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Abstract 

Although the non-linear analytical techniques are fast developing, they still do not entirely satisfy 
mathematicians and engineers. Many researchers have conducted the study to find the analytical 
solution for the logistic delay differential equation. However, for the time lags occasion, it is quite hard 
and tough to achieve analytical solution due to its limitation, and thus, we can only expect the 
approximate analytical solution. This paper describes the approximate analytical techniques, 
homotopy analysis method (HAM), and homotopy perturbation method (HPM) in order to indicate 
their ability in solving the logistic delay differential equation. HAM is one of the better approaches that 
can be used for solving this equation. The use of HAM will lead to obtaining the series solution that 
contains an auxiliary parameter ℎ that can help to adjust and control the convergence and rate 
approximation for the series solution. Meanwhile, HPM is an analytical method with a combination of 
homotopy in topology and classical perturbation technique. Using the HPM technique, the logistic 
delay differential equation is reduced to a sufficiently simplified form, which usually becomes a linear 
equation that is easy to be solved. The comparison of numerical solution with ℎ-values of HAM has 
shown the influence of parameter ℎ in the convergence of series solution. Using HAM and HPM, the 
relationship between the time-delay τ and the population size is obtained.  As a result, the higher the 
value of 𝜏𝜏, the steeper the gradient of the population size 𝑥𝑥. It is concluded that the parameter ℎ helps 
to adjust and control the convergence and rate approximation for the series solution of HAM. 
Laterally, the comparison between HAM and HPM with numerical method is done to show that both 
methods are relatively approximate to the exact solution. Moreover, homotopy perturbation method 
(HPM) is a special case of homotopy analysis method (HAM) when 𝐻𝐻(𝑡𝑡) = 1 and ℎ = −1. Hence, 
using HAM and HPM techniques, two different kinds of series solutions of logistic delay differential 
equation are obtained.  

Keywords: Logistic delay differential equation; homotopy analysis method (HAM); homotopy 
perturbation method (HPM). 
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INTRODUCTION 

The logistic equation or called as the Verhulst model is a model of 
population growth produced by Pierre-Francois Verhulst in 1838. This 
population model is continuous with time. Diversity of biological 
growth has been improved for unpredicted, intraspecific population 
dynamics and many more. It is proven that most of the successful 
predictive growth models are derived from the extended forms of the 
classical logistic equation 

dN(t)
dt = rN(t) �1 −

N(t)
K � 

where 𝑁𝑁(𝑡𝑡) is population density, 𝐾𝐾 is the carrying capacity and 𝑟𝑟 is 
population growth rate or known as Malthusian parameter.  

A common approximation, for instance, like a growth for the initial 
period can be presented by the simple exponential growth model 
(Tsoularis and Wallace, 2002). However, for populations, this model 
considers that there is no intraspecific competition or predation. 
Therefore, the populations will persist to grow uninhibitedly and reduce 
to zero only with the existence of an initial growth reduction (Tsoularis 
and Wallace, 2002). However, there is a case where predation is fully 
disregarded, but the model still cannot adapt the reductions that caused 
by the intraspecific competition for environmental resources such as 
habitat and food (Tsoularis and Wallace, 2002). For example, when the 

plants reach a maturity phase, the physical features will approach a 
limiting dimension. 

Moreover, this logistic equation plays a significant part in modeling 
world, involving more than one interacting population. In other word, 
the rate of growth for one or more of the interacting populations can 
satisfy the logistic equation with absence of the other populations 
(Julien, Lin and Gail, 2005). Many researchers that interested to explore 
on population dynamics are trying to establish the limitation and 
restriction for various populations that exist in this world. So far, some 
of the researches have been done for human populations in the USA by 
Pearl and Reed (1930) and Pearl et al. (1940), as well as in Canada by 
MacLean and Willard (1937).  

Eventually, this interest slowly has became a popular subject for 
the mathematical analysis in many years. The topic includes the 
population dynamics, either discretely modeled or continuously 
modeled, especially for the large population (Tsoularis and Wallace, 
2002). However, in reality, the rate of growth is not constant but 
declines after a period of time, and sometimes can cause a time delay, 
which is usually due to factors of environment and inherent genetic 
limitations (Hutchinson, 1948). 

In 1948, Hutchinson (1948) suggested that the population growth 
in logistic equation is relevant and appropriate for the case when there 
is a lag in certain processes. Thus, this reformulation for the logistic 

RESEARCH ARTICLE 



Talib et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 16, No. 3 (2020) 368-373

369 

𝑑𝑑          
      
  

  
         
          





= 𝑟𝑟𝑁𝑁(𝑡𝑡) �1 −
𝑁𝑁(𝑡𝑡 − 𝜏𝜏)

𝐾𝐾
�,

where τ is the delay and a positive constant. The research on this logistic 
equations with the time delay has expanded very fast, including the 
research on the stability analysis, sensitivity analysis and also its 
application in population dynamics (see Rihan et al. (2014), 
Lakshmanan et al. (2014), Rihan et al. (2018) and Rihan et al. (2018)).  

DESCRIPTION OF THE METHOD 

Basic ideas of HAM 
The homotopy analysis method (HAM) is first proposed by Liao in 

1992 and has been widely used in handling and solving non-linear 
problems. The difficulties arise when most of perturbation techniques 
are depended on either small or large parameter, resulting them to be 
only suitable to apply on weakly non-linear problems. Homotopy 
Analysis Method (HAM) has been successfully proven to overcome the 
obstacles (Liao, 1997). Despite of being different from all perturbation 
and non-perturbation methods, HAM conveniently provides us a better 
way to adjust and control the convergence region and rate of 
approximation series. The convergence-control parameter, h is a non-
physical variable which provides a pleasant way to verify and naturally 
enforce the solution series to be converged. There is a rapid growth of 
this research as can be seen in the literatures such as in Yin et al. (2015), 
Olvera et al. (2015), and Abolhasani et.al (2016). Abolhasani et.al 
(2016) introduced a new method called modified Homotopy 
perturbation method for solving delay differential equations based on 
the new Homotopy perturbation method and Pade approximation, 
which is very useful to control the convergence region of approximate 
solutions. This method solves neutral functional differential equations 
with proportional delays and the multi-pantograph delay equations, in 
which the results are compared with that of the Homotopy analysis 
method, new Homotopy analysis method, and variational iteration 
method. However, this method is not suitable to be applied in solving 
logistic delay differential equation. 

