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ABSTRACT 

In this paper, we solve the mixed boundary value problem on unbounded multiply connected region by using the method of boundary integral equation. 
Our approach in this paper is to reformulate the mixed boundary value problem into the form of Riemann-Hilbert problem. The Riemann-Hilbert 
problem is then solved using a uniquely solvable Fredholm integral equation on the boundary of the region. The kernel of this integral equation is the 
generalized Neumann kernel. As an examination of the proposed method, some numerical examples for some different test regions are presented. 
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1. INTRODUCTION 

The need to solve Laplace equation with different 
types of boundary conditions on different parts of a 
connected boundary often arises in computational physics 
and mechanics. Common mixed boundary conditions are 
mixed Dirichlet and Neumann type conditions. Recently, 
the interplay of Riemann-Hilbert problem and integral 
equation with the generalized Neumann kernel has been 
investigated in [1-3]. 
      It has been shown that the problem of conformal 
mapping, Dirichlet problem, and Neumann problem can all 
be treated as Riemann Hilbert problems [2-4]. Hence they 
can be solved efficiently using integral equations with the 
generalized Neumann kernel. The boundary integral 
equation method is a cl assical method for solving the 
Dirichlet and Neumann   bo undary value problem. The 
classical boundary integral method for the Dirichlet 
problem and the Neumann problem are in the form of 
second kind Fredholm integral equations with the 
Neumann kernel. Those integral equations are derived by 
representing the solutions of the mixed problem as the 
potential of a single layer [5].  
 In this paper, we extend the result in [6] to solve 
Laplace equation on unbounded multiply connected region 
with Dirichlet-Neumann condition via an integral equation 
with the generalized Neumann kernel. This extends the  
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results of [4]. A Fredholm integral equation of the second 
kind with the generalized Neumann kernel is derived for 
the mixed boundary value problem. 

This paper is organized as follows: Section 2 
presents some auxiliary materials related to the mixed 
problem, the Riemann-Hilbert problems as well as integral 
equation for Riemann-Hilbert problems. In Section 3, we 
reduce the mixed boundary value problem into the 
Riemann-Hilbert problem and construct the boundary 
integral equation for solving it. We will discuss the 
question on how to treat the integral equations numerically 
in Section 4. Some numerical examples are presented in 
Section 5. In Section 6, a short conclusion is given. 

 
 
2.  AUXILIARY MATERIAL 

        Let G be a bounded multiply connected region. The 
boundary G∂=Γ consists of m Jordan curves 

, 1,...,j j mΓ =  such that the curves jΓ has clockwise 

orientation (see Figure 1). The boundaries jΓ are The 

parameterization of the whole boundaryΓ as the complex 
function η  is defined on J  by  

http://www.ibnusina.utm.my/


Alhatemi et al. / Malaysian Journal of Fundamental & Applied Sciences Vol.8, No.4 (2012) 193-197 

 
| 194 | 

 

 
Fig.  1 Unbounded multiply connected region of   connectivity m 
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where jη is twice continuously differentiable with 

0≠dsdη . The total parameter region J is the disjoint 

union of the intervals  mjJ j ,...,2,1, = . Let kA be a π2
-periodic continuously differentiable function on kJ with

0≠kA , defined on the total parameterized region J by 
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3.  GENERALIZED NEUMANN KERNEL AND 
MIXED BOUNDARY VALUE PROBLEM 

 
        In view of the parameterization domain of the 
boundaryΓ , the above formula defines also the function 
A implicitly on the boundaryΓ . We define the reals 

generalized Neumann kernel N by [1-3] 
 

𝑁𝑁(𝑠𝑠, 𝑡𝑡) =
1
𝜋𝜋

Im�
𝐴𝐴(𝑠𝑠)
𝐴𝐴(𝑡𝑡)

�̇�𝜂(𝑡𝑡)
𝜂𝜂(𝑡𝑡) − 𝜂𝜂(𝑠𝑠)�

 ,    𝑠𝑠 ≠ 𝑡𝑡.         (3) 

