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Graphical abstract 

Abstract 

This work has focused on the fabrication of thin film composite (TFC) and thin film nanocomposite 
(TFN) membranes for reverse osmosis (RO) application. Raw boron nitride (BN) and chemically 
activated boron nitride (A-BN) were used as nanofillers in polysulfone support layer and trimesoyl 
chloride (TMC) to improve the membrane performance. Different concentrations of BN and A-BN 
(ranging from 0 to 1 wt %) were added to the polysulfone (PSf) microporous support and polyamide 
layer was formed on top of PSf support through interfacial polymerization of 1,3-Phenylendiamine 
and trimesoyl chloride. The fabricated TFN membranes were characterized in terms of membranes 
structure, contact angle, separation properties, as well as RO performance. According to AFM and 
SEM images, TFN membranes showed larger average pore size and higher surface roughness as 
compared with TFC membrane. Thus, TFN membrane showed higher pure water flux but lower NaCl 
rejection. The addition of BN led to increase in pore size of membrane without increase the selectivity 
of membrane. The addition of both BN and A-BN into polyamide layer does not aid to improve the 
properties of membrane. In conclusion, BN nanoparticles showed the potential to be used as 
nanofillers that aid in formation of larger pore size.  
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INTRODUCTION 

Human population is increasing day by day and this lead to arise of 

water scarcity issue. Seawater has become one of the solutions for water 

scarcity. Seawater has accounted for around 96 % of the water on the 

Earth. However, seawater cannot be consumed due to the content in the 

water (Sheikholeslami, 2009). Seawater desalination is a process that is 

used to demineralize brackish water or desalinate seawater. Among the 

desalination techniques, membrane filtration by using reverse osmosis 

(RO) is one of the most known methods to transform seawater into 

clean water. Reverse osmosis is a water purification technology by 

using a semipermeable membrane to remove those ions and molecules 

from potable water (Choi et al., 2017). 

In the past two decades, reverse osmosis has become one of the 

most developed techniques as it is able to provide potable water from 

the seawater. In the late 1960s, Loeb and McCutchan had developed the 

first RO plant. Further in the early 1970s, desalination had come to a 

new era due to the development of new class membrane, thin-film 

composite (TFC) membrane for reverse osmosis. Cadotte and Rozelle 

were the founders of the TFC membrane. They synthesized TFC 

membrane by depositing a thin layer of PA onto finely porous 

polysulfone membrane through interfacial polymerization reaction. 

This kind of membrane showed improvement in salt rejection and 

permeation. Nevertheless, common TFC membrane for desalination 

application is facing two challenges, which are the selectivity and 

fouling resistances of the membranes (Cadotte & Petersen, 1980). 

Polyamide surface membranes are susceptible to fouling especially 

biofouling and chlorine attack. Those fouling tend to affect the 

permeate flux and salt rejection capability of membrane. With 

technological advancement in nanotechnology, integration of 

nanomaterials into TFC membranes has been developed to enhance the 

properties of membranes (Lau et al., 2012).  

Nanocomposite membranes are among new membranes that 

incorporated nanomaterials into the substrate or PA layer of the 

membrane for the production of thin film nanocomposite (TFN) 

membrane. With the addition of nanoparticles into membrane has 

developed to become a promising technology together with novel 

functionality that aid in rejection performance of membrane. Based on 

the previous studies, there are a number of nanomaterials such as 

graphene oxide, silica nanoparticles, zeolite nanoparticles that can be 

introduced into TFC membranes to enhance the properties and 

performance of the membranes. TFN membrane incorporated with 

carbon nanotubes (CNTs) and graphene oxide holds enormous potential 

in desalination of seawater or brackish water (Goh et al., 2013; Goh et 

al., 2015, Lai et al., 2016). CNT-membranes have shown outstanding 

results in desalination application, in terms of water permeability and 

the selectivity of solutes (Das et al., 2014).  

Recently, nanotube-based water purification device have the 

potential to alter the desalination field by increasing the rejection ability 

without affecting the flow rate of water molecules. Another 

nanomaterial that has similar properties with carbon lattice 

nanoparticles such as CNT and graphene is boron nitride (BN). BN 

nanoparticles can be categorized as nanosheets and nanotubes. 

