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Abstract 
 
Both discrete and continuous Z-numbers are pairs of discrete and continuous fuzzy numbers.  Even 
though the later are ordered, this do not simply imply the discrete and continuous Z-numbers are 
ordered as well. This paper proposed the idea of ordered discrete and continuous Z-numbers, which 
are necessary properties for constructing temporal Z-numbers.  Linear ordering relation, ≺, is applied 
between set of discrete or continuous Z-numbers and any arbitrary ordered subset of ℝ  to obtain the 
properties. 
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INTRODUCTION 

Real-world information is flawed, and natural language is often 
used to represent this feature. Such information is often characterized 
by fuzziness, which implies that soft constraints are imposed on the 
values of variables of interest. Furthermore, reliability is another 
essential property of information. Any estimation of values of interest, 
be it precise or soft, are subject to the confidence with regards to 
sources of information. Thus, fuzziness from the one side and partial 
reliability form the other side are strongly associated to each other [1]. 
To discuss this concept, Zadeh in [2] introduced the concept of Z-
number as a formal description of such information.  Basically, the 
concept of Z -number relates to the issue of reliability of information. 
A Z-number is an ordered pair of fuzzy numbers	(𝐴, 𝐵). It is associated 
with a real valued uncertain variable	𝑋, with the first component, A, 
playing the role of a fuzzy restriction (𝑅(𝑋)) on the values which 𝑋 can 
take, written as 𝑋	is	𝐴 such that 𝐴 is a fuzzy. The second component 𝐵 
is a measure of reliability (certainty) of the first component [2]. 

B. Kang et al. [3] proposed an approach of dealing with Z-numbers 
which naturally arises in the areas of decision making, control, 
regression analysis and others. The approach is based on transforming 
a Z-number into fuzzy number on the basis of fuzzy expectation of the 
fuzziness. The advantage of this approach is its low analytical and 
computational complexity, which allows for a wide spectrum of its 
applications. Unfortunately, converting Z-number to fuzzy leads to 
significant loss of original information and reducing the benefit of using 
Z-number-based information in the first place.   

The authors in [4] developed some basics for direct computation 
with Z-number, by suggesting a general and computationally effective 
approach to deal with discrete Z-number. The authors provided 
motivation to use discrete Z-numbers as an alternative to the continuous 

one, based on the fact that natural language-based information has a 
discrete framework and it is not required to decide upon a reasonable 
assumption to use some type of probability distributions. Furthermore, 
it has lower computational complexity than that with continuous Z-
numbers. Some basic theoretical aspects of arithmetic operations over 
discrete Z-numbers such as addition, subtraction, multiplication, 
division, square root of a Z-number, and other operations are proposed 
as well as a series of numerical examples are provided by them to 
illustrate the validity of the suggested approach. 

A mathematical property called ordered, is required for 
constructing temporal discrete Z-numbers. Consider the set of complex 
numbers, ℂ.  It is not ordered naturally but when the relation ||: ℂ ⟶ ℝ 
is employed on ℂ	such that |𝐶| = |𝑎 + 𝑖𝑏| = √𝑎8 + 𝑏8 ∈ ℝ, then the 
ordered property is deduced indirectly.  Fig. 1 shows the coordinates of 
complex number.  

 
Fig. 1 A complex number. 
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Similarly, discrete Z-number is an ordered pair of discrete fuzzy 
numbers, however, this does not guarantee that discrete Z-number is an 
ordered set too. This paper proves that both discrete and continuous Z-
numbers can be ordered by applying a linear ordering relation ≺ 
between set of discrete or continuous Z-numbers and any arbitrary 
ordered subset of ℝ. The rest of the paper is organized as follows: 
Section 2 contains some basic definitions related to this work; the 
concepts of ordered discrete and continuous Z-number are revealed in 
Section 3; a sample of the implementation is presented in Section 4; 
and finally, the conclusion is drawn in Section 5. 

PRELIMINARIES  
 
Here are some important definitions which are essential in this work. 