 
It is continuous at s=t with 
 

1 1 ( ) ( )( , ) Im . (4)
2 ( ) ( )

t A tN t t
t A t

η
π η

 
= − 

 




 

       
We define the real kernel M as 
 

𝑀𝑀(𝑠𝑠, 𝑡𝑡) =
1
𝜋𝜋

Re�
𝐴𝐴(𝑠𝑠)
𝐴𝐴(𝑡𝑡)

�̇�𝜂(𝑡𝑡)
𝜂𝜂(𝑡𝑡) − 𝜂𝜂(𝑠𝑠)�  ,   𝑠𝑠 ≠ 𝑡𝑡.         (5) 

When kJts ∈, in the same parameter interval ,kJ  
 

𝑀𝑀(𝑠𝑠, 𝑡𝑡) =
1

2𝜋𝜋 cot �
𝑠𝑠 − 𝑡𝑡

2
� + 𝑀𝑀1(𝑠𝑠, 𝑡𝑡),   𝑠𝑠, 𝑡𝑡 ∈ 𝐽𝐽𝑘𝑘 .            (6) 

 
with a continuous kernel 1M  which take on the diagonal 
the values 
 

𝑀𝑀 ),( tt =
1
𝜋𝜋
ℜ�

1
2
𝜂𝜂 ̈ (𝑡𝑡)
�̇�𝜂(𝑡𝑡)

−
�̇�𝐴(𝑡𝑡)
𝐴𝐴(𝑡𝑡)

� ,          𝑠𝑠 = 𝑡𝑡.                 (7) 

     
Define the integral operators  
 

)9(,)(),())((
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∫
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J
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dtttsNs

µµ

µµ

M

N
 

 
where   the integral in (9) is a principal value integral. 
 
The solvability of boundary integral equations with the 
generalized Neumann kernel is determined by the index 
(winding number in other terminology) of the function 𝐴𝐴 
[1,5,6].  
 
For the function 𝐴𝐴 given by 
 

𝐴𝐴(𝑠𝑠) =

⎩
⎪
⎨

⎪
⎧

𝑐𝑐1,       𝑠𝑠 ∈ 𝐽𝐽1 = [0,2𝜋𝜋],
𝑐𝑐2,                   𝑠𝑠 ∈ 𝐽𝐽2 = [0,2𝜋𝜋],

⋮
⋮

𝑐𝑐𝑚𝑚 ,       𝑠𝑠 ∈ 𝐽𝐽𝑚𝑚 = [0,2𝜋𝜋],         

�
 

 
where cj are complex constants, the index 𝜅𝜅𝑗𝑗 , 𝑗𝑗 = 1,2, … ,𝑚𝑚 
of 𝐴𝐴 on the curve Γ𝑗𝑗  , 𝑗𝑗 = 1,2, … ,𝑚𝑚 and the indexes  
 

𝜅𝜅 = �𝜅𝜅𝑗𝑗

𝑚𝑚

𝑗𝑗=1

, 

 
of 𝐴𝐴  of the whole boundary are given by  
 
𝜅𝜅𝐽𝐽 = 0, 𝜅𝜅 = 0. 
 
Let 𝐻𝐻 be the space of all continuous H�̈�𝑜lder functions on 
the boundary Γ  and let  𝑆𝑆 be the subspace of 𝐻𝐻which 
consists of all piecewise constant functions defined on   Γ. 
Thus, we have from [1,2,7] the following theorem. 
 
Theorem 2.1. For a function   𝛾𝛾 ∈ 𝐻𝐻, there exist unique 
functions ℎ ∈ 𝑆𝑆 and 𝜇𝜇 ∈ 𝐻𝐻 such that  
 
𝐴𝐴𝐴𝐴 = 𝛾𝛾 + ℎ + 𝑖𝑖𝜇𝜇, 
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are boundary values of unique  f unction 𝐴𝐴(𝑧𝑧)in 𝐺𝐺 with 
𝐴𝐴(∞) = 0 for unbounded 𝐺𝐺, where 𝜇𝜇 is a unique solution 
of the integral equation 
 
𝜇𝜇 − 𝑵𝑵𝜇𝜇 = −𝑴𝑴𝛾𝛾,   

 
and the function h is given by 
 
ℎ = [𝑴𝑴𝜇𝜇 − (𝑰𝑰 − 𝑵𝑵)𝛾𝛾]/2. 
 
