
 Karim et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 15, No. 6 (2019) 872-877  

 

872 

 
 
A class of geometric quadratic stochastic operator on countable 
state space and its regularity 
 
Siti Nurlaili Karim*, Nur Zatul Akmar Hamzah, Nasir Ganikhodjaev 

 
Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 
Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia 
 
* Corresponding author: nurlaili.karim2812@gmail.com 
 

 
Article history 
Received 11 February 2019 
Revised 21 Mac 2019 
Accepted 12 September 2019 
Published Online 3 December 2019 
 

 

 
Abstract 
 

We have constructed a Geometric quadratic stochastic operator generated by 2-partition ξ  of 

singleton defined on countable state space X , where  0,1, 2,...X = . We have studied the trajectory 

behavior of such operator for any initial measure ( ),S X F  . It is shown that such operator 

converges to a fixed point which indicates the existence of the strong limit of the sequence ( )nV   . 

This follows that such operator is a regular transformation.  
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INTRODUCTION 
 

Bernstein’s work on population genetics has triggered the study of 

quadratic stochastic operator since the early of 20th century. The study 

of quadratic stochastic operator is still advancing even though it is 

considered as the simplest nonlinear operator. This theory frequently 

arises in many models in various fields such as biology, physics, game 

theory, finance, mathematics, and economics.   

The quadratic stochastic operator is a mapping of the simplex  

 

( )1

1 2

1

, ,..., 0, 1
m

m m

m i i

i

S x x x x x x−

=

 
= =   = 
 

 ,   (1) 

into itself, of the form  

( ) ( ) ( )1 0 0

,

, 1

: , 1,...,
m

k ij k i j

i j

V x P x x k m
=

= =  ,  (2) 

where 
,ij kP  are the coefficients of heredity and  

, ,

1

0, 1, , , 1,2,...,
m

ij k ij k

k

P P i j k m
=

 = = . 

Note that each element 
1mx S −  is a probability distribution on 

 1,...,I m=  . 

The association 
( ) ( )0 1

x x→  means that the population evolves from 

an arbitrary state of probability distribution 
( )0

x  , then passing to the 

state 
( ) ( )( )1 0

x V x=  which indicates the probability of the first 

generation,  

the second generation ( ) ( )( ) ( )( )( ) ( )( )2 1 0 02x V x V V x V x= = = , and 

so on. Therefore, the evolution states of the population system can be 

described by the following discrete dynamical system, 
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )0 1 0 2 0 3 02 3, , , ,...x x V x x V x x V x= = =   (3) 

where ( ) ( )( )( )... ...n

n

V x V V V x=   denotes the n  times iteration of V  

to x . 

Given that this operator involves the evolution of a free population 

from one generation to the next generation, thus it is also known as 

evolutionary operator. For a given 
( )0 1mx S −  , the trajectory 

( ) n
x  , 

0,1,2,...n =  of 
( )0 1mx S −  under action of the mapping V  in (2) is 

defined by 
( ) ( )( )1n n

x V x
+
= , where 0,1,2,...n = .  

In other words, a distribution of the next generation can be 

described by quadratic stochastic operator if the distribution of the 

current generation is given. We should emphasize that the mapping V  

is a nonlinear (quadratic) operator, and it is higher-dimensional if 

3m  . Higher dimensional dynamical systems are important but there 

are relatively few dynamical phenomena that are currently understood, 

for example, pendulum and solar system in mechanics, and evolution 

in biology. 

The main problem for a given dynamical system (3) is to describe 

the limit points of 
( ) 

0

n

n
x



=
 for arbitrary given 

( )0
x .  
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Nonlinear operator theory falls within the general area of nonlinear 

functional analysis, an area which has become of interest in recent 

years. One of the central problems in the nonlinear operator theory is 

the asymptotical behavior of nonlinear operators. To study this 

problem, several classes of quadratic stochastic operator were 

constructed and investigated many publications. Similarly, limit 

behavior of the trajectories and the fixed points of the quadratic 

stochastic operator have been studied extensively by previous 

researchers, see (Akin & Losert, 1984; Akin, 1993; Bernstein, 1924; 

Ganikhodjaev et al., 2015; Ganikhodjaev, 1993; Ganikhodjaev,1994; 

Ganikhodzhaev & Zanin, 2004; Ganikhodzhaev et al., 2011; Hofbauer 

& Sigmund, 1998; Jenks, 1969; Kesten, 1970; Losert & Akin, 1983; 

Lyubich, 1978; Lyubich, 1992; Mukhamedov & Embong, 2015; 

Rozikov & Zhamilov, 2008; Ulam, 1960; Volterra, 1931; Zakharevich, 

1978). 