 
Definition 1. 1 [7] The relation ≺	on	𝑋 × 	𝑋 is	a	partial	ordering	on	X 
if it satisfies the following properties: 

1. (Reflexivity) 𝑥 ≺ 	𝑥 for	every	x	∈	X. 
2. (antisymmetry) If 𝑥L ≺	 𝑥8 and 𝑥8 ≺	 𝑥L, then 𝑥L =	 𝑥8. 
3. (transitivity) If 𝑥L ≺ 	𝑥8 and 𝑥8 ≺ 	𝑥M, then 𝑥L ≺ 	𝑥M. 

 A pair (𝑋,≺	) is called a partially ordered set. A partially ordered set 
(𝑋,≺	) is said to be totally ordered (also called linearly ordered), 
provided that for every 𝑥L, 𝑥8 	∈ 𝑋 and  𝑥L ≠	 𝑥8, either 𝑥L ≺ 	𝑥8  or 
𝑥8 ≺ 	𝑥L. A partial order ≺	is then said to be a linearly ordered. 

Definition 2.2 [7] A partially ordered set in which every pair of element 
has the greatest lower bound and the least upper bound is called a 
lattice. 

Definition 2.2 [7] A lattice (Z, ∨, ∧) is a distributive lattice if the 
following additional identity holds for all 𝑎, 𝑏, 𝑐	 ∈ 𝑍, 𝑎 ∧ (𝑏 ∨ 𝑐) =
(𝑎 ∧ 𝑏) ∨ 𝑐 also 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ 𝑐. 

Definition 2.4 [8] A fuzzy number A of the real line R with membership 
function 𝜇T:ℝ⟶ [0,1] is a discrete fuzzy number if its support is 
finite, i.e. there exist {𝑥L,… , 𝑥[} 	 ∈ 𝑅 with 𝑥L < 𝑥8 < ⋯ < 𝑥[, such 
that 𝑠𝑢𝑝𝑝(𝐴) = {𝑥L,… , 𝑥[} and there exist natural numbers 𝑠, 𝑡 with 
1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑛 satisfying the following conditions: 

1. 𝜇T(𝑥e) = 1 for any natural number 𝑖 with 𝑠 ≤ 𝑖 ≤ 𝑡 
2. 𝜇T(𝑥e) ≤ 𝜇Tf𝑥gh for each natural number 𝑖, 𝑗 with 1 ≤

𝑖 ≤ 𝑗 ≤ 𝑠 
3. 𝜇T(𝑥e) ≥ 𝜇Tf𝑥gh for each natural number 𝑖, 𝑗 with 𝑡 ≤

𝑖 ≤ 𝑗 ≤ 𝑛. 
 

Definition 3. [5] A continuous fuzzy number is a fuzzy subset A of the 
real line ℝ with membership function 𝜇T:ℝ⟶ [0,1] which possesses 
the following properties: 

1. A is a normal fuzzy set. 
2. A is a convex fuzzy set. 
3. 𝛼-cut 𝐴l  is a closed interval for every 𝛼 ∈ (0,1].  
4. The support of A, supp(A) is bounded. 

A continuous fuzzy number A with the membership function defined as  

𝜇T =

⎩
⎪
⎨

⎪
⎧
𝑥 − 𝑎
𝑏 − 𝑎 			𝑖𝑓	𝑎 ≤ 𝑥 < 𝑏

1													𝑖𝑓	𝑏 ≤ 𝑥 ≤ 𝑐
𝑑 − 𝑥
𝑑 − 𝑐 					𝑖𝑓		𝑐 < 𝑥 ≤ 𝑑
0															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

is referred to as trapezoidal fuzzy number and is denoted as (𝑎, 𝑏, 𝑐, 𝑑). 
A special case of trapezoidal fuzzy number is a triangular fuzzy number 
(TFN) A with membership function defined as 

𝜇T =

⎩
⎪
⎨

⎪
⎧
𝑥 − 𝑎
𝑏 − 𝑎 			𝑖𝑓	𝑎 ≤ 𝑥 < 𝑏
𝑐 − 𝑥
𝑐 − 𝑏 					𝑖𝑓		𝑏 ≤ 𝑥 ≤ 𝑏

0															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and denoted as (𝑎, 𝑏, 𝑐). 