The basic idea of HAM is explained in more detail manner in the 
next section. 

Zeroth-order deformation equation 
First, consider one non-linear equation in general form as shown 

below 
𝒩𝒩[𝑥𝑥(𝑡𝑡)] = 0.

Let 𝑥𝑥0(𝑡𝑡) be an initial guess of the exact solution 𝑥𝑥(𝑡𝑡). Since ℎ ≠ 0 is 
an auxiliary parameter and 𝐻𝐻(𝑡𝑡) ≠ 0 is an auxiliary function, thus ℒ is 
an auxiliary linear operator with the property  
ℒ[Φ(𝑡𝑡; 𝑞𝑞)] = 0     when  Φ(𝑡𝑡; 𝑞𝑞) = 0.

Using 𝑞𝑞 𝜖𝜖 [0,1] as an embedding parameter, we build a homotopy 
equation, 

ℋ[Φ(𝑡𝑡; 𝑞𝑞); 𝑥𝑥0(𝑡𝑡),𝐻𝐻(𝑡𝑡), ℎ, 𝑞𝑞]
= (1 − 𝑞𝑞){ ℒ[Φ(𝑡𝑡; 𝑞𝑞) − 𝑥𝑥0(𝑡𝑡)]}
− 𝑞𝑞ℎ𝐻𝐻(𝑡𝑡)𝒩𝒩[Φ(𝑡𝑡; 𝑞𝑞)] = 0.       (1)

The zero order deformation equation is as below 

(1 − 𝑞𝑞){ ℒ[Φ(𝑡𝑡; 𝑞𝑞) − 𝑥𝑥0(𝑡𝑡)]} = 𝑞𝑞ℎ𝐻𝐻(𝑡𝑡)𝒩𝒩[Φ(𝑡𝑡; 𝑞𝑞)] (2)

and stated that Φ(𝑡𝑡; 𝑞𝑞) is the solution that relies on the auxiliary linear 
operator ℒ, initial guess 𝑥𝑥0(𝑡𝑡), auxiliary parameter ℎ, auxiliary function 
𝐻𝐻(𝑡𝑡) and embedding parameter 𝑞𝑞.

If the value 𝑞𝑞 = 0 and 𝑞𝑞 = 1 with ℎ ≠ 0,  𝐻𝐻(𝑡𝑡) ≠ 0, the equation 
(2) becomes

Φ(𝑡𝑡; 0) = 𝑥𝑥0(𝑡𝑡)
Φ(𝑡𝑡; 1) = 𝑥𝑥(𝑡𝑡).

The 𝑚𝑚th order deformation derivatives i                                       s defined as, 

𝑥𝑥0
[𝑚𝑚](𝑡𝑡) =

𝜕𝜕𝑚𝑚 Φ(𝑡𝑡; 𝑞𝑞)
𝜕𝜕𝑞𝑞𝑚𝑚 �

𝑞𝑞=0
.

Using Taylor’s theorem, Φ(𝑡𝑡; 𝑞𝑞) can be expanded in power series of 𝑞𝑞
to become 

Φ(𝑡𝑡; 𝑞𝑞) = Φ(𝑡𝑡; 0) +  �
 𝑥𝑥0

[𝑚𝑚](𝑡𝑡)
𝑚𝑚! 𝑞𝑞𝑚𝑚.

+∞

𝑚𝑚=1

Thus, Φ(𝑡𝑡; 𝑞𝑞) becomes 

Φ(𝑡𝑡; 𝑞𝑞) = 𝑥𝑥0(𝑡𝑡) + � 𝑥𝑥𝑚𝑚(𝑡𝑡)𝑞𝑞𝑚𝑚
+∞

𝑚𝑚=1

where 

𝑥𝑥𝑚𝑚(𝑡𝑡) =
𝑥𝑥0

[𝑚𝑚](𝑡𝑡)
𝑚𝑚! =

1
𝑚𝑚!

𝜕𝜕𝑚𝑚 Φ(𝑡𝑡; 𝑞𝑞)
𝜕𝜕𝑞𝑞𝑚𝑚 �

𝑞𝑞=0
.

As 𝑞𝑞 = 1, this leads to assumption for the solution series, 

Φ(𝑡𝑡; 1) =  𝑥𝑥(𝑡𝑡) = 𝑥𝑥0(𝑡𝑡) + � 𝑥𝑥𝑚𝑚(𝑡𝑡).
+∞

𝑚𝑚=1

         (3) 

The above expression shows the relationship between the exact 
solutions 𝑥𝑥(𝑡𝑡) and the initial approximation 𝑥𝑥0(𝑡𝑡) by the terms of 
𝑥𝑥𝑚𝑚(𝑡𝑡). Next, the term 𝑥𝑥𝑚𝑚(𝑡𝑡) will be discovered by the higher-order 
deformation equation as described below. 

Higher-order deformation equation 
Defining the vector, 

𝑥⃗𝑥𝑛𝑛(𝑡𝑡) = {𝑥𝑥0(𝑡𝑡), 𝑥𝑥1(𝑡𝑡), … , 𝑥𝑥𝑛𝑛−1(𝑡𝑡), 𝑥𝑥𝑛𝑛(𝑡𝑡)}. 

