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Abstract 

The relationship between two linear variables where both variables are observed with errors can be 
modeled using a linear functional relationship model. However, when there is no knowledge about the 
ratio of error variance, we proposed that one can use the replicated linear functional relationship model. 
The aim of this study is to compare the parameter estimates between unreplicated and replicated linear 
functional relationship model. The study also extends to examine the behavior of the estimators of the 
replicated linear functional relationship model in the presence of outliers. A simulation study is 
performed to investigate the performance of the model. In the absence of outlier, it is found that the 
value of the parameter estimates is almost similar for both models. Whereas in the presence of outliers, 
the parameter estimates of the replicated linear functional relationship model have a smaller mean 
square error as the number of observations increased. This suggests the superiority of the replicated 
model. 
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INTRODUCTION 

Suppose the variables X and Y are related by the equation Y= 𝛼 +
𝛽𝑋. There is no statistical problem if variable X and Y can be observed 

exactly. If Y is observed with error, then we use ordinary linear 

regression. If both variable X and Y are observed with errors, errors-in-

variable model (EIVM) is used. EIVM is an extension of a linear 

regression model that looks at the relationship between two variables 

where both variables are subjected to measurement error. The study of 

the EIVM dates back to the late 18th century when Adcock (1878) 

investigated the problem of fitting a linear relationship when both the 

dependent variable and independent variable are subject to error. The 

EIVM occurs in many fields such as in the industrial experiment, 

quality control, epidemiological studies, economics, and environmental 

science (Buonaccorsi, 2010; Gencay and Gradojevic, 2011). EIVM can 

be divided into three categories which are functional relationship 

model, structural relationship model, and ultrastructural relationship 

model (Fuller, 1987). In this study, we consider the Linear Functional 

relationship Model (LFRM) where the variable X is fixed. 
In LFRM, there are (𝑛 + 4) parameters that need to be estimated, 

namely the intercept 𝛼, the slope 𝛽, the two error variances 𝜎2,  𝜏2, and 

the incidental parameters 𝑋𝑖. The log likelihood function is given by 

log 𝐿 (𝛼, 𝛽, 𝜎2, 𝜏2, 𝑋𝑖 ; 𝑥1, … , 𝑥𝑛; 𝑦1, … , 𝑦𝑛) = −𝑛 log(2𝜋) 

−
𝑛

2
(log 𝜎2 + log 𝜏2) −

∑(𝑥𝑖−𝑋𝑖)2

2𝜎2 −
∑(𝑦𝑖−𝛼−𝛽𝑋𝑖)2

2𝜏2  . 

                                                                                               

 

However, when the number of observations increases, the number 

of parameters will also increase. This can lead to the parameter 

estimation problem as it has been reported in another study as 

inconsistencies with the existence of the incidental parameter (Neyman 

and Scott, 1951; Lindley, 1953; Ghapor et al., 2015). In order to solve 

the problem, either the knowledge of ratio of two variances is known 

or replication can be made (Barnett 1970; Kendall and Stuart, 1979; 

Hussin et al., 2005). The goal of this research is to propose a solution 

in estimating parameters of interest when we only have unreplicated 

data and the ratio of the error variances is unknown. Thus, in this study, 

we will consider the parameter slope 𝛽 and error variance  𝜎2 using the 

maximum likelihood method for both unreplicated and replicated linear 

functional relationship model and investigate the performance of both 

estimators for the replicated model in the presence of outliers.  

MAXIMUM LIKELIHOOD ESTIMATION METHOD 

Unreplicated linear functional relationship model 
     Maximum likelihood estimation (MLE) method is a common 

method used in estimating the parameters of LFRM. Consider X and Y

are linearly related but observed with error, unreplicated LFRM can be 

expressed by the equation  

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖      for 𝑖 = 1,2,3, … , 𝑛                                                                      (1)                     

For any fixed 𝑋𝑖, we observe 𝑥𝑖  and 𝑦𝑖 from continuous linear variable 

subject to errors 𝛿𝑖  and 𝜀𝑖  respectively, i.e.  
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𝑥𝑖 = 𝑋𝑖 + 𝛿𝑖 and 𝑦𝑖 = 𝑌𝑖 + 𝜀𝑖                                                                                 (2) 

where the error terms 𝛿𝑖 and 𝜀𝑖  are assumed to be mutually independent 

and normally distributed random variables, i.e.  