 
4.  REDUCTION OF MIXED BOUNDARY VALUE 

PROBLEM TO RIEMANN -HILBERT 
PROBLEM. 

 
       In this section we show how to reduce the mixed 
boundary problem into the form of Riemann-Hilbert 
problem on multiply connected region.  
Let 𝒏𝒏 be the exterior normal to Γ and let 𝜙𝜙 ∈ 𝐻𝐻 be a given 
function. However, the function 𝐹𝐹(𝑧𝑧) is in general a multi-
valued function.  
       Without lost of generality, we consider solving 
Laplace equation with Dirichlet condition on 1, , lΓ Γ

and Neumann condition on  1, ,l m+Γ Γ .  W e shall 
consider the mixed boundary value problem. Define a real 
function 𝑢𝑢 such that 
 
Δ𝑢𝑢 = 0 𝑎𝑎 in  𝐺𝐺, 
𝑢𝑢 = 𝜙𝜙𝑗𝑗  on Γj , j = 1, … , 𝑙𝑙, 
𝜕𝜕𝑢𝑢
𝜕𝜕𝒏𝒏

= 𝜙𝜙𝑗𝑗on Γj , j = 𝑙𝑙 + 1, … . , m 

 
       The unique solution )(zu  of the mixed boundary 
value problem can be regarded as a real part of an analytic 
function   𝐹𝐹(𝑧𝑧) = 𝑢𝑢(𝑧𝑧) + 𝑖𝑖 𝑣𝑣(𝑧𝑧). We define a complex-
valued [8,9] function  �̂�𝐴(𝑠𝑠) and a r eal-valued function 
𝛾𝛾(𝑠𝑠) for   𝑠𝑠 ∈ 𝐽𝐽𝑗𝑗 , 𝑗𝑗 = 1, … , 𝑙𝑙, by 
 
�̂�𝐴𝑗𝑗 (𝑠𝑠) = 1,    𝛾𝛾𝑗𝑗 (𝑠𝑠) = 𝜙𝜙𝑗𝑗 (𝑠𝑠),      

 
and   using  t he Cauchy-Riemann  e quations for 𝑠𝑠 ∈ 𝐽𝐽𝑗𝑗 , 
𝑗𝑗 = 𝑙𝑙 + 1, … ,𝑚𝑚, by 

�̂�𝐴𝑗𝑗 (𝑠𝑠) = −𝑖𝑖,         𝛾𝛾𝑗𝑗 (𝑠𝑠) = � 𝜙𝜙𝑗𝑗 (𝑡𝑡)��̇�𝜂𝑗𝑗 (𝑡𝑡)�𝑑𝑑𝑡𝑡
𝑠𝑠

0
. 

      Let also ℎ�(𝑠𝑠) be the piecewise constant function  
 

ℎ�(𝑠𝑠) = �
0,           𝑠𝑠 ∈ 𝐽𝐽𝑗𝑗 = [0,2𝜋𝜋],       𝑗𝑗 = 1, … , 𝑙𝑙

𝑐𝑐𝑗𝑗 ,     𝑠𝑠 ∈ 𝐽𝐽𝑗𝑗 = [0,2𝜋𝜋],        𝑗𝑗 = 𝑙𝑙 + 1, … ,𝑚𝑚 
�
 

 
where 𝑐𝑐𝑗𝑗 ,  𝑗𝑗 = 𝑙𝑙 + 1, … ,𝑚𝑚, are undetermined real 
constants. Thus the boundary values of the function 𝐹𝐹(𝑧𝑧) 
satisfy the boundary condition   [2-4] 
 

Re��̂�𝐴(𝑠𝑠)𝐹𝐹(𝑠𝑠)� = 𝛾𝛾(𝑠𝑠) + ℎ�(𝑠𝑠) ,       𝑠𝑠 ∈ 𝐽𝐽.  
 