The zero order deformation equation is differentiated by 𝑚𝑚 times with 
respect to 𝑞𝑞, the embedding parameter. By dividing it by 𝑚𝑚! and set 
𝑞𝑞 = 0, the 𝑚𝑚th order deformation equation is produced 

ℒ[𝑥𝑥𝑚𝑚(𝑡𝑡) − 𝜒𝜒𝑚𝑚𝑥𝑥𝑚𝑚−1(𝑡𝑡)] = ℎ𝐻𝐻(𝑡𝑡)𝑅𝑅𝑚𝑚 [ 𝑥⃗𝑥𝑚𝑚−1(𝑡𝑡)] (4)

where 

𝑅𝑅𝑚𝑚[𝑥⃗𝑥𝑚𝑚−1(𝑡𝑡)] =
1

(𝑚𝑚 − 1)!
𝜕𝜕𝑚𝑚−1N[ Φ(𝑡𝑡; 𝑞𝑞)]

𝜕𝜕𝑞𝑞𝑚𝑚−1 �
𝑞𝑞=0

. 

and 𝜒𝜒𝑚𝑚 is introduced by 

𝜒𝜒𝑚𝑚 = � 1       𝑤𝑤ℎ𝑒𝑒𝑒𝑒  𝑚𝑚 > 1 

Rearranging equation (4), we obtain 

0     𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒.      

𝑥𝑥𝑚𝑚(𝑡𝑡) = 𝜒𝜒𝑚𝑚𝑥𝑥𝑚𝑚−1(𝑡𝑡) + ℎ ℒ−1{𝐻𝐻(𝑡𝑡)𝑅𝑅𝑚𝑚[𝑥⃗𝑥𝑚𝑚−1(𝑡𝑡)] }.

Finally, the solution series of HAM is obtained as follows, 

𝑥𝑥(𝑡𝑡) = � 𝑥𝑥𝑚𝑚(𝑡𝑡)
+∞

𝑚𝑚=0

.

The convergence of the series solution is essential to be proved as 
provided by Liao (2003). A series solution is considered as a good one 
if it converges rather than diverges. One of the main factors that 
influence the convergence of the series solution is the type of base 
function used to express the solution. Thus, the base functions are 
expected to be more likely to resemble the behavior of the actual 
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solution, which will provide a better outcome. These auxiliary linear 
operator ℒ, auxiliary function𝐻𝐻(𝑡𝑡), auxiliary parameter ℎ and the 
initial approximation 𝑥𝑥0(𝑡𝑡) choices are also the important keys to 
determine the convergence of the series solution. In order to determine 
the optimum value of ℎ, the graph of so-called ℎ-curves of the solution 
is plotted. These curves are plotted by sums of 𝑥𝑥𝑚𝑚(𝑡𝑡) and/or their first 
derivatives that evaluated at a specific chosen 𝑡𝑡 value against the 
auxiliary parameter ℎ. 

Basic ideas of HPM 
The homotopy perturbation method (HPM) is first proposed by J. 

Huan He, the Chinese mathematician. Basically, the perturbation 
techniques is based on the existence of small or large parameters c                                      alled 
as perturbation quantity. This small parameter assumption restricts the 
application of perturbation techniques since most of the non-linear 
problems do not consist of small parameter (He, 2000). Moreover, the 
determination of small parameter seems to be important, otherwise it 
will lead to bad results (He, 2000). Hence, this is where the homotopy 
perturbation method (HPM) is implemented to give the approximate 
analytical solutions for the non-linear problems. The main idea is by 
introducing a homotopy parameter, 𝑝𝑝 which corresponded to values 
from 0 to 1. When the value 𝑝𝑝 is 0, the equation reduces to a simplified 
form, which normally becomes a linear equation. As 𝑝𝑝 is slowly 
increased to 𝑝𝑝 = 1, the equation goes under a chronology of 
deformations. Up until 𝑝𝑝 = 1, the equation follows the original 
equation and becomes the last stage of deformation to give the 
analytical solution. Next, the solution is expanded into a series of p and 
then solved in sequence according to the power of 𝑝𝑝. HPM is known 
for its remarkable features, which it sufficiently requires several 
perturbation terms to gain a reasonably precise solution. 

To illustrate the basic idea of the HPM, consider one non-linear 
differential equation, 

𝐴𝐴(𝑢𝑢) − 𝑓𝑓(𝒓𝒓) = 0,       𝒓𝒓 𝜖𝜖 Ω,

with the following boundary condition 

𝐵𝐵 �𝑢𝑢,
𝜕𝜕𝑢𝑢
𝜕𝜕𝑒𝑒� = 0,        𝒓𝒓 𝜖𝜖 Γ,   

where 𝐴𝐴 is a general differential operator, 𝐵𝐵 is a boundary operator, 𝒓𝒓

is a spatial independent variables, 𝑓𝑓(𝒓𝒓) is a known analytical function
and Γ is the boundary of the domain Ω. Generally, operator 𝐴𝐴 can be

splitted into two parts that are is                                          𝐿𝐿 and 𝑁𝑁,  where 𝐿𝐿 is linear and 𝑁𝑁 is

non-linear. 
𝐿𝐿(𝑢𝑢) + 𝑁𝑁(𝑢𝑢) − 𝑓𝑓(𝒓𝒓) = 0.  

We construct a homotopy equation with 𝑝𝑝 𝜖𝜖 [0,1] as an embedding 
parameter and 𝑢𝑢0 as an initial approximation, 

𝐻𝐻(𝑣𝑣, 𝑝𝑝) = (1 − 𝑝𝑝)[ 𝐿𝐿(𝑣𝑣) − 𝐿𝐿(𝑢𝑢0) ] + 𝑝𝑝[𝐴𝐴(𝑣𝑣) − 𝑓𝑓(𝒓𝒓)] = 0,
𝑝𝑝 𝜖𝜖 [0,1] , 𝒓𝒓 𝜖𝜖 Ω  . (5)

If 
𝑝𝑝 is set to 0 and 1, the equation (5) is obtained as follows : 

𝐻𝐻(𝑣𝑣, 0) = 𝐿𝐿(𝑣𝑣) − 𝐿𝐿(𝑢𝑢0) = 0,
𝐻𝐻(𝑣𝑣, 1) = 𝐴𝐴(𝑣𝑣) − 𝑓𝑓(𝒓𝒓) = 0.