𝛿𝑖~𝑁(0, 𝜎2)  and  𝜀𝑖~𝑁(0, 𝜏2)                                                                               (3)              

                                                                        

An assumption must be made in order to avoid the problem in 

unreplicated LFRM (Solari, 1969; Moran, 1971). With the assumption 

that the ratio of error variances is known, 𝜏2 = 𝜆𝜎2  and there are 

(𝑛 + 3) parameters to be estimated namely 𝛼, 𝛽, 𝜎2, and the incidental 

parameters 𝑋𝑖 (Fuller, 1987; Kendall and Stuart, 1979), the log 

likelihood function can be expressed as 

log 𝐿 (𝛼, 𝛽, 𝜎2, 𝑋𝑖  ; 𝑥1, … , 𝑥𝑛;  𝑦1, … , 𝑦𝑛) = −𝑛 log(2𝜋) 

 

−
𝑛

2
(log 𝜆) − 𝑛 log 𝜎2 −

∑(𝑥𝑖−𝑋𝑖)2

2𝜎2
−

∑(𝑦𝑖−𝛼−𝛽𝑋𝑖)2

2𝜆
                             (4) 

 

The parameters may be obtained by differentiating the log likelihood 

function as given in equation (4) with respect to namely 𝛼̂, 𝛽̂, 𝜎̂2, and 

𝑋𝑖̂ and equating to zero. Thus, we can obtain the parameters given by 

 𝛼̂ = 𝑦̅ − 𝛽̂𝑥̅ ,  𝛽̂ =
𝑆𝑦𝑦−𝜆𝑆𝑥𝑥√(𝑆𝑦𝑦−𝜆𝑆𝑥𝑥)

2
−4𝜆𝑆𝑥𝑦

2

2𝑆𝑥𝑦
 ,                                    (5) 

𝜎̂2 =
1

𝑛−2
{∑(𝑥𝑖 − 𝑋̂𝑖)

2
+ ∑(𝑦𝑖 − 𝛼̂ − 𝛽̂𝑋̂𝑖)

2
}  

and 𝑋̂𝑖 =
𝜆𝑥𝑖+𝛽̂(𝑦𝑖−𝛼̂)

𝜆+𝛽̂2    

where  𝑦̅ =
1

𝑛
∑ 𝑦𝑖, 𝑥̅ =

1

𝑛
∑ 𝑥𝑖  , 𝑆𝑥𝑥 =

1

𝑛
∑(𝑥𝑖 − 𝑋̂𝑖)

2
,  

         

𝑆𝑦𝑦 =
1

𝑛
∑(𝑦𝑖 − 𝑦̅)2 ,   𝑆𝑥𝑦 =

1

𝑛
∑(𝑥𝑖 − 𝑋̂𝑖)(𝑦𝑖 − 𝑦̅)  

 

 
Replicated linear functional relationship model 
 

Replicated LFRM can be used when there is no information about 

the ratio of two variances in unreplicated LFRM or replication can be 

made on the observations. In replicated LFRM, it is often found that 

corresponding to a particular pair (𝑋𝑖 , 𝑌𝑖), there may be replicated 

observations of 𝑋𝑖 and 𝑌𝑖 occurring in p groups. A linear relationship 

between  𝑋𝑖 and 𝑌𝑖 is given by  

 

𝑥𝑖 = 𝑋𝑖 + 𝛿𝑖𝑗  and 𝑦𝑖 = 𝑌𝑖 + 𝜀𝑖𝑘 where                                                               (6)                                                                                                         

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖   for 𝑖 = 1,2, … , 𝑝 , 𝑗 = 1,2, … , 𝑚𝑖 , 𝑘 = 1,2, … , 𝑛𝑖         (7)   

It is assumed that 𝛿𝑖𝑗~𝑁(0, 𝜎2)  and 𝜀𝑖𝑘~𝑁(0, 𝜏2). 

In this case, the log-likelihood function can be expressed as 

log 𝐿 (𝛼, 𝛽, 𝜎2, 𝜏2, 𝑋1, … , 𝑋𝑝 ; 𝑥11, … , 𝑥𝑝𝑚𝑝
;  𝑦11, … , 𝑦𝑝𝑛𝑝

) = 

−𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 −
1

2
(∑ 𝑚𝑖 log 𝜎2 + ∑ 𝑛𝑖 log 𝜏2)  

− ∑ ∑
(𝑥𝑖𝑗−𝑋𝑖)

2

2𝜎2 − ∑ ∑
(𝑦𝑖𝑘−𝛼−𝛽𝑋𝑖)2

2𝜏2                                                       (8) 

There are (𝑝 + 4) parameters to be estimated and may be obtained 

by differentiating the log likelihood function as given in equation (8) 

with respect to 𝛼̂, 𝛽̂, 𝜎̂2 , 𝜏̂2, and 𝑋̂𝑖  and equating to zero (Barnett, 

1970). Thus, we can obtain the parameters in the order given by 

 

 