       The function )(zF  can be written as 

),log()(ˆ)(
1

j

m

j
j zzazFzF −−= ∑

=

 

where  )(ˆ zF  is a single-valued analytic function in jzG,
is a fixed point in G  and ja  is undetermined real 

constant, mj ,...,2,1=  [4,10]. We assume that the 

function )(ˆ zF  satisfies 0)(ˆ =∞ℑF in G . 
       In this paper we shall consider only the case for which 

,0=ja mj ,...,2,1=  

      Thus the function  )(ˆ zF  is a solution of the Riemann-
Hilbert problem  
 
Re��̂�𝐴(𝑠𝑠)𝐹𝐹�(𝑠𝑠)� = 𝛾𝛾(𝑠𝑠) + ℎ�(𝑠𝑠) ,       𝑠𝑠 ∈ 𝐽𝐽.               (10) 

 
      Let  𝐹𝐹�(∞) = �̂�𝑐 (real constant), then the function 
 
𝑔𝑔(𝑧𝑧) = 𝐹𝐹�(𝑧𝑧) − �̂�𝑐 

 
is analytic single-valued function in G. Thus 
 
�̂�𝐴(𝑠𝑠)𝐹𝐹��𝜂𝜂(𝑠𝑠)� = �̂�𝐴(𝑠𝑠)𝑔𝑔�𝜂𝜂(𝑠𝑠)�+ �̂�𝐴(𝑠𝑠)�̂�𝑐. 
 
Hence   (10) can be written as  
 
Re[𝐴𝐴(𝑠𝑠)𝑔𝑔(𝜂𝜂(𝑠𝑠))] = 𝛾𝛾(𝑠𝑠) + ℎ(𝑠𝑠), 

 
where 
 
𝐴𝐴(𝑠𝑠) = �̂�𝐴(𝑠𝑠), 
ℎ(𝑠𝑠) = ℎ�(𝑠𝑠) − 𝑅𝑅𝑅𝑅[�̂�𝐴(𝑠𝑠)𝑐𝑐]� . 

 
       According to Theorem 1, let AgIm=µ (unknown 
function), then 

)()()()()( sishssgsA µγ ++=  
where µ  is the unique solution of the integral equation 
 

γµµ MN −=− ,                               (11) 
 
𝑤𝑤here N and M are defined as in(8) and (9). By obtaining 
𝜇𝜇, we can get ℎ from 
 

2/])([ γµ NIMh −−= .     

 

(see Theorem 2 of [8]. For more details, see [2-4,7]. 
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5.  NUMERICAL IMPLEMENTATIONS 
 
 Since the functions 𝐴𝐴𝑗𝑗  and 𝜂𝜂𝑗𝑗 are 2𝜋𝜋-periodic, the 
integrals in the operators N and M in the integral equation 
(11) can be best discretized on an equidistant grid by the 
trapezoidal rule [5]. The computational details are similar 
to previous works [6]. 
 By using the trapezoidal rule with n (an even 
positive integer) equidistant collocation points on each 
boundary component, solving the integral equations (11) 
reduces to solving mn by mn linear systems. Since the 
integral equations (11) are uniquely solvable, then for 
sufficiently large values of n the obtained linear systems 
are also uniquely solvable[1].  
 In this paper, the linear systems are solved using the 
Gauss elimination method. By solving the linear systems, 
we obtain approximations to 𝜇𝜇. Hence, we obtain 
approximations to   ℎ� . Then, we obtain approximation to 
the constants c, and  cj for j= l+1,…,m. Hence, we obtain 
approximations to the boundary values of the function  g(z) 
from µγ ihAg ++= . Then the values of g(z) for z ∈  G 
will be calculated by the Cauchy integral formula. For 
pointsz which are not close to the boundaryΓ, the integrals 
in the Cauchy integral formula are approximated by the 
trapezoidal rule. However, for points z near the boundary Γ, 
the integrand is nearly singular. For the latter case, the 
integral in the Cauchy integral formula can be calculated 
accurately using the method suggested. 