Compared to CNT, the structure of BN nanotube (BNNT) has exactly 

the same structure with CNT in which the C atoms are fully substituted 

by boron and nitrogen atoms (Goldberg et al., 2010).  

The potential applications of BN have been explored through some 

theoretical studies and BN show potential in desalination application. 
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Hilder et al. (2009) stated that BNNT showed superior in water flow 

properties and 100 % of salt rejection theoretically. In the same 

experiment, they stated that increasing in the radius of the BNNT would 

shift the tube become ions selective from cations to anions. In 

comparison, BN is expected to be more efficient in purifying water than 

CNT. There is a need to further explore the potential of utilizing newly 

emerging BN nanoparticles in membrane desalination application. The 

science behind the performance improvement needs to be elucidated.  

The objective of this study was to identify the performance of 

various type of BN in desalination. A series of characterization were 

conducted to understand the physical and chemical properties of 

various types of BN and their effects on the membrane performance. 

The new type of TFN membrane was determined through the 

membrane surface hydrophilicity and structural properties as well. 

Performances of the membrane were further evaluated through salt 

rejection and pure water permeability.   

EXPERIMENTAL 

Materials 
All chemicals were used as received without further modification. 

Polysulfone Udel ® P-3500 in pellet form (Solvay), 1-methyl-2-

pyrrolidinone (NMP, 99 %, Acros Organics) and polyethylene glycol 

400 (PEG 400) were used for fabrication of PSf substrate. Trimesoyl 

chloride (TMC, 98 %, Acros Organics) and m-phenylenediamine 

(MPD, 99 %, Merck) were used as the monomers to sculpt the PA layer 

on PSf substrate via interfacial polymerization. n-Hexane (99 %) from 

RCI Labscan was used as solvent for TMC. Boron nitride powder (<1 

μm, Sigma Aldrich) was used as membrane filler for this study. Sodium 

chloride (NaCl, Merck) was used as solute to determine the 

performance of membrane in salt rejection. 

Chemical activation of BN 
BN activation was carried out by adding 3 g of h-BN into 50 w/w % 

of the activating reagent which is the mixture of 1 M H2SO4 aqueous 

solution and 8 M HNO3 aqueous solution with a weight ratio of 1:1. 

The mixture underwent ultrasonication for 30 min at room temperature. 

The activation procedure end up by stirred the obtained slurry 

mechanically in an 80 °C water bath for another 2 hours. After 

activation process, the sample was washed with deionized water until 

the pH of the rinse in the neutral range (pH 6.8-7.2). To remove the 

moisture presented, the prepared sample was dried in oven at 105 °C 

for 24 hours and labeled as activated BN (A-BN) (Li et al., 2015). 

Preparation of PSf and PSf/BN substrates 
PSf substrates were prepared according to the dope formulation as 

shown in Table 1. To prepare the PSf/BN membrane, an appropriate 

amount of PEG and BN / A-BN were added to the NMP solution. The 

mixture was then undergoes ultrasonification for 30 min to avoid the 

agglomeration of BN. After that, PSf was slowly added into the mixture 

under vigorous stirring to produce the casting solution. The solution 

was then undergoes ultrasonication for another 1 hour to remove the air 

bubbles trapped within the solution. The PSf substrate was cast on the 

glass plate by using glass rod. To allow phase immersion process 

occurred, the cast membrane was immersed into water coagulation bath 

immediately. After membrane had been peeled off from the glass plate, 

the membrane was transferred into another water bath for at least 24 

hours before used.  

Table 1  Dope formulation of the casting solutions.

Membrane 
Dope Formulation (wt %)

PSf PEG 400 Nanoparticles NMP 

TFC 15 2 0 83.0 
TFN-1 15 2 0.5 BN 82.5 
TFN-2 15 2 0.5 A-BN 82.5 
TFN-3 15 2 0.5 BN 82.5 
TFN-4 15 2 0.5 A-BN 82.5 

Preparation of TFC/TFN membranes 
Polyamide selective layer was formed on the as prepared mixed 

matrix membrane via interfacial polymerization between MPD and 

TMC. Firstly, the substrate was clamped in between a glass plate and 

Viton frame. 30 ml of 2 w/v% MPD solution was poured into the frame 

and allowed to contact with the porous PSf for 2 min before those 

excess MPD solution drained off. A rubber roller was used to remove 

those residual droplets from the substrates by rolling across the surface 

of membrane. 20 ml of 0.2 w/v% of TMC in hexane solution was then 

poured into the frame with 1 min contact time with the substrate surface. 