       

Fig. 2 Trapezoidal fuzzy number. 
 
Definition 2.3 [4] A discrete Z-number is an ordered pair 𝑍 =

(𝐴, 𝐵) where A is a discrete fuzzy number playing a role as a 
fuzzy constraint on values that a random variable X may take: 

𝑋	𝑖𝑠	𝐴 
and B is a discrete fuzzy number with a membership function 

𝜇y: {𝑏L,… , 𝑏[} ⟶ [0,1], {𝑏L,… , 𝑏[} 	⊂ [0,1], playing a role of a 
fuzzy constraint on the probability measure of A: 

𝑃(𝐴)	𝑖𝑠	𝐵. 
Aliev et al. in [5] defined continuous Z-number by using 

continuous fuzzy number. 
 

Definition 2.3 [5] A continuous Z-number is an ordered pair 
𝑍 = (𝐴, 𝐵) where A is a continuous fuzzy number playing a role 
as a fuzzy constraint on values that a random variable X may 
take: 

𝑋	is	𝐴 
and B is a continuous fuzzy number with a membership 

function 𝜇y: [0,1] ⟶ [0,1] playing a role of a fuzzy constraint on 
the probability measure of A: 

𝑃(𝐴)	is	𝐵 
 

ORDERED Z-NUMBER 
 

In [6], the concept of minimum and maximum of both discrete and 
continuous Z-number was introduced and denoted as MIN and MAX, 
respectively. They showed that for the discrete Z-number, the triple 
(𝑍|,MIN,MAX) is a distributive lattice, where 𝑍| represents the set of 
discrete Z-numbers whose support is a sequence of consecutive natural 
numbers.  The term MIN and MAX serve as meet and joint of 𝑍| which 
implies immediately that discrete Z-number is partially ordered. 
Similarly, the triple (𝑍},MIN,MAX) is also a distributive lattice, where 
𝑍} represents the set of continuous Z-numbers support, which is a 
bounded set of natural numbers. Since set of natural numbers is well-
ordered and has a least element, hence, continuous Z-number is 
partially ordered. However, [9] did not show explicitly that 
(𝑍|,MIN,MAX) is a distributive lattice. Therefore, in this paper the 
relation ≺  on Z-number (discrete or continuous) is shown to be 
partially ordered in Theorem 3.1. 

A discrete or continuous Z-number can be ordered using two 
different methods. The first one is by using the method proposed by 
Kang B in [3], which is, converting discrete or continuous Z-number to 
a discrete or continuous generalized fuzzy number. However, this 
method may lead to sufficient loss of original information. The second 
method, which is the most preferable, is by creating a relation between 
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set of Z-number (discrete or continuous) and any arbitrary ordered 
subset in ℝ as follows.  

Definition 3.1 Let 𝑍L = (𝐴L,𝐵L) and 𝑍8 = (𝐴8,𝐵8) be two Z-
numbers (discrete or continuous).  Then 𝑍L = 𝑍8 if and only if 
𝐴L = 𝐴8 and 𝐵L = 𝐵8, namely, 𝜇T~(𝑥) = 𝜇T�(𝑥) and	𝜇y~(𝑥) =
𝜇y�(𝑥), respectively. 

 
Theorem 3.1 The relation (𝑍̅|	,≺)⟺ (𝐺,≤) is well-defined. 
Proof Consider two sets (𝑍̅|	,≺)and (𝐺,≤) with relation 

(𝑍̅|	,≺) ⟺ (𝐺,≤) for 𝐺 ⊆ ℝ and (𝑍̅|	, ≺) means a set of Z-
numbers (discrete or continuous) with binary operation ≺.  The 
relation ⟺ is well defined due to its tautology as shown in Table 
2, where T≔ 𝑇𝑟𝑢𝑒 and F≔ 𝐹𝑎𝑙𝑠𝑒.  

