω𝑉\𝑉′

, 
(6) 

 

where 𝑐′ , 𝑐 is the configuration associated to 𝑉′ and then to 𝑉. 

 

The partition vector 𝑍𝐺
𝑉′

 is reorganised into a matrix denoted as Τ 

which is called a transfer matrix. The incoming and outgoing sites are 

corresponded by the two columns denoted as 𝑉𝐼 and 𝑉𝑂(refer Figure 

3(a) for example, where 𝑣𝜎1
, 𝑣𝜎2

 ∈ 𝑉𝐼 and 𝑣𝜎3
, 𝑣𝜎4

∈ 𝑉𝑜) respectively 

such that 𝑉 = 𝑉𝐼 ∪ 𝑉𝑂. The row and column matrices are representing 

the set of all possible configuration states Ω𝑉𝐼
 and Ω𝑉𝑂

 respectively. 

Each entry in matrix 𝛵 is given by  

 

𝛵𝑖𝑗 = 𝑍𝐺
𝑉|𝜎𝑖∈𝛺𝑉𝐼

,𝜎𝑗∈𝛺𝑉𝑂
. (7) 

By a matrix multiplication, we can combine two graphs that similar 

to partition vector multiplication. Given Τ𝐺  and Τ𝐺′ are the transfer 

matrices associated to graph 𝐺 and 𝐺′ and 𝐸𝐺 ∩ 𝐸𝐺′ = ∅, we can use 

these transfer matrices to combine the graph. The transfer matrix 

multiplication is  given by  

 

Τ𝐺𝐺′ = Τ𝐺Τ𝐺′, (8) 

where the incoming sites of 𝐺𝐺′ are equal to the incoming sites of 𝐺,  

𝑉𝐼𝐺𝐺′
= 𝑉𝐼𝐺

 and the outgoing sites of 𝐺𝐺′ are equal to the outgoing sites 

of 𝐺′, 𝑉𝑂𝐺𝐺′
= 𝑉𝑂𝐺′

. 

The new partition function is given by 

 

𝑍𝐺𝐺′ = ∑ ∑(Τ𝐺𝐺′)𝑖,𝑗

𝑑

𝑗=1

,

𝑑

𝑖=1

 (9) 

where 𝑖, 𝑗 is the index of entries in matrix 𝛵𝐺𝐺′ and 𝑑 is the dimension 

of the matrix. 

 

The zeros distribution  

The partition function (in polynomial form 𝑥 = 𝑒𝛽) is analysed by 

implementing the computational method of zeros finding, by setting 

𝑍 = 0.  

The model’s partition function is a positive polynomial. Hence, the 

zeros must have at least 1 complex plot. Additionally, its complex 

conjugate is also the root of the polynomial. The Newton-Raphson 

method is used in finding the zeros of the partition function. A C++ 

programming language is used for the computation (with the Gnu 

multiple precision library as another essential tool). All the zeros are 

plotted in the complex Argand plane. 

 

 
RESULTS AND DISCUSSION 
 

We write N × M’ for N number of row vertices and M number of 

column vertices. The prime in M’ corresponds to the open boundary 

condition. The number without prime corresponds to the periodic 

boundary condition. 

We study the model on triangular lattice with periodic boundary 

condition in vertical direction and open boundary condition in 

horizontal direction.  

The zeros of partition function are plotted in complex-temperature 

Argand plane. Due to the limitation of computing resources (due to 

Moore’s law), only several small lattice sizes are managable to be 

computed. Although the phase transition occurs at the thermodynamic 

limit when the system is approaching limit – very big in size and huge 

number of vertices, the behaviour of limiting cases can already be 

observed in a small discrete cases. Due to this reason, we try to extract 

as much as possible information from our computable cases relating to 

the phase transition. Following the square lattice case [14], we observe 

the pattern of zeros in the physical region (all areas of plane bounded 

by real part x > 0). 

The zeros are computed for 𝑥 = 𝑒𝛽. This plot shows that the 

positive real axis is the only range that has a physical meaning. For 

ferromagnetic case  𝐽 > 0, the physical region is given by the region 

enclosed by real part [1,∞) – this region is the ferromagnetic region and 

the rest is unphysical. For the antiferromagnetic case  𝐽 < 0,  the region 

enclosed by real part [0,1] is the antiferromagnetic region and the rest 

is unphysical. Modeling the zeros distribution of a physical system 

gives us the information for two different systems of magnetism – 

ferromagnetic and antiferromagnetic systems. The critical point of the 

phase transition is a real-valued constant exactly on the real line of the 

distribution. For the finite case, the zeros will never actually cross this 

real line (we need very big lattice to at least have the root very close to 

the real axis, or the thermodynamic limit for the cross-over point). But 

the locus of zeros for example as plotted for the Onsager solution [7] 

by Fisher in [8] gives this critical point – the locus is a circle center at 

(1,0) and radius √2. The point where the locus of zeros cuts the real 

axis is the critical point of the phase transition. 