Both BN and A-BN was added into the TMC solution and poured onto 

PSf/BN and PSf/A-BN substrates. A thin active PA layer was formed 

immediately resulted from the interaction of MPD and TMC monomers. 

Those excess organic solutions were drained off. The membrane was 

then cured in oven for 8 min at 60 °C. The resulting membrane was 

immersed in DI water until used. These membranes were labeled as 

TFC, TFN-1 (BN in PSf substrate), TFN-2 (A-BN in PSf substrate), 

TFN-3 (BN in both PSf substrate and PA layer), TFN-4 (A-BN in both 

PSf substrate and PA layer) as shown in Table 2. 

Table 2  Membranes composition. 

Membrane 
Composition 

PSf membrane PA layer 

TFC PSf PA layer 
TFN-1 0.5 % BN in PSf PA layer 
TFN-2 0.5 % A-BN in PSf PA layer 
TFN-3 0.5 % BN in PSf 0.05 % BN in PA layer 
TFN-4 0.5 %A- BN in PSf 0.05 %A- BN in PA layer 

BN characterization 
The structure of BN particle was examined using transmission 

electron microscopy (TEM Hitachi HT7700) operated at the 

transmission mode of 100 kV. Fourier transform infrared spectroscopy 

(FTIR) of BN was investigated by using spectrum One FTIR 

Spectrometer (PerkinElmer). 

Membrane characterization 
Functional groups of BN were investigated using Spectrum One 

Fourier transform infrared spectroscopy (FTIR) Spectrometer 

(PerkinElmer) in wavelength that range from 400 to 4000 cm-1. The 

cross-sectional and the surface morphology of the membrane samples 

were observed using scanning electron microscopy (SEM, Hitachi TM

3000 Tabletop Microscope). Contact angle (CA) measurement was 

conducted by sessile drop method employing an automated CA 

goniometer (OCA 15 pro, DataPhysics) using RO water as probe liquid. 

Ten measurements were collected at different spots of each membrane 

sample and the mean value was recorded. Topological properties of the 

membranes were investigated using atomic force microscopy (Hitachi 

AFM 5100N). The membrane surface (10μm×10μm) was scanned 

using non-contact mode. The average roughness (Ra), the root mean 

square of Z data (Rms) and the mean difference between the highest 

peak and lowest valleys (Rmax) were measured. 

Membrane filtration performance 
A dead-end filtration cell (Sterlitech™ HP4750) was used to assess 

the permeation of the fabricated substrates and membranes under 

nitrogen atmosphere. The effective surface area of the membrane was 

14.6 cm2. Prior to any measurement, the membranes were compacted 

at pressure of 16 bar, respectively for about 30 min to achieve flux 

steady state condition. The pure water permeability of the substrates 

was then calculated from the measured permeation flux using pure 

water at operating pressure of 15 bar. The pure water flux (PWF) of the 

membranes were operated by using the following equation: 

  (1) 

where JWF is the water flux (L/m2h), V is the volume of water permeated 

across the membrane (L), t is the time taken for collecting the permeate 

(h) and Am, is the effective membrane area (cm2).
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Sodium chloride (NaCl) solution of 1000 ppm was tested for reverse 

osmosis studies. The rejection efficiency, R (%) was calculated based 

on the following equation: 

  (2) 

where Cp and Cf are the solute concentration (ppm) in the permeate and 

feed respectively. All filtration experiments were operated at 15 bar and 

at room temperature. 