𝜎̂2 =
∑ ∑(𝑥𝑖−𝑋̂𝑖)2

∑ 𝑚𝑖
 ,    𝜏̂2 =

∑ ∑(𝑦𝑖−𝛼̂−𝛽̂𝑋̂𝑖)
2

∑ 𝑛𝑖
  , 

 

𝛼̂ =
∑ 𝑛𝑖(𝑦̅𝑖.−𝛽̂𝑋̂𝑖)

∑ 𝑛𝑖
 ,   𝛽̂ =

∑ 𝑛𝑖𝑋̂𝑖(𝑦̅𝑖.−𝛼̂)

∑ 𝑛𝑖𝑋̂𝑖
2       ,   and 

 

𝑋̂𝑖 =
1

∆̂𝑖
{

𝑚𝑖𝑥̅𝑖.

𝜎̂2 +
𝑛𝑖𝛽̂

𝜏̂2
(𝑦̅𝑖. − 𝛼̂)}       where 

 

𝑥̅𝑖. =
1

𝑚𝑖

∑ 𝑥𝑖𝑗  ,  𝑦̅𝑖. =
1

𝑛𝑖

∑ 𝑦𝑖𝑘  and  ∆̂𝑖=
𝑚𝑖

𝜎̂2
+

𝑛𝑖𝛽̂2

𝜏̂2
 . 

 

The estimates of  𝛼̂, 𝛽̂, 𝜎̂2 , 𝜏̂2, and 𝑋̂𝑖  can be solved iteratively given 

some suitable initial values at the estimate. An initial estimate can be 

obtained from the unreplicated linear functional relationship model.  

Simulation study 
A simulation study was carried out using R software in order to 

evaluate the performance of the unreplicated and replicated linear 

functional relationship model. The parameters of interest in this study 

are the slope 𝛽̂ and the error variance 𝜎̂2. The observations are then 

simulated using our model as described earlier. Without loss of 

generality, the true value is fixed at  𝛼̂ = 1 and 𝛽̂ = 1 for both models. 

Additionally, in unreplicated linear functional relationship model, we 

assume that the ratio of two variance or 𝜆  is equal to one. We simulate 

1000 trials for 𝑛 = 20, 50, 80, and 100. Additionally, the performance 

of the parameter of interest in replicated linear functional relationship 

model when the observation has no outlier, single outlier, 10%, and 

20% outliers are also considered. This is done by contaminating data 

points as suggested by Al-Nasser and Ebrahem (2005) using 

relationship 𝑦𝐶 = 1 + 𝑋𝐶 + 𝜀𝐶  with 𝜀𝐶~ 𝑁(0,25). The mean square 

error is used to assess the performance of the slope and the error 

variance. 

 
RESULTS AND DISCUSSION 
 

Tables 1 and 2 show the performance of both models using 

measures of mean and estimated bias. It can be seen that from Table 1, 

the value for the slope is almost the same between unreplicated and 

replicated linear functional relationship model. The estimated bias for 

both models is almost the same as the number of observations increase. 

However, in Table 2, the value of the estimated bias for the unreplicated 

model is less than the replicated model as the number of observations 

increase. Next, from Table 3, where the errors 𝛿𝑖  and 𝜀𝑖  are normally 

distributed, when the data have no outlier, the mean square error (MSE) 

decreases as the number of observations increases. As we introduce 

outliers in our data from single outlier to 20% outliers, the MSE 

decreases as the number of observations increase. Nevertheless, the 

replicated model has a smaller MSE value than the unreplicated model, 

suggesting the replicated model is much a better model than the 

unreplicated model when the data has outliers. Similar trend also can 

be observed for Table 4 which the MSE values decrease with the 

increase of sample sizes. Comparing the replicated linear functional 

relationship model with the unreplicated model, at each level of 

contamination, the replicated model shows consistently smaller values 

of MSE than the unreplicated model. Through simulation study, the 

slope estimates for replicated model remain resistant when outliers 

exist in the data. This shows that we can possibly use replicated linear 

functional relationship model to estimate the parameter of interest when 

we are lacking information on the 𝜆  or the ratio of two variances in 

unreplicated linear functional relationship model is not available. 

Furthermore, when the number of observations increases, the 

estimation of unreplicated LFRM becomes complicated as the number 

of parameters will also increase. This problem does not arise in 

replicated LFRM as the number of parameters is fixed and only the 

degree of replication increases with an increasing number of 

observations. 
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Table 1 Mean and estimated bias for slope  𝛽̂ estimates. 