The above process of changing 𝑝𝑝 from zero to unity is just the 
displacement of 𝑣𝑣(𝒓𝒓,𝑝𝑝) from 𝑢𝑢0(𝒓𝒓) to 𝑢𝑢(𝒓𝒓). In topology, this is called 
deformation, while 𝐿𝐿(𝑣𝑣) − 𝐿𝐿(𝑢𝑢0) and 𝐴𝐴(𝑣𝑣) − 𝑓𝑓(𝒓𝒓) are called 
homotopies. 

The embedding parameter, 𝑝𝑝 is used as a small parameter and
assumes that the solution can be written as a power series in 𝑝𝑝

: 

𝑣𝑣 = 𝑣𝑣0 + 𝑝𝑝𝑣𝑣1 + 𝑝𝑝2𝑣𝑣2 + ⋯.

By setting 𝑝𝑝 = 1, the approximation solution of HPM is obtained as 
follows, 

𝑢𝑢 = lim
𝑝𝑝→1

𝑣𝑣 = 𝑣𝑣0 + 𝑣𝑣1 + 𝑣𝑣2 + ⋯.

HOMOTOPY ANALYSIS METHOD (HAM) AND HOMOTOPY 
PERTURBATION METHOD (HPM) FOR  SOLVING LOGISTIC 
DELAY DIFFERENTIAL EQUATION 

We use HAM and HPM to solve the logistic delay differential 
equation as shown below,  

𝑑𝑑𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡 − 𝑟𝑟𝑥𝑥(𝑡𝑡) + 𝜇𝜇𝑥𝑥(𝑡𝑡)𝑥𝑥(𝑡𝑡 − 𝜏𝜏) = 0,    where     𝜇𝜇 =

𝑟𝑟
𝑘𝑘,

𝑥𝑥(0) = 𝛼𝛼

where 𝑥𝑥 is the population size, 𝛼𝛼 is the initial amount, 𝑘𝑘 is the carrying 
capacity and 𝑟𝑟 is the population growth rate. 

Homotopy analysis method (HAM) for solving logistic delay 
differential equation 

For this delay problem, we choose { 𝑒𝑒𝑛𝑛(𝑡𝑡)| 𝑒𝑒 = 0,1,2 … } as a base 
function. Thus, the solution can be written as  

𝑥𝑥𝑚𝑚(𝑡𝑡) = � 𝑐𝑐𝑚𝑚𝑒𝑒𝑚𝑚(𝑡𝑡)
𝑀𝑀

𝑚𝑚=0

where 𝑐𝑐𝑚𝑚 𝜕𝜕 

   



 



with property 
ℒ[𝑐𝑐] = 0         

where 𝑐𝑐 𝜕𝜕


 

 − 𝑟𝑟𝑥𝑥(𝑡𝑡; 𝑞𝑞) + 𝜇𝜇𝑥𝑥(𝑡𝑡; 𝑞𝑞)𝑥𝑥(𝑡𝑡 − 𝜏𝜏; 𝑞𝑞).

Note that the solution series we are looking for 

𝑥𝑥(𝑡𝑡; 1) = 𝑥𝑥(𝑡𝑡) = 𝑥𝑥0(𝑡𝑡) + � 𝑥𝑥𝑚𝑚(𝑡𝑡).      (7)
+∞

𝑚𝑚=1

For the term 𝑥𝑥𝑚𝑚(𝑡𝑡), we use the 𝑚𝑚th order deformation equation, 

ℒ[𝑥𝑥𝑚𝑚(𝑡𝑡) − 𝜒𝜒𝑚𝑚𝑥𝑥𝑚𝑚−1(𝑡𝑡)] = ℎ𝑅𝑅𝑚𝑚[𝑥⃗𝑥𝑚𝑚−1(𝑡𝑡)] (8)
where 

𝑅𝑅𝑚𝑚[𝑥⃗𝑥𝑚𝑚−1(𝑡𝑡)] = 𝑥𝑥𝑚𝑚−1
′ (𝑡𝑡) − 𝑟𝑟𝑥𝑥𝑚𝑚−1(𝑡𝑡) + 𝜇𝜇 � 𝑥𝑥𝑖𝑖(𝑡𝑡)𝑥𝑥𝑚𝑚−1−𝑖𝑖(𝑡𝑡 − 𝜏𝜏)

𝑚𝑚−1

𝑖𝑖=0

and 
𝜒𝜒𝑚𝑚 = � 1       when  𝑚𝑚 > 1 

By algebraic manipulation, 

0     otherwise.       

𝑚𝑚th order deformation equation of (7) 
for 𝑚𝑚 ≥ 1, becomes 

𝑥𝑥𝑚𝑚(𝑡𝑡) = 𝜒𝜒𝑚𝑚𝑥𝑥𝑚𝑚−1(𝑡𝑡) + ℎ ℒ−1{𝑅𝑅𝑚𝑚[𝑥⃗𝑥𝑚𝑚−1(𝑡𝑡)] }.              (9)

We solve equation (7) with initial guess (6). Thus, we successively 
obtain 

𝑥𝑥0(𝑡𝑡) = 𝛼𝛼𝑒𝑒𝑟𝑟𝑟𝑟

𝑥𝑥1(𝑡𝑡) =
1

2𝑟𝑟 ℎ𝜇𝜇𝛼𝛼
2𝑒𝑒−𝑟𝑟𝑟𝑟𝑒𝑒2𝑟𝑟𝑟𝑟  
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𝑥𝑥2(𝑡𝑡) =
1