RESULTS AND DISCUSSION 

BN and A-BN characterizations 
The A-BN was characterized in several ways to compare with the 

commercial BN. Fig. 1 compares the FTIR spectrum of both BN and 

A-BN. Both BN and A-BN shows two main peaks at ~ 1400 cm-1 and 

800 cm-1 that be in agreement with BN stretching vibrations and B-N-

B bending vibrations. There is one new emerging peak that can be

observed in A-BN that located at ~ 3250 cm-1 indicated the present of

B-NH2 group. Besides, A-BN shows an increment in peak intensity of

~ 1413 cm-1 (B-N). This indicated that the A-BN has increase in

polarity. Peak broadening in the range of ~830 cm-1 to 1550 cm-1 also

indicated that the size of A-BN decreases and aggregation of

nanoparticles (Wang et al., 1998). This can be further confirmed in

TEM results.

Fig. 1  FTIR spectra of BN and A-BN. 

Fig. 2  TEM images of (a) BN and (b) A-BN. 

The microstructures of BN and A-BN were investigated by TEM in 

Fig. 2. Based on the TEM images, the size of the A-BN nanoparticles 

is smaller than the BN nanoparticles. It is due to the reaction occurs in 

between BN nanoparticles and concentrated nitric acid, which creates 

oxidized radicals on BN and form BN-H+ bonds on the surface of BN 

that might cut and functionalize BN nanoparticles (Ide et al., 2014; Li 

et al., 2015). This proved that TEM results were in agreement with 

FTIR results. Besides, the edge of A-BN nanoparticles is found to be 

rougher as compared to the edge of BN nanoparticles, suggesting that 

the chemical activation reaction occur on the surface of the A-BN. 

Membrane characterizations 
Fig. 3 shows the FTIR results of TFC and TFN membranes. Both 

TFC and TFN membranes show the spectrum at various peaks that 

corresponding to functional group of the PSf support membranes which, 

the peaks at the particular wavenumber of 1151 cm-1 (symmetric 

O=S=O stretching), 1242 cm-1 (asymmetric C-O-C stretching), 1293 

cm-1 (asymmetric O=S=O stretching), 1409 cm-1 (C=C aromatic ring

stretching), and 1503 cm-1 (CH3-C-CH3 stretching) (Lau, et al., 2014). 

The formation of PA layer on TFC and TFN membranes can be

confirmed through FTIR results at the peak of 1552 cm-1 and 1585 cm-

1 that corresponding to C=O and C-N stretching (Wan Azelee et al., 

2017). Moreover, other bands at 1611 cm-1 and 1667 cm-1 reinforce the

formation of PA layer that associated to aromatic amide ring breathing

and N-H bending in CO-NH group (Khorshidi et al., 2015). As

comparison, the embedment of BN and A-BN into TFN membranes

tend to broadening the peak at ~795, ~1325, ~1409 cm-1. This indicated

that there is stretching vibration of those functional groups upon the

addition of BN and A-BN nanoparticles.

Fig. 3  FTIR of TFC and TFN membranes. 

Fig. 4 shows the surface and cross-sectional morphology of the 

TFC and TFN membranes. The cross-section SEM images of all 

membranes show that the membranes consist of two layers, which are 

the PSf support layer and thin-film active layer. All the membranes 

displayed typically interfacial polymerized characteristic, which 

consisted of ridge and valley structures. It can be seen clearly in Fig. 4 

that those TFN-4 membranes has more ridge and valley structures as 

compared to other membranes. This observation further confirms the 

AFM images. Both BN and A-BN were dispersed nicely in both PSf 

support layer and PA active layer since there is no agglomeration 

observed in the SEM images. 
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Fig. 4  SEM images for (a) TFC, (b) TFN-1, (c) TFN-2, (d) TFN-3, (e) 
TFN-4 membranes (i: surface; ii: cross-sectional morphology). 

Fig. 5 shows the 3D AFM images of the top surface of TFC and 

TFN membrane upon addition of BN and A-BN into the PSf substrate 

and PA surface of membrane. As seen from Fig. 4, both TFC and TFN 

membranes have ridge and valley structure. The embedment of BN and 

A-BN into TFN membranes exhibited significant rougher surface

compared to TFC membrane. The increase in surface roughness could

be due to the enlargement of effective surface area. The increase in

surface roughness can be advantageous for water permeability since its

provide a higher surface area for water molecules to flow through (Lai

et al., 2016). Further surface roughness parameters show in Table 3.