 
Table 2 Trues table. 

                
Both sides must be exactly the same in order the relation ⟺ 

to be true.     
 n 

Theorem 3.2. The set ([−1,0], ≤) is partially ordered. 
Proof. Consider ([−1, 0], ≤).  
It is reflexive since 𝑥 ≤ 𝑥, ∀𝑥 ∈ [−1, 0]. 
It is antisymmetry since 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 then 𝑥 = 𝑦 for 

𝑥, 𝑦, 𝑧 ∈ [−1,0]. 
It is transitive since  𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 then 𝑥 ≤ 𝑧 for 𝑥, 𝑦, 𝑧 ∈

[−1,0]. Hence, ([−1,0], ≤) is a partially ordered. 
n 

Corollary 3.1 The relation (𝑍̅|	,≺)⟺ ([−1, 0],≤) is well 
defined.    

Proof By replacing 𝐺 = [−1,0]	in Theorem 3.1, the proposed 
relation (𝑍̅|	,≺)⟺ ([−1,0], ≤) is well defined.  

n 

Theorem 3.3 The set (𝑍̅|	,≺) with relation defined as (𝑍̅|	,≺
) ⟺ ([−1,0], ≤) is a partially ordered set. 

Proof The relation (𝑍̅|	,≺)⟺ ([−1,0], ≤) is well defined by 
Corollary 3.1.  Furthermore,  ([−1, 0], ≤) is partially ordered by 
Theorem 3.2. 

The reflexive property holds for (𝑍̅|	,≺)	by invoking the 
reflexivity of ([−1, 0], ≤).  In orther words, 𝑍L = 𝑍L, ∀𝑍L𝜖(𝑍̅|	,≺). 

Similarly, for antisymmetry and transitive properties for 
(𝑍̅|	,≺), by invoking the antisymmetry and transitive properties 
of ([−1,0], ≤).   

 
Hence, (𝑍̅|	,≺) with relation defined as (𝑍̅|	,≺)⟺ ([−1,0], ≤

) is a partially ordered set.  n 
  
The relation ⟺ is well defined between (𝑍̅|	,≺) and (𝐺	, ≺), 

as proven in Theorem 3.1. Obviously, similar relation is well 
defined when it is replaced by (𝑍̅| × G	, ≺) such that 

 
≺: (𝑍̅| × G	,≺) ⟶ 𝐺 ∋ (𝑍L,𝑔L) ≺ 	 (𝑍8, 𝑔8)⟺ 𝑔L ≺ 𝑔8 . 

Theorem 3.4 Let 𝑍̅| be a set of discrete Z-numbers and  ≺ 
be a linear ordering relation. The set (𝑍̅|	, ≺) is said to be totally 
ordered, by creating a relation between 𝑍̅| and any arbitrary 
ordered set in ℝ. 

Proof Let 𝐻 be any arbitrary ordered set in ℝ, namely (𝐻,≺
) ⊂ (ℝ,≺). Consider (𝑍̅| × H	, ≺) where 𝑍L,𝑍8,𝑍M ∈ 𝑍̅|	and 
ℎL, ℎ8, ℎM ∈ 𝐻. The relation ≺  is define as ≺:(𝑍̅| × H	, ≺) ⟶ 𝐻 ∋

(𝑍L, ℎL) ≺ 	(𝑍8, ℎ8) ⟺	ℎL ≺ ℎ8. Now we need to show that it is 
reflexive, antisymmetry and transitive for any 
(𝑍L, ℎL), (𝑍8, ℎ8), (𝑍M, ℎM) 		∈ 𝑍̅| × 𝐻. 