4𝑟𝑟 ℎ𝜇𝜇𝛼𝛼
2𝑒𝑒−𝑟𝑟𝑟𝑟(ℎ + 2)𝑒𝑒2𝑟𝑟𝑟𝑟 +

1
6𝑟𝑟2 ℎ

2𝜇𝜇2𝛼𝛼3(𝑒𝑒−2𝑟𝑟𝑟𝑟

+ 𝑒𝑒−3𝑟𝑟𝑟𝑟)𝑒𝑒3𝑟𝑟𝑟𝑟  

𝑥𝑥3(𝑡𝑡) =
1

8𝑟𝑟 ℎ𝜇𝜇𝛼𝛼
2𝑒𝑒−𝑟𝑟𝑟𝑟(ℎ + 2)2𝑒𝑒2𝑟𝑟𝑟𝑟 +

1
36𝑟𝑟2 ℎ

2𝜇𝜇2𝛼𝛼3(𝑒𝑒−2𝑟𝑟𝑟𝑟

+ 𝑒𝑒−3𝑟𝑟𝑟𝑟)(7ℎ + 12)𝑒𝑒3𝑟𝑟𝑟𝑟

+
1

48𝑟𝑟3 ℎ
3𝜇𝜇3𝛼𝛼4(2𝑒𝑒−3𝑟𝑟𝑟𝑟 + 5𝑒𝑒−4𝑟𝑟𝑟𝑟 + 2𝑒𝑒−5𝑟𝑟𝑟𝑟

+ 2𝑒𝑒−6𝑟𝑟𝑟𝑟)𝑒𝑒4𝑟𝑟𝑟𝑟  

𝑥𝑥4(𝑡𝑡) =
1

16𝑟𝑟 ℎ𝜇𝜇𝛼𝛼
2𝑒𝑒−𝑟𝑟𝑟𝑟(ℎ + 2)2(1 + 2ℎ)𝑒𝑒2𝑟𝑟𝑟𝑟

+ �
1

216𝑟𝑟2 ℎ
2𝜇𝜇2𝛼𝛼3(𝑒𝑒−2𝑟𝑟𝑟𝑟

+ 𝑒𝑒−3𝑟𝑟𝑟𝑟) (7ℎ + 12)(6ℎ + 4)

+
1

24𝑟𝑟2 ℎ𝜇𝜇
2𝛼𝛼3(ℎ + 2)2(𝑒𝑒−2𝑟𝑟𝑟𝑟 + 𝑒𝑒−3𝑟𝑟𝑟𝑟)� 𝑒𝑒3𝑟𝑟𝑟𝑟

+ �
1

64𝑟𝑟3 ℎ
3𝜇𝜇3𝛼𝛼4(1

+
4
3ℎ)(2𝑒𝑒−3𝑟𝑟𝑟𝑟 + 5𝑒𝑒−4𝑟𝑟𝑟𝑟 + 2𝑒𝑒−5𝑟𝑟𝑟𝑟 + 2𝑒𝑒−6𝑟𝑟𝑟𝑟)

+
7

144𝑟𝑟3 ℎ
3𝜇𝜇3𝛼𝛼4(𝑒𝑒−3𝑟𝑟𝑟𝑟 +

16
7 𝑒𝑒−4𝑟𝑟𝑟𝑟 + 𝑒𝑒−5𝑟𝑟𝑟𝑟

+ 𝑒𝑒−6𝑟𝑟𝑟𝑟)

+
1

12𝑟𝑟3 ℎ
2𝜇𝜇3𝛼𝛼4(𝑒𝑒−3𝑟𝑟𝑟𝑟 +

5
2 𝑒𝑒

−4𝑟𝑟𝑟𝑟 + 𝑒𝑒−5𝑟𝑟𝑟𝑟

+ 𝑒𝑒−6𝑟𝑟𝑟𝑟)� 𝑒𝑒4𝑟𝑟𝑟𝑟

+
1

120𝑟𝑟4 ℎ
3𝜇𝜇4𝛼𝛼5 �𝑒𝑒−4𝑟𝑟𝑟𝑟 +

9
2 𝑒𝑒

−5𝑟𝑟𝑟𝑟 + 5𝑒𝑒−6𝑟𝑟𝑟𝑟

Finally, the solution of series form is given by 

+ 4𝑒𝑒−7𝑟𝑟𝑟𝑟 +
5
2 𝑒𝑒

−8𝑟𝑟𝑟𝑟 + 𝑒𝑒−9𝑟𝑟𝑟𝑟 + 𝑒𝑒−10𝑟𝑟𝑟𝑟� 𝑒𝑒5𝑟𝑟𝑟𝑟 .

𝑥𝑥(𝑡𝑡) = 𝑥𝑥0(𝑡𝑡) + 𝑥𝑥1(𝑡𝑡) + 𝑥𝑥2(𝑡𝑡) + 𝑥𝑥3(𝑡𝑡) + 𝑥𝑥4(𝑡𝑡) + ⋯

Homotopy perturbation method (HPM) for solving logistic 
delay differential equation 

Construct the homotopy equation as follows, 

𝐻𝐻(𝑋𝑋, 𝑝𝑝) = (1 − 𝑝𝑝)[𝑋𝑋′(𝑡𝑡) − 𝑟𝑟𝑋𝑋(𝑡𝑡) − 𝑥𝑥0′ (𝑡𝑡) + 𝑟𝑟𝑥𝑥0(𝑡𝑡)]  
+ 𝑝𝑝[𝑋𝑋′(𝑡𝑡) − 𝑟𝑟𝑋𝑋(𝑡𝑡) + 𝜇𝜇𝑋𝑋(𝑡𝑡)𝑋𝑋(𝑡𝑡 − 𝜏𝜏)] = 0.    (10)

Assume the solution has the form, 

𝑋𝑋(𝑡𝑡) = 𝑋𝑋0(𝑡𝑡) + 𝑝𝑝𝑋𝑋1(𝑡𝑡) + 𝑝𝑝2𝑋𝑋2(𝑡𝑡) + 𝑝𝑝3𝑋𝑋3(𝑡𝑡) + 𝑝𝑝4𝑋𝑋4(𝑡𝑡)
+ 𝑂𝑂(𝑝𝑝5)                                                                  (11)

𝑋𝑋′(𝑡𝑡) = 𝑋𝑋′0(𝑡𝑡) + 𝑝𝑝𝑋𝑋′1(𝑡𝑡) + 𝑝𝑝2𝑋𝑋′2(𝑡𝑡) + 𝑝𝑝3𝑋𝑋′3(𝑡𝑡) + 𝑝𝑝4𝑋𝑋′4(𝑡𝑡)
+ 𝑂𝑂(𝑝𝑝5).                                                                 (12)