Rms values of TFN membranes show distinct increment with the

maximum Rms value (113.7 nm) found in TFN-4. From Fig. 5, the

embedment of A-BN into TFN-4 has created a higher ridges which

indicated increasing in surface roughness of membrane.

Fig. 5  AFM images for (a) TFC, (b) TFN-1, (c) TFN-2, (d) TFN-3, (e) 
TFN-4. 

Table 3  Surface roughness of TFC and TFN membranes. 

Membrane
Surface roughness parameter (nm) 

Ra Rms Rmax 

TFC 54.01 70.47 525.6 
TFN-1 67.3 85.55 569.1 
TFN-2 71.4 93 701.6 
TFN-3 64.74 84.48 681.4 
TFN-4 90.38 113.7 722.8 

Table 4 shows the surface contact angle of TFC and TFN 

membranes. It is reported that embedment of BN and A-BN into TFN 

membranes tended to decrease the contact angle. The contact angle 

decreased from 78.85 to 69.92° for TFN-4. The reduction in contact 

angle is due to the activation process of BN that facilitate the functional 

group, B-NH2 into BN nanosheets. The existence of B-NH2 group as 

polar functional group provides the A-BN hydrophilic behavior by 

forming hydrogen bonding in between B-NH2 and water molecules. 

Table 4  Contact angle of TFC and TFN membranes. 

Membrane Contact angle (°) 

TFC 78.85 ± 4.32
TFN-1 75.38 ± 4.91
TFN-2 75.18 ± 5.16
TFN-3 72.77 ± 3.91
TFN-4 69.92 ± 4.74

Fig. 6 shows the effect of BN on PWP performance and NaCl 

rejection of TFC and TFN membranes. The TFN membranes that 

incorporated with BN and A-BN nanoparticles exhibited better 

performance in water flux property than TFC. In comparison, 

embedment of A-BN nanoparticles into both PSf substrates and PA 

layer of TFN showed higher PWP than the TFN membrane that 

containing pristine BN. TFN-4 exhibited the best water permeability 

among the membrane with 1.16 L/m2 h bar, which was approximately 

33.9 % higher than TFC membrane. The improvement in PWP TFN-4 

membrane was due to the decreasing in surface contact angle and 

increasing in surface roughness of membrane. The present of NH2

group in BN aid in increase the hydrophilicity of BN by forming 

hydrogen bonding with water and allowed water molecule take 

precedence to flow through (Zhong et al., 2015). The incorporation of 

nanoparticles into the TFN membranes does not aid in increasing the 

rejection capability of membranes. TFC control membrane possessed 

the highest NaCl rejection among the membrane with ~95 %. With the 

embedment of BN and A-BN as nanofillers into both PSf substrate and 

PA layer, the NaCl rejection of TFN membranes slightly decreases. The 

NaCl rejection for TFN-1 and TFN-2 was 87 % and 93 %, respectively. 

While for TFN-3 and TFN-4, the NaCl rejection was decreased to 81 % 

and 89.84 %, respectively. The decrease in NaCl rejection might due to 

lack of functional group on BN and A-BN. The chemically activated 

BN possess B-NH2 that can aid in increase water permeability of TFN 

membranes. Li et al. (2015) had conducted the activation process on 

BN fibers and the results obtained was slightly differ from this 
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experiment. In comparison, the chemical activation BN fiber possesses 

B-OH group and a more obvious B-NH2 group. Meanwhile, the 

chemical activation method proposed by Li et al. was unsuitable to be 

used on BN (hexagonal shape) due to the properties of BN, which 

thermal and chemically inertless (Falin et al., 2017). In overall, TFN 

membranes that incorporated with A-BN nanoparticles show better 

overall performances as PWF take into consideration. 

Fig. 6  Pure water flux and NaCl rejection of TFC and TFN membranes. 

CONCLUSION 

In this experiment, A-BN that was undergoes chemical activation 

process and incorporated into PSf and PA layer of TFN membranes. 

The obtained TFN membranes showed improvement in water 

permeability with a slightly decrease in NaCl rejection capability. 

Further investigation was needed to identify the chemical activation 

process on BN. However, BN nanomaterial has the potential to be used 

as nanofillers in water purification application if the functional group 

attached can be specifically tailored. 
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