 
1. Reflexive: (𝑍L, ℎL) ≺	 (𝑍L, ℎL) is true since (𝐻,≺) is linearly 

ordered. 
2. Transitive: Suppose (𝑍L, ℎL) ≺ 	 (𝑍8, ℎ8) and (𝑍8, ℎ8) ≺

(𝑍L, ℎL), this implies that ℎ8 = ℎL since (𝐻,≺) is linearly 
ordered.	Therefore,	(𝑍L, ℎL) = 	 (𝑍8, ℎ8). 

3. Antisymmetry: Suppose (𝑍L, ℎL) ≺ 	 (𝑍8, ℎ8) and (𝑍8, ℎ8) ≺
(𝑍M, ℎM), this implies that ℎL ≺ ℎM since (𝐻,≺) is linearly 
ordered.	Therefore, (𝑍L, ℎL) ≺ 	 (𝑍M, ℎM). 

Thus, (𝑍̅| × H	, ≺) is partially ordered, which implies that 
(𝑍̅|	,≺) is also partially ordered. 

 
Next, we want to show that (𝑍̅| 	× H	, ≺) is totally ordered. For 

any two distinct elements (𝑍L, ℎL), (𝑍8, ℎ8) ∈ (𝑍̅| 	× H	), i.e.   
(𝑍L, ℎL) ≠ 	 (𝑍8, ℎ8). Since H is totally ordered, there exist ℎL ≠ ℎ8 
such that ℎL ≺ ℎ8 or ℎ8 ≺ ℎL. This implies that (𝑍L, ℎL) ≺ 	 (𝑍8,ℎ8) 
or (𝑍8, ℎ8) ≺ (𝑍L,ℎL). Therefore, (𝑍̅| 	× H	, ≺) is totally ordered, 
which implies that (𝑍̅|	,≺) must be totally ordered too.  
 n 

 
Similar proof for Theorem 3.4 can be adopted for continuous 

Z-number.  Therefore, we state the theorem for the case without 
its proof as follows. 

 
Theorem 3.5 Let 𝑍̅}	 be a set of discrete Z-numbers and  ≺ 

be a linear ordering relation. The set (𝑍̅}		,≺) is said to be totally 
ordered, by creating a relation between 𝑍̅}	 and any arbitrary 
ordered set in ℝ. 

The following two definitions are motivated from Kosanovic’s 
definition of ordered fuzzy set in [10]. Therefore, an ordered discrete 
Z-number can be defined as: 

Definition 3.2 Let 𝑍| be a discrete Z-number and let 𝑍̅| be a set of 
discrete Z-numbers, i.e. :	𝑍| 	 ∈ 𝑍̅|, the pair (𝑍|	,≺) is called an 
ordered discrete Z-number, if there exist a  relation ≺, such that (𝑍̅|	,≺
) is totally ordered. 

An ordered continuous Z-number is defined as: 

Definition 3.3 Let 𝑍} be a continous Z-number and let 𝑍̅} be a set of 
continuous Z-numbers, i.e. :	𝑍} 	∈ 𝑍̅},  the pair (𝑍}	,≺) is called an 
ordered continous Z-number, if there exist a relation ≺ , such that 
(𝑍̅}	,≺) is totally ordered. 

The concept of temporal discrete Z-number is an example of 
ordered discrete Z-number, which is discussed in the following 
section 
 
IMPLEMENTATION 
 

Basically, a temporal discrete Z-number is a discrete Z-
number created from a universal set whose elements are 
ordered in time, whereby the proposed ordered discrete Z-
number is used in the construction of temporal discrete Z-
number. All the content of this section is fully discussed in [11]. 