 
6.  NUMERICAL EXAMPLES 
 
 To illustrate this approach, we consider three test 
regions. By |u(z)− nu (z)|where un(z) is the numerical 
approximation of u(z).The result can be shown in 
Table1,Table2,Table3. 
 
6.1  Example 1 
 
In this example we consider a unbounded multiply 
connected region of connectivity 3 unbounded by the three 
circles 
 

ite−+=Γ 5.01: 11 η ,                                                  
ite−−=Γ 5.01: 22 η ,  

33 :ηΓ = ite−2.0  
 
We assume that the condition on the boundaries Γ1, Γ2 
 is the Neumann condition and the condition on the 

boundaries Γ3  is the Dirichlet condition. In this example 
we used the exact solution 
 
ℜ(𝐹𝐹) = ℜ �1

𝑧𝑧
�. 

 
To obtain 𝜙𝜙1,2for the Neumann condition we differentiate 
with respect to the normal the real part of the exact 
solution. 
 

 
Fig. 2 The unbounded multiply regions of 3-circles connectivities 

Table 1   The error norm|u(z)−un(z)| 
n Z=0.3 Z=0.9i Z=-0.7 Z=-0.3i 
16 1(-03) 5(-7) 2(-6) 2(-7) 
32 5(-10) 8(-19) 5(-09) 3(-16) 

64 2(-16) 9(-19) 3(-17) 5(-21) 
 
 
6.2  Example  
 
 In this example we consider a unbounded multiply 
connected region of connectivity 4 unbounded by the forth 
circles 
 

ite−=Γ 11 :η  
ite−+=Γ 5: 22 η  

,5: 33
ite=+−=Γ η  

 
We assume that the condition on the boundaries Γ1, Γ2 
 is the Neumann condition and the condition on the 
boundaries Γ3  is the Dirichlet condition.In this example we 
used the exact solution 
 
ℜ(𝐹𝐹) = ℜ �1

𝑧𝑧
�. 

 
To obtain 𝜙𝜙1,2for the Neumann condition we integrand  the 
real part of the exact solution. 
 

Table 2   The error norm |u(z)−un(z)| 
n Z=3 Z=3i Z=-3 Z=-3i 
16 1(-03) 4(-6) 2(-5) 4(-7) 
32 1.4(-6) 2(-8) 2(-7) 2{-16) 
64 1(-17) 1(-17) 8(-18) 8(-19) 
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6.3  Example 3 
 
 In this example we consider a unbounded multiply 
connected region of connectivity 4 unbounded by the 
fourth circles 
 

itei −++=Γ 23: 11 η  
itei −++−=Γ 23: 22 η  

itei −++=Γ 23: 13 η  

:4Γ
itei −+−= 234η  

 
We assume that the condition on the boundaries Γ1, Γ2 
 is the Neumann condition and the condition on the 
boundaries Γ3, Γ4  is the Dirichlet condition.In this example 
we used the exact solution 
 
ℜ(𝐹𝐹) = ℜ � 1

𝑧𝑧+3+2𝑖𝑖
�. 

 
To obtain 𝜙𝜙1,2for the Neumann condition we differentiate 
with respect to the normal  the real part of the exact 
solution. 
 

 
Fig. 3 The unbounded multiply regions of 4 circles connectivities 

Table 3   The error norm |u(z)−un(z)| 
n Z=-3 Z=1+i Z=-0.3 Z=0.3i 
16 4(-6) 3(-5) 3.2(-5) 3(-05) 
32 1.5(-10) 1(-10) 1.7(-10) 1(-11) 
64 3.8(-16) 1(-16) 1.3(-16) 8(-17) 

7.  CONCLUSION 
       
 The uniquely solvable integral equation is derived in 
this work for the mixed boundary value problem with 
Dirichlet-Neumann condition on unbounded multiply 
connected region. The derived boundary integral equation 
is uniquely solvable and yields directly the boundary value 
of the solution of the mixed problem. 
Mixed boundary value problem is solved numerically on 
unbounded multiply connected region using the proposed 
method. The numerical examples illustrate that the 
proposed method yields approximations of high accuracy. 
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