The lists of results of the zeros distribution of the partition function 

for 𝑍5-symmetric model are written in Table 3. We compute the zeros 

distribution for several cases of the energy 𝜒 for increasing lattice sizes. 

We present some of the zeros distributions to highlight our finding 

related to the phase transition properties. 

The number of linear arc is observed for the zeros near the real axis 

in the physical region. The claim is that the single arc corresponds to 

the single phase transition while the multiple arcs correspond to the 

multiple phase transitions.  

 
Table 3 The zeros distribution computed cases for 𝒁𝟓-symmetric model 

with arbitrary energy list 𝝌. 

 
 𝜒 5 × 5’ 6 × 6’ 7 × 7’ 8 × 8’ 9 × 9’ 

𝑄 = 5 

(2,1,0) ✓ ✓ ✓ ✓ ✓ 

(3,1,0) ✓ ✓ ✓ ✓ ✓ 

(3,2,0) ✓ ✓ ✓ ✓ ✓ 

(4,1,0) ✓ ✓ ✓ ✓ ✓ 

(4,3,0) ✓ ✓ ✓ ✓ ✓ 

(5,1,0) ✓ ✓ ✓ ✓  

(5,3,0) ✓ ✓ ✓ ✓  

(5,4,0) ✓ ✓ ✓ ✓  

(6,1,0) ✓ ✓ ✓ ✓  

(6,5,0) ✓ ✓ ✓ ✓  
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(a) 

 
(b) 

 
Figure 4 Zeros distribution for 𝜒 = (2,1,0); a) N=8, b) N=9. 

 
See Figure 4 for 𝜒 = (2,1,0). We observed that the zeros form a 

single curve towards the positive real axis. As the lattice size increases, 

the appearance of the curves becomes clearer. In the ferromagnetic 

region when 𝑥 > 1, there are multiple arcs that move closer to the real 

axis as the lattice size increases. But it is still not clear enough either 

the arcs will remain or merge into single line since we need bigger 

lattice size to determine it.  

 

 
(a) 

 
(b) 

 
Figure 5 Zeros distribution for 𝝌 = (𝟑, 𝟏, 𝟎); a) N=8, b) N=9. 

 

Figure 5 shows the zeros distribution for 𝜒 = (3,1,0). As the lattice 

size increases, a single line of zeros approaches the real axis in the 

ferromagnetic region. In the antiferromagnetic region, a linear arc is 

formed at 9×9’ case that is close to the real axis. This single line 

suggests the existence of single phase transition. 

 

(a) 

 
(b) 

 
Figure 6 Zeros distribution for 𝝌 = (𝟑, 𝟐, 𝟎); a) N=8, b) N=9. 

 

 
(a) 

 

 
(b) 

 
Figure 7 Zeros distribution for 𝝌 = (𝟒, 𝟏, 𝟎); a) N=8, b) N=9. 
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(a) 

 
(b) 

 
Figure 8 Zeros distribution for 𝝌 = (𝟒, 𝟑, 𝟎); a) N=8, b) N=9. 

 

For 𝜒 = (3,2,0) in Figure 6, the zeros distribution obviously shows 

the existence of two arcs in the positive real axis. As the lattice size 

increases, the lines become clearer.  A single curve also moves closer 

towards the real axis in the antiferromagnetic region. In the non-

pyhsical region, there is an arc approaching the real axis.  

We make further comparison for the zeros distribution based on its 

energy penalty effect. The 𝜒 = (3,1,0) has (2,1)-step energy penalty 

and the 𝜒 = (3,2,0) has (1,2)-step energy penalty. The case 𝜒 =
(3,1,0) in Figure 5 shows the existence of single line in the 

ferromagnetic region. Interestingly for 𝜒 = (3,2,0) in Figure 6, the 

distribution in ferromagnetic region shows multiple lines approaching 

the real axis. 

Similarly, we present the distribution of zeros for 𝜒 = (4,1,0) and 

𝜒 = (4,3,0) with their energy penalty as seen in Figure 7 and 8. The 

𝜒 = (4,1,0) has (3,1)-steps energy penalty and the zeros distribution 

shows only single arc approaching real axis. The 𝜒 = (4,3,0) in Figure 

8 has (1,3)-steps energy penalty and it shows two lines approaching the 

real axis. Looking at their energy steps, these two cases are inverse to 

each other. 

By referring to Figure 9 for the inverse zeros case 𝑥 = 𝑒−𝛽𝐽, the 

ferromagnetic region is now in [0,1] region and the [1,∞) is the 

antiferromagnetic region. The ferromagnetic region of 𝜒 = (4,3,0) 

corresponds to the antiferromagnetic region of 𝜒 = (4,1,0). The 

previous examples between 𝜒 = (3,1,0) and 𝜒 = (3,2,0) also give the 

same zeros behaviour and their number of transitions are opposite to 

each other. The distribution lines are more obvious when we check for 

the inverse values. 