 
Definition 4.1 Let (𝐹, 𝑑�) and (𝑇, 𝑑�) be metric spaces, where 
(𝑇, ≺) is a linearly ordered set with minimal element 𝑡� ∈ 𝑇. Let  
𝑆� ⊂ 𝐹 × 𝑇 be an augmented trajectory of a dynamic motion 𝑔 ∈
𝐹� defined for all 𝑡 ∈ 𝑇. The relation ≺� on 𝑆� × 𝑆�, generated by 
𝑔(⋅), is called a temporal ordering on 𝑆�, and is defined as  
∀	(𝑍L, 𝑡L), (𝑍8, 𝑡8) ∈ 𝑆�		(𝑍L, 𝑡L) ≺� 	 (𝑍8, 𝑡8) ⟺	𝑡L ≺ t, where 𝑍L 
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and 𝑍8 are ordered discrete Z-numbers. For any set 𝐾� ⊆ 𝑆�, a 
pair (𝐾�,≺�) is said to be a temporal set on 𝑆�. 

Definition 4.2 Let 𝑆� be an augmented dynamic trajectory with 
appropriate temporal ordering ≺�. Let (𝐾�,≺�) be a temporal set on 𝑆�. 
A discrete Z-number in the universe 𝐾� is called a temporal discrete Z-
number which is denoted as 𝑍� = (𝐴�,𝐵�).  

Fig. 3 illustrates the relationship between the augmented 
trajectory 𝑆�, temporal set 𝐾� and the temporal discrete Z-number 
𝑍� . 

              

Fig. 3 Relation between 𝑆�, 𝐾� and 𝑍�. 
 

The following Lemma, theorem and corollary lead to temporal 
discrete Z-numbers as a class of ordered discrete Z-numbers. 

Lemma 4.1. Let 𝑆�be an augmented trajectory, then every 
temporal ordering ≺� on 𝑆� is a partial ordering on 𝑆�. 

Proof. Let 𝑆� be an augmented trajectory with the temporal 
ordering ≺�. Based on the Definition 31 of temporal ordering, the 
relation ≺� on 𝑆� × 𝑆� generated by 𝑔 ∈ 𝐹�  has the characteristic 
such that  

(𝑍L, 𝑡L) ≺� 	 (𝑍8, 𝑡8),⟺ 𝑡L ≺ 𝑡8 
Now, we want to show that its reflexive, antisymmetry and 

transitive for any (𝑍L, 𝑡L), (𝑍8, 𝑡8), (𝑍M, 𝑡M) ∈ 𝑆� where 𝑡L, 𝑡8, 𝑡M ∈ 𝑇.  
1. Reflexive: (𝑍L, 𝑡L) ≺� 		 (𝑍L, 𝑡L) is true since (𝑇, ≺) is 

linearly ordered.  
2. Antisymmetry: Suppose (𝑍L, 𝑡L) ≺� 		 (𝑍8, 𝑡8) and 

(𝑍8, 𝑡8) 	≺� 		 (𝑍L, 𝑡L),	this impliest 𝑡L ≺ 𝑡8 and 𝑡8 ≺ 𝑡L ⟹
𝑡L = 𝑡8  since (𝑇,≺) is linearly ordered. Therefore, 
(𝑍L, 𝑡L) = (𝑍8, 𝑡8). 

3. Transitive: Suppose (𝑍L, 𝑡L) ≺� 	 (𝑍8, 𝑡8) and 
(𝑍8, 𝑡8) 	≺� 	 (𝑍M, 𝑡M),	this implies 𝑡L ≺ 𝑡8 and 𝑡8 ≺ 𝑡M ⟹
𝑡L ≺ 𝑡M  since (𝑇, ≺) is linearly ordered. Therefore,  
(𝑍L, 𝑡L) ≺� (𝑍M, 𝑡M).  

Hence the temporal ordering ≺� on 𝑆� is a partial ordering on 
𝑆�.       
          

Theorem 4.2. Let 𝑆�	be an augmented trajectory, then every 
temporal ordering ≺� on 𝑆� is linearly ordering on 𝑆�. 