Substituting equations (11) and (12) into equation (10), the equation 
becomes, 

�𝑋𝑋′0(𝑡𝑡) + 𝑝𝑝𝑋𝑋′1(𝑡𝑡) + 𝑝𝑝2𝑋𝑋′2(𝑡𝑡) + 𝑝𝑝3𝑋𝑋′3(𝑡𝑡) + 𝑝𝑝4𝑋𝑋′4(𝑡𝑡)� − 𝑟𝑟[𝑋𝑋0(𝑡𝑡) +
𝑝𝑝𝑋𝑋1(𝑡𝑡) + 𝑝𝑝2𝑋𝑋2(𝑡𝑡) + 𝑝𝑝3𝑋𝑋3(𝑡𝑡) + 𝑝𝑝4𝑋𝑋4(𝑡𝑡)] − 𝑥𝑥0′ (𝑡𝑡) + 𝑟𝑟𝑥𝑥0(𝑡𝑡) +
𝑝𝑝𝑥𝑥0′ (𝑡𝑡) − 𝑝𝑝𝑟𝑟𝑥𝑥0(𝑡𝑡) + 𝑝𝑝𝜇𝜇[𝑋𝑋0(𝑡𝑡) + 𝑝𝑝𝑋𝑋1(𝑡𝑡) + 𝑝𝑝2𝑋𝑋2(𝑡𝑡) + 𝑝𝑝3𝑋𝑋3(𝑡𝑡) +
𝑝𝑝4𝑋𝑋4(𝑡𝑡)][𝑋𝑋0(𝑡𝑡 − 𝜏𝜏) + 𝑝𝑝𝑋𝑋1(𝑡𝑡 − 𝜏𝜏) + 𝑝𝑝2𝑋𝑋2(𝑡𝑡 − 𝜏𝜏) + 𝑝𝑝3𝑋𝑋3(𝑡𝑡 − 𝜏𝜏) +
𝑝𝑝4𝑋𝑋4(𝑡𝑡 − 𝜏𝜏)] = 0.                                                                                     (13)   

By using some algebraic manipulations to equation (13) and 
collecting the terms according to the identical powers of 𝑝𝑝, the 
following equations are obtained, 

𝑝𝑝0 ∶  𝑋𝑋′0(𝑡𝑡) − 𝑟𝑟𝑋𝑋0(𝑡𝑡) − 𝑥𝑥0′ (𝑡𝑡) + 𝑟𝑟𝑥𝑥0(𝑡𝑡) = 0

𝑝𝑝1 ∶  𝑋𝑋′1(𝑡𝑡) − 𝑟𝑟𝑋𝑋1(𝑡𝑡) + 𝑥𝑥0′ (𝑡𝑡) − 𝑟𝑟𝑥𝑥0(𝑡𝑡) + 𝜇𝜇𝑋𝑋0(𝑡𝑡)𝑋𝑋0(𝑡𝑡 − 𝜏𝜏) = 0

𝑝𝑝2 ∶  𝑋𝑋′2(𝑡𝑡) − 𝑟𝑟𝑋𝑋2(𝑡𝑡) +  𝜇𝜇𝑋𝑋0(𝑡𝑡)𝑋𝑋1(𝑡𝑡 − 𝜏𝜏) + 𝜇𝜇𝑋𝑋1(𝑡𝑡)𝑋𝑋0(𝑡𝑡 − 𝜏𝜏) = 0

𝑝𝑝3 ∶  𝑋𝑋′3(𝑡𝑡) − 𝑟𝑟𝑋𝑋3(𝑡𝑡) +  𝜇𝜇𝑋𝑋0(𝑡𝑡)𝑋𝑋2(𝑡𝑡 − 𝜏𝜏) + 𝜇𝜇𝑋𝑋1(𝑡𝑡)𝑋𝑋1(𝑡𝑡 − 𝜏𝜏)
+ 𝜇𝜇𝑋𝑋2(𝑡𝑡)𝑋𝑋0(𝑡𝑡 − 𝜏𝜏) = 0

𝑝𝑝4 ∶  𝑋𝑋′4(𝑡𝑡) − 𝑟𝑟𝑋𝑋4(𝑡𝑡) +  𝜇𝜇𝑋𝑋0(𝑡𝑡)𝑋𝑋3(𝑡𝑡 − 𝜏𝜏) + 𝜇𝜇𝑋𝑋1(𝑡𝑡)𝑋𝑋2(𝑡𝑡 − 𝜏𝜏)
+ 𝜇𝜇𝑋𝑋2(𝑡𝑡)𝑋𝑋1(𝑡𝑡 − 𝜏𝜏) + 𝜇𝜇𝑋𝑋3(𝑡𝑡)𝑋𝑋0(𝑡𝑡 − 𝜏𝜏) = 0.

Solve the equations of 𝑝𝑝0,𝑝𝑝1, 𝑝𝑝2,𝑝𝑝3 and 𝑝𝑝4 in sequence, together with 
the given initial condition to obtain 𝑋𝑋0(𝑡𝑡),𝑋𝑋1(𝑡𝑡),𝑋𝑋2(𝑡𝑡),𝑋𝑋3(𝑡𝑡) and 
𝑋𝑋4(𝑡𝑡). 