With all the presented zeros distributions, the number of arcs or 

lines of zeros in the ferromagnetic region are corresponded to the 

number of the phase transition in the physical system as suggested by 

Martin [1].  

 
(a) 

 
(b) 

 
Figure 9 Zeros distribution for N=9, 𝒙 = 𝒆−𝜷𝑱; a) 𝝌 = (𝟒, 𝟏, 𝟎),  

b) 𝝌 = (𝟒, 𝟑, 𝟎). 

 
Here, we also observed that the energy penalty is affected the zeros 

distribution. The cases with big energy penalty may prefer to have 

single transition. From our findings, the small energy penalty case has 

a higher chance for multiple phase transitions than the bigger penalty. 

Further investigation has to be made for different kind of energy list 𝜒. 
We will study this separately. 

 
Specific heat   

Our finding on the zeros distribution should be in accordance to the 

physical equation related to phase transition. The existence of the phase 

transition at the thermodynamic limit is observed when the equation of 

specific heat has discontinuity. At thermodynamic limit, the graph of 

specific heat [4] is discontinuous at 𝛽𝑐  which gives the critical 

temperature 𝑇𝑐 of phase transition. Detail explanation on specific heat 

and other functions of states are in [1, 4, 5].  

From the classical thermodynamic relation, Helmholtz free energy 

is defined as 

 

𝐹 = 〈𝑈〉 − 𝑇𝑆 (10) 

 

where 〈𝑈〉 is an internal energy, T is temperature, and S is an entropy 

[5, 17]. This relation is equivalent to the logarithm of partition function 

given by 

 

𝐹 = −𝑘𝐵𝑇𝑙𝑛(𝑍). (11) 

 

From the free energy, the second derivative of logarithm of the 

partition function gives the definition of the specific heat 𝐶𝑣 with 

respect to 𝛽 as 

 

𝐶𝑉

𝑘𝐵
= −𝛽2

𝑑2 ln 𝑍

𝑑𝛽2 = 𝛽2
𝑑

𝑑𝛽
𝑈(𝛽) (12) 

 

where 𝑈(𝛽) is the internal energy and the first derivative of the 

logarithm of the partition function. 
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Here, we continue with the specific heat graph of the 𝑍5-symmetric 

model for some values of χ. From this plot, the peak becomes sharper 

as the lattice size increases. At thermodynamic limit, this peak is 

expected to has discontinuity by showing the exact critical point of 

phase transition. Interestingly for finite size, this behaviour is already 

observed. To support our observation in  the mutiplicity of linear arc in 

the zeros distribution, we plot the graph of specific heat in this section.  

Figure 10(a) shows the graph of the specific heat for 𝑍5-symmetric 

model with three different energy levels, 𝜒 = (2,1,0), 𝜒 = (3,1,0) and 

𝜒 = (3,2,0). Distinct peak behaviors are shown in the graph. For 𝜒 =
(2,1,0) and 𝜒 = (3,1,0) , there is only single peak which indicates one 

phase transition. Whereas, for the 𝜒 = (3,2,0), there are two peaks 

suggesting for two phase transitions. We have two peaks for the case 

with two lines in physical region. 

The peak behaviors of the graph for 𝜒 = (3,2,0) for increasing 

lattice sizes N = 7, 8, 9 are presented in Figure 10(b). As size increases, 

the peak becomes steeper. 

We claim that the number of peak is in accordance to the prediction 

of the number of phase transition through the existence of a particular 

single arc or multiple arcs in the graph of zeros distribution. This 

finding supports the existence of the multiple transition points in this 

model. 

 

 
(a) 

 
(b) 

Figure 10 Graph of specific heat 𝑪𝑽 for (a) 𝟗 × 𝟗′ with different  𝝌 and 
(b) 𝟕 × 𝟕′, 𝟖 × 𝟖′, 𝟗 × 𝟗 for 𝝌 = (𝟑, 𝟐, 𝟎). 

 
CONCLUSION 
 

We have studied the partition function and its zeros for 𝑍5-

symmetric models on triangular lattices. This study extends the work 

by Martin [1] and Zakaria [16] on square lattices. The zeros are plotted 

in the complex Argand plane in order to study their distributions. From 

the obtained results, we can see that there are multiple phase transitions 

based on the number of arcs in the graph and this finding  is  

 

supported through the observation from the peak in the specific heat 

graph. This result is an added evidence to the capability of this model 

to determine the existence of the multiple phase transitions 

illustratively. Note that the study of zeros is important because we can 

study other aspects of phase transition, especially just before the 

occurrence of the phase transition as mentioned by [12] for square 

lattice – other lattice types will be discussed elsewhere. Our study is 

limited by the computing resources, so the zeros distribution can be 

extended to other larger lattice sizes as well as on different types of 

lattices and boundary conditions in the future – subject to the 

advancement of computing technology. 
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