Proof. By Lemma 4.1 the temporal ordering ≺� on 𝑆� is a 
partial ordering on 𝑆�. For any distinct elements of 𝑆� i.e. 
(𝑍L, 𝑡L) ≠ 	 (𝑍8, 𝑡8), then there exist 𝑔(𝑡L) = 𝑍L and 𝑔(𝑡8) = 𝑍8 
when 𝑡L ≠ 𝑡8. Since (𝑇, ≺) is linearly ordered, then 𝑡L ≺ 𝑡8 or 𝑡8 ≺
𝑡L. This implies that (𝑍L, 𝑡L) must precedes (𝑍8, 𝑡8)	i.e.  
(𝑍L, 𝑡L) ≺� 	 (𝑍8, 𝑡8) or (𝑍8, 𝑡8) 	≺� 	 (𝑍L, 𝑡L). Hence the temporal 
ordering ≺� on 𝑆� is a linearly ordering on 𝑆�.                                                                                 

 
Corollary 4.3. Every temporal discrete Z-number is an 

ordered discrete Z-number. 

Proof. By Lemma 4.1 and Theorem 4.2 the pair  (𝑆�,≺�) is 
linearly ordered. Furthermore, by Definition 4.1 of temporal 
ordering ≺� is defined as (𝑍L, 𝑡L) ≺� 	 (𝑍8, 𝑡8),⟺ 𝑡L ≺
𝑡8	∀	(𝑍L, 𝑡L), (𝑍8, 𝑡8) ∈ 𝑆� where 𝑍L,𝑍8 are ordered discrete Z-
numbers. For any 𝑅� ⊆ 𝑆� where (𝑅�,≺�) is a temporal set on 𝑆�, 
which is linearly ordered. By Definition 4.2, a discrete Z-number 
say 𝑍 ∈ 𝑅� is called a temporal discrete Z-number. Therefore, this 
means that 𝑍 must be an ordered discrete Z-number by Definition 
4.1. Hence, we can simply say that by Lemma 4.1, Theorem 4.2, 
Definition 4.1, and 4.2, every temporal discrete Z-number is an 
ordered discrete Z-number. 

The detailed derivation of temporal discrete Z-number and its 
implementation procedure are presented in [11], whereby some 
of the data used are obtained from [12] to illustrate the procedure 
for analyzing EEG signal of an epileptic seizure. 
 

 
Fig. 4 EEG signal of an epileptic seizure. 

 
Numerical example: 
Some of the data used are taken from [12]. Let consider an 

EEG data set of an epileptic seizure which is given in Table 2. By 
applying Z-number clustering algorithm one can partition the 
data set in to clusters which are represented by membership 
function of temporal discrete Z-number.  

 
Table 2 Fragment of EEG data set of seizure. 

 

 

 
Firstly, in order to obtain a type-2 temporal fuzzy set cluster, 

fuzzy fuzzifier is used as shown in Fig. 5. 
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Fig. 5 Fuzzy fuzzifier membership function. 

 
A type-2 membership function of one of the clusters obtain is 

described by Fig. 6, say cluster 2. 
 

 
 
Fig. 6 Type-2 data-to-cluster membership function for 𝑥 and 𝑦 

dimension of cluster 2. 
 
The membership function of the first component of temporal 

discrete Z-number, i.e. 𝐴� is obtained as a centroid of type-2 
data-to-cluster membership function as shown in Fig. 5. 
 

 
 

Fig. 7 Membership function of 𝐴�  for 𝑥 and 𝑦 dimension. 
 
The second component of temporal discrete Z-number, i.e. 

𝐵� is determined by constructing a probability density function 
using the obtained membership function of 𝐴�. Fig. 8 
demonstrates the probability density function. 

 
 

Fig. 8 Probability density function for 𝑥 and 𝑦 dimension. 
 
Lastly, by computing the probability measure for 𝐴�, the 

membership function of  𝐵�  is constructed and demonstrated in 
Fig. 9. 

 
Fig. 9 Membership function of 𝐵� for 𝑥 and 𝑦 dimension. 