𝑋𝑋0(𝑡𝑡) = 𝛼𝛼

𝑋𝑋1(𝑡𝑡) =
𝜇𝜇𝛼𝛼2

𝑟𝑟 − 𝛼𝛼 + 𝑒𝑒𝑟𝑟𝑟𝑟 �−
𝜇𝜇𝛼𝛼2

𝑟𝑟 + 𝛼𝛼�

𝑋𝑋2(𝑡𝑡) =
1
𝑟𝑟
�𝜇𝜇𝛼𝛼2(𝜇𝜇𝛼𝛼 − 𝑟𝑟)�

2𝑒𝑒−𝑟𝑟𝑟𝑟

𝑟𝑟 + 𝑡𝑡 + 𝑡𝑡𝑒𝑒−𝑟𝑟𝑟𝑟� −
2𝜇𝜇𝛼𝛼2(𝜇𝜇𝛼𝛼 − 𝑟𝑟)

𝑟𝑟 � 𝑒𝑒𝑟𝑟𝑟𝑟

𝑋𝑋3(𝑡𝑡) =
𝜇𝜇𝛼𝛼2(−𝜇𝜇𝛼𝛼 + 𝑟𝑟)𝑒𝑒𝑟𝑟𝑟𝑟

𝑟𝑟2 �
(𝜇𝜇𝛼𝛼 − 𝑟𝑟) 𝑒𝑒𝑟𝑟(𝑟𝑟−𝑟𝑟)

𝑟𝑟
+ 𝑒𝑒−𝑟𝑟𝑟𝑟 [𝜇𝜇𝛼𝛼(−3𝑡𝑡 − 𝑟𝑟𝜏𝜏𝑡𝑡 + 𝑟𝑟𝑡𝑡2) + 𝑟𝑟𝑡𝑡]

+ 𝑟𝑟𝑢𝑢𝛼𝛼𝑒𝑒−2𝑟𝑟𝑟𝑟  �
𝑡𝑡2

2 − 𝜏𝜏𝑡𝑡� −
(5𝑢𝑢𝛼𝛼 − 𝑟𝑟)𝑒𝑒−𝑟𝑟𝑟𝑟

𝑟𝑟

+ 𝑢𝑢𝛼𝛼 �
𝑟𝑟𝑡𝑡2

2 − 3𝑡𝑡� + 𝑟𝑟𝑡𝑡� + 𝐶𝐶𝑒𝑒𝑟𝑟𝑟𝑟

𝑋𝑋4(𝑡𝑡) = −
𝛼𝛼3𝑢𝑢2(−𝑢𝑢𝛼𝛼 + 𝑟𝑟)

2𝑒𝑒3𝑟𝑟𝑟𝑟𝑟𝑟4 ���(𝑢𝑢𝛼𝛼𝑡𝑡2 + 4𝑡𝑡)𝑟𝑟2 + (−14 − 10𝑢𝑢𝛼𝛼𝑡𝑡)𝑟𝑟

+ 28𝑢𝑢𝛼𝛼�𝑒𝑒𝑟𝑟𝑟𝑟 + 12𝑟𝑟2𝑡𝑡 + (−28𝑢𝑢𝛼𝛼𝑡𝑡 + 14)𝑟𝑟
− 28𝑢𝑢𝛼𝛼�𝑒𝑒3𝑟𝑟𝑟𝑟

+ ��(−𝑢𝑢𝛼𝛼 + 𝑟𝑟)(4 + 𝑟𝑟𝜏𝜏 − 2𝑟𝑟𝑡𝑡)�𝑒𝑒2𝑟𝑟𝑟𝑟

+ ��(3𝑡𝑡 − 𝜏𝜏)(𝑡𝑡 − 𝜏𝜏)𝑢𝑢𝛼𝛼 − 4𝜏𝜏 + 8𝑡𝑡�𝑟𝑟2

+ (−16 − (22𝑡𝑡 − 12𝜏𝜏)𝑢𝑢𝛼𝛼)𝑟𝑟 + 38𝑢𝑢𝛼𝛼� 𝑒𝑒𝑟𝑟𝑟𝑟

+ (3𝜏𝜏 − 𝑢𝑢𝛼𝛼𝜏𝜏2)𝑟𝑟2 + (12 − 11𝑢𝑢𝛼𝛼𝜏𝜏)𝑟𝑟
− 34𝑢𝑢𝛼𝛼� 𝑒𝑒2𝑟𝑟𝑟𝑟

+ �(−𝑢𝑢𝛼𝛼 + 𝑟𝑟)(1 + 𝑟𝑟𝜏𝜏 − 𝑟𝑟𝑡𝑡)𝑒𝑒2𝑟𝑟𝑟𝑟

+ �(𝑢𝑢𝛼𝛼(𝑡𝑡 − 2𝜏𝜏)(3𝑡𝑡 − 2𝜏𝜏) − 4𝜏𝜏 + 4𝑡𝑡)𝑟𝑟2

+ (−2 + 16𝜏𝜏 − 14𝑡𝑡)𝑢𝑢𝛼𝛼𝑟𝑟�𝑒𝑒𝑟𝑟𝑟𝑟 + (3𝜏𝜏 − 4𝑢𝑢𝛼𝛼𝜏𝜏2)𝑟𝑟2

+ (1 − 15𝑢𝑢𝛼𝛼𝜏𝜏)𝑟𝑟 − 11𝑢𝑢𝛼𝛼�𝑒𝑒𝑟𝑟𝑟𝑟 + (𝜇𝜇𝛼𝛼 − 𝑟𝑟) 𝑒𝑒2𝑟𝑟𝑟𝑟

+ 𝜇𝜇𝛼𝛼�2 + (𝑡𝑡 − 𝜏𝜏)(𝑡𝑡 − 3𝜏𝜏)𝑟𝑟2 + (4𝜏𝜏𝑟𝑟 − 2𝑟𝑟𝑡𝑡)�𝑒𝑒𝑟𝑟𝑟𝑟

Finally, the solution becomes 
− 3𝑟𝑟2𝑢𝑢𝛼𝛼𝜏𝜏2 + (1 − 4𝑢𝑢𝛼𝛼𝜏𝜏)𝑟𝑟 − 3𝑢𝑢𝛼𝛼 �.