Sample Size Model Mean 
Estimated 

Bias 

N=20 
Unreplicated 1.0053 0.0053 
Replicated 1.0042 0.0042 

N=50 
Unreplicated 0.9989 0.0011 
Replicated 0.9988 0.0012 

N=80 
Unreplicated 1.0044 0.0044 
Replicated 1.0041 0.0041 

N=100 
Unreplicated 1.0013 0.0013 
Replicated 1.0012 0.0012 

 

Table 2 Mean and estimated bias for error variance 𝜎̂2 estimates. 

Sample Size Model Mean 
Estimated 

Bias 

N=20 
Unreplicated 0.9996 0.0004 
Replicated 0.8446 0.1554 

N=50 
Unreplicated 0.9944 0.0056 
Replicated 0.9305 0.0695 

N=80 
Unreplicated 0.9997 0.0003 
Replicated 0.9362 0.0638 

N=100 
Unreplicated 1.0039 0.0039 
Replicated 0.9474 0.0526 

 
Table 3 Mean square error (MSE) of the slope. 

Contamination Model N=20 N=50 N=80 N=100 

No outlier 

Unrepli-
cated 

1.410 
E-02 

5.406 
E-03 

3.459 
E-03 

2.586 
E-03 

Replica-
ted 

1.390 
E-02 

5.285 
E-03 

3.380 
E-03 

2.540 
E-03 

Single outlier 

Unrepli-
cated 

5.764 
E+02 

9.035 
E-01 

2.009 
E-01 

1.082 
E-01 

Replica-
ted 

5.576 
E+02 

5.723 
E-02 

2.306 
E-02 

1.518 
E-02 

10% outliers 

Unrepli-
cated 

9.054 
E+04 

4.255 
E+01 

3.774 
E+01 

3.707 
E+01 

Replica-
ted 

9.053 
E+04 

5.352 
E-03 

3.502 
E-03 

2.639 
E-03 

20% outliers 

Unrepli-
cated 

3.076 
E+02 

1.577 
E+02 

1.359 
E+02 

1.348 
E+02 

Replica-
ted 

1.648 
E+02 

4.689 
E+00 

3.484 
E-03 

2.626 
E-03 

 
Table 4 Mean square error (MSE) of the error variance. 

Contamination Model N=20 N=50 N=80 N=100 

No outlier 

Unrepli-
cated 

1.241 
E-01 

4.184 
E-02 

2.486 
E-02 

2.068
E-02 

Replica-
ted 

1.158 
E-01 

4.883 
E-02 

3.036 
E-02 

2.280
E-02 

Single outlier 

Unrepli-
cated 

6.749 
E+01 

2.609 
E+01 

1.239 
E+01 

8.436
E+00 

Replica-
ted 

1.327 
E+01 

5.052 
E-02 

3.323 
E-02 

2.599
E-02 

10% outliers 

Unrepli-
cated 

7.574 
E+01 

5.250 
E+01 

5.253 
E+01 

5.219
E+01 

Replica-
ted 

5.022 
E+01 

5.056 
E-02 

3.368 
E-02 

2.668
E-02 

20% outliers 

Unrepli-
cated 

6.599 
E+01 

6.002 
E+01 

6.031 
E+01 

6.001
E+01 

Replica-
ted 

4.853
E+00 

4.002
E-01 

3.368
E-02 

2.669
E-02 

 
Real example    

A study that measures the accuracy of some widely used body-

composition techniques for children between the ages 4 and 10 years 

old, two different techniques, namely skinfold thickness (ST) and 

bioelectrical resistance (BR), are used to illustrate the use of replicated 

linear functional relationship model (Ghapor et al., 2015; Goran et al., 

1996). In this data, we assumed that the measurement error can occur 

on both variables and that the error term follows a normal distribution. 

Some original y values were replaced by the values of the outliers 

namely, a single outlier, 10%, and 20% outliers to examining the slope 

effect by following Kim (2000). The estimated slope for both 

unreplicated and replicated linear functional relationship model are 

presented in Table 5.  

From Table 5, we can see the slope parameter of the linear 

functional relationship model is almost the same between the 

unreplicated and replicated model. This shows that when the 

information about lambda (the ratio of errors variance) is not available, 

we can use replicated linear functional relationship model as an 

alternative to estimate the slope parameter. 

 
Table 5 Slope estimates from Goran et al. (1996) data. 

Contamination Unreplicated Replicated 

No outlier 1.09969 1.09838 

Single outlier 1.48694 1.25986 

10% outliers 5.76879 1.01953 

20% outliers 13.54840 0.99039 

 
CONCLUSION 
 

In conclusion, the proposed MLE can be used for unreplicated and 

replicated LFRM for estimating the slope and the error variance 

parameter. However, when the ratio of two variances is unknown, the 

replicated LFRM is the better model in estimating the parameter of 

interest. More importantly, the replicated LFRM can give better 

estimates in the presence of outliers. 
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