 
Supposed the membership functions of 𝐴� and 𝐵� for 𝑥 

dimension are represented as follows 
𝐴� = 0

0� + 0.3 1.5� + 1 2.2� + 0.1 3� + 0 0�  
and  

𝐵� = 0.8
0.77� + 1 0.79� + 0.9 0.8� + 0.4 0.9� + 0 1�  

Therefore, the membership functions are used to determine 
the measure of uncertainty for 𝑍� in 𝑥 dimension with respect to 
the time of occurrence. 

The numerical example illustrates the implementation 
procedure of applying temporal discrete Z-number to analyze 
EEG signal data of epileptic seizure and finally to determine the 
measure of uncertainty with respect to time of occurrence. 
 
CONCLUSION 
 

Even though both discrete and continuous Z-numbers are 
pairs of discrete and continuous fuzzy numbers, however they 
not simply imply discrete and continuous Z-numbers are ordered 
immediately as fuzzy numbers with respect to their membership 
values. A complex number is an example such case. In other 
words, both discrete and continuous Z-numbers cannot be 
ordered on their own. This paper proposed the idea of ordered 
discrete and continuous Z-number by creating a relation between 
set of discrete or continuous Z-numbers and any arbitrary 
ordered subset of ℝ.  

The proposed structure is successfully used to construct 
temporal discrete Z-number with the purpose to analyze 
electroencephalographic signal of an epileptic seizure.  
 
ACKNOLEDGEMENT 
 

. This work is financially supported by GUP Tier 1 (13H17), FRGS 
(4F756) and UTM COE Grant, 04G05.   
 
REFERENCES 
 
[1] Aliev, R. A., Alizadeh, A. V., Huseynov, O. H. 2017. An introduction to 

the arithmetic of Z-numbers by using horizontal membership 
functions. Procedia Computer Science, 120, 349-356. 

[2] Zadeh, L. A. 2011.  A note on Z-numbers. Information Sciences, 181(14): 
2923–2932. 

[3] Kang, B., Wei, D., Li, Y., Deng, Y. 2012. A method of converting Z-
number to classical fuzzy number. Journal of Information and Computer 
Science, 9(3), 703–709. 

[4] Aliev, R. A., Alizadeh, A. V., Huseynov, O. H. 2015. The arithmetic of 
discrete Z-numbers. Information Sciences, 290, 134–155. 

[5] Aliev, R. A., Huseynov, O. H., Zeinalova L. M.  2016. The arithmetic of 
continuous Z-numbers. Information Sciences, 373: 441–460. 

[6] Aziz, A. R., Akif, A., Rafiq, A. R. 2015.  The Arithmetic of Z-numbers: 
Theory and Applications. World Scientific. 

[7] Birkhoff G. 1940. Lattice Theory. American Mathematics Society. 
[8] Casasnovas, J., Riera, J. V. 2006. On the addition of discrete fuzzy 

numbers. Proceedings of the 5th WSEAS international conference on 
Telecommunications and informatics. World Scientific and Engineering 
Academy and Society (WSEAS), 432–437. 

[9] Alizadeh, A. V., Huseynov, O. Minimum and Maximum of discrete Z-
numbers. 11th International Conference on Application of Fuzzy Systems 
and Soft Computing 2014. IEEE. 

[10] Kosanovic, B. R., Chaparro, L. F., Sclabassi, R. J. 1996, May. Signal 
modeling with dynamic fuzzy sets.  International Conference on Acoustics, 
Speech, and Signal Processing Conference Proceedings (Vol. 5, pp. 2829-
2832). IEEE. 

[11] Abdullahi, M., Ahmad, T., Ramachandran, V. 2019. A radical approach for 
assessing EEG signal of an epileptic seizure using temporal discrete Z-
numbers. 1st ICUW19 International Conference on Universal Wellbeing, 4-
6 December 2019, Kuala Lumpur. 

[12] Aliev, R., Guirimov, B. 2018. Z-Number clustering based on general type-
2 fuzzy sets. International Conference on Theory and Applications of Fuzzy 
Systems and Soft Computing. Springer.  
 