𝑥𝑥(𝑡𝑡) = lim
𝑝𝑝→1

𝑋𝑋(𝑡𝑡) = lim
𝑝𝑝→1

(𝑋𝑋0(𝑡𝑡) + 𝑝𝑝𝑋𝑋1(𝑡𝑡) + 𝑝𝑝2𝑋𝑋2(𝑡𝑡) + 𝑝𝑝3𝑋𝑋3(𝑡𝑡)

+ 𝑝𝑝4𝑋𝑋4(𝑡𝑡) + ⋯ )

NUMERICAL RESULT 

In this work, the algebraic computations and drawings of graphics 
are carried out by using MATLAB software. The valid region of ℎ-
curves is a horizontal line segment, as pointed out by Liao (1992). 
Based on calculation, the horizontal line can be calculated to obtain the 
values or range of parameter ℎ using the gradient of both 𝑥𝑥(0) and 
𝑥𝑥′(0) which is approximately approached the zero. Thus, the valid 
region of ℎ based on Fig. 1 is taken in the range of −2.1 < ℎ < −0.2. 
To validate the accuracy of the HAM solution with different values of 
ℎ, we define the residual error for the series as  

𝐸𝐸 = 𝑆𝑆′(𝑡𝑡) − 𝑟𝑟𝑆𝑆(𝑡𝑡) + 𝜇𝜇𝑆𝑆(𝑡𝑡)𝑆𝑆(𝑡𝑡 − 𝜏𝜏)

where 𝑆𝑆(𝑡𝑡) is the HAM series solution (Alomari, Noorani and Nazar, 
2009). Hence, from Fig. 2, we can conclude that ℎ = −1.5 that 
consisted with the minimum error compared to other values of ℎ

http://www.foxitsoftware.com/shopping
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Fig. 1  The ℎ-curves of 4𝑡𝑡ℎ- order approximation with values 𝛼𝛼 = 1, 𝑟𝑟 =
0.2, 𝑘𝑘 = 200, and 𝜏𝜏 = 0.5

Fig. 2  The residual error of 4th order approximation solution of  𝑥𝑥(𝑡𝑡) for 
different values of ℎ with values 𝛼𝛼 = 1, 𝑟𝑟 = 0.2, 𝑘𝑘 = 200, and 𝜏𝜏 = 0.5

From the results obtained in Fig. 3 and Fig. 4, we can see that the 
time-delay 𝜏𝜏 imposes a great influence on the global dynamics of the 
system where it varies as 𝜏𝜏 varies. When 𝜏𝜏 = 0, both figures (Fig. 3 and 
4) have different patterns. This may due to the convergence of the series 
solution which resulted in different regions. 

Fig. 3  The 4th order approximation solution of  HAM for different values 
of 𝜏𝜏 with values 𝛼𝛼 = 1, 𝑟𝑟 = 0.2, 𝑘𝑘 = 200, and ℎ = −1.5. 

Fig. 4  The 4th order approximation solution of  HPM for different values 
of 𝜏𝜏 with values 𝛼𝛼 = 1, 𝑟𝑟 = 0.2, and 𝑘𝑘 = 200. 

Both homotopy analysis method (HAM) and homotopy 
perturbation method (HPM) are based on the homotopy, which is a 
basic concept of topology. Hence, we need to compare the solution with 
the numerical method as shown by Fig. 5. For this logistic delay 
differential equation, we use explicit Runge-Kutta method to obtain the 
numerical solution. From Fig. 6, we can see obviously that the best ℎ
value in this case will be ℎ = −1.5.

Fig. 5  The comparison of numerical result with HAM and HPM of 4th 
order approximation solution. 

Fig. 6  The comparison of numerical result and 4th order approximation 
of HAM solution for different values of ℎ with values  𝛼𝛼 = 1, 𝑟𝑟 = 0.2 , 𝜏𝜏 =
0.5 and 𝑘𝑘 = 200. 
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Furthermore, HPM is considered as a special case of HAM when 
the auxiliary parameter, ℎ = −1 (Liao, 2005). Research carried out by 
Chowdhury, Hashim & Abdulaziz (2009) for the purely non-linear fin-
type problems has shown that HPM is a special case of HAM when ℎ =
−1. In our case, for this logistic delay differential equation, the figure 
of 4th order approximation solution of HPM and 4th order 
approximation solution of HAM when ℎ = −1 is plotted in Fig. 7 to 
show the agreement of the finding and thus, HPM is a special case of 
HAM when ℎ = −1. The absolute error of the solutions from HAM and 
HPM  of 4th order approximation solution of  𝑥𝑥(𝑡𝑡) at time 𝑡𝑡 is shown in 
Table 1. 
 
Table 1  Absolute error of HAM solution and HPM solution of 4th order 
approximation solution of  𝑥𝑥(𝑡𝑡) at time 𝑡𝑡.  
 

 

 
 
Fig. 7  The comparison of 4th order approximation solution of HPM and 
4th order approximation solution of HAM with value ℎ = −1.  

 
CONCLUSION 
 

The aim of this research is to apply the homotopy analysis method 
(HAM) and homotopy perturbation method (HPM) in the logistic delay 
differential equation. After several filtrations throughout the residual 
errors calculated, we conclude that ℎ = −1.5 is the best option for the 
HAM. The accuracy of HAM and HPM for this problem is considered 
through up until 𝑡𝑡 = 16 with the absolute error below than 1.0 × 10−1. 
However, if the time 𝑡𝑡 increases, the series solution starts to diverge. 
Hence, the application of HAM and HPM on logistic delay differential 
equation can produce the converged series solution for 𝑡𝑡 ≤ 16. Using 
the HAM and HPM methods, we have succeeded in developing two 
different approximations to the problem considered in this study and 
laterally made the comparison with the numerical result. 

This time-delay related problem should not be ignored even though 
it has its own difficulties in finding the analytical solutions. Although 

there is a better numerical algorithm, the analytical solutions still have 
their own advantages. Despite the fact that numerical techniques have 
been leading for several decades, there are still a lot of attempts to 
create and develop the new method in order to gain the analytical 
solutions which are fairly approximate to the exact solution.  
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time,  𝒕𝒕 
Absolute error 

between HAM and 
numerical 

Absolute error 
between HPM and 

numerical 
0 0.0042 0 
2 0.0061 0 
4 0.0085 0.0001 
6 0.0115 0.0002 
8 0.0147 0.0003 

10 0.0145 0.0023 
12 0.0075 0.0032 
14 0.0189 0.0046 
16 0.0770 0.0773 
18 0.1994 0.3980 
20 0.4799 1.5642 