Another problem in nonlinear operator theory is the study of the 

asymptotical behavior of the trajectories. This problem was fully solved 

for Volterra quadratic stochastic operator, see (Ganikhodjaev, 1993; 

Ganikhodjaev, 1994). Furthermore, there are many publications 

devoted to the study of Volterra quadratic stochastic operator on finite 

and infinite state space, see (Akin & Losert, 1984; Ganikhodjaev & 

Hamzah, 2015b; Ganikhodzhaev et al., 2011; Kesten, 1970; Lyubich, 

1978; Lyubich, 1992; Mukhamedov et al., 2005; Mukhamedov, 2000; 

Ulam, 1960; Zakharevich, 1978).  

For the non-Volterra case, some new classes of quadratic stochastic 

operator have been constructed. In Ganikhodjaev & Hamzah (2014a, 

2014b, 2015a, 2016), the authors introduced and studied Poisson, 

Gaussian, and Geometric quadratic stochastic operator on infinite state 

space. Ganikhodjaev & Hamzah (2015c) have introduced a new class 

of quadratic stochastic operator on the segment  0,1  generated by 2-

partition  , and it was shown that such operator is a regular 

transformation. Rozikov and Zhamilov (2008), and Mukhamedov and 

Embong (2015) also defined and introduced another class of quadratic 

stochastic operator. Then, the authors thoroughly described the 

properties as well as their trajectory behavior. 

In the next section, the concept of quadratic stochastic operator on 

the set of all probability measures as well as the definition of Geometric 

quadratic stochastic opera or are presented in details. 

 

A GEOMETRIC QUADRATIC STOCHASTIC OPERATOR 
 
Let us recall some preliminaries.  

Let ( ),X F  be a measurable space, and ( ),S X F  be the set of all 

probability measures on ( ),X F , where X  is a state space and F  is 

 - algebra on X . It is known that the set ( ),S X F  is a compact, 

convex space and a form of Dirac measure X  which is defined by:  

 

1  if 
( )

0  if 
x

x A
A

x A



= 


        (4) 

for any A F  are extremal elements of ( ),S X F .  

 

Definition 1: Suppose ( ),F   is a partially ordered set, M  and m  are 

elements of F , and A  is a subset of F . 

(i) M is a maximal element of A , if and only if M  is in F  

and there is no x  in A  such that M x ; M  is a 

maximum of A , if and only if  M  is in A  and x M  

for all x  in A .  

(ii) m is a minimal element of A , if and only if m  is in A  

and there is no x  in A  such that x m ; m  is a minimum 

of A , if and only if  m  is in A  and m x  for all x  in   

A . 

 

Let ( ) , , : , ,P x y A x y X A F   be a family of functions on 

X X F   which satisfy the following conditions: 

(i) ( ) ( ), , ,P x y S X F   for any fixed ,x y X , that is, 

( )  , , : 0,1P x y F →  is the probability measure on F , 

(ii) ( ), ,P x y A  is measurable function on ( ),X X F F   

which regarded as a function of two variables x and y  

with fixed A F , 

(iii) ( ) ( ), , , ,P x y A P y x A=  for any ,x y X  and A F . 

 

Definition 2: A mapping ( ) ( ): , ,V S X F S X F→  is called a quadratic 

stochastic operator generated by the family of functions 

( ) , , : , ,P x y A x y X A F   if for an arbitrary measure ( ),S X F

, then the measure V  =  is defined as follows: 

( ) ( ) ( ) ( ), ,
X X

A P x y A d x d y   =   ,   (5) 

where A F  is an arbitrary measurable set. 

Assume ( ) ( ) , : 0,1,2,...nV S X F n  =  is a trajectory of the 

initial measure ( ),S X F , where ( ) ( )( )1n nV V V + =  for all 

0,1,2,...n = , with ( )0V  = . 

Definition 3: A measure ( ),S X F  is called a fixed point of a 

quadratic stochastic operator   V , if ( )V  = . 

 

Definition 4: A quadratic stochastic operator V  is called a regular if 

for any initial point ( ),S X F  the limit  

 

( )lim n

n
V 

→
,  (6) 

exists.  

Note that the limit point is a fixed point of a quadratic stochastic 

operator V . Hence, the fixed points of quadratic stochastic operator 

manifest a limit behavior of the trajectories at any initial point.   

If X  is a state space, where  0,1,2,...,X m= , thus for any 

,i j X , a probability measure ( ), ,P i j   is a discrete measure with 

 ( )
, 1

, 1
m

i j

P ij k
=

= , where  ( ) ,, ij kP ij k P=  and corresponding 

stochastic operator V  is defined as follows. 

Definition 5: A mapping 
1 1: m mV S S− −→  is called a quadratic 

stochastic operator, if for any ( ) 1

1,...,
m

mx x x S −=   , Vx  is defined as  

( ) ,

, 1

m

ij k i jk
i j

Vx P x x
=

=  ,   (7) 

where the coefficients 
,ij kP  satisfy the following conditions: 

(i) 
, 0ij kP  , 

(ii) 
, ,ij k ji kP P= , 

(iii) ,

1

1
m

ij k

k

P
=

=  for all  , , 1,...,i j k m .  

It implies that these three conditions are fully consistent with conditions 

formulated in general case.  
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Note that, in this paper, we consider a countable state space X , 

where  0,1,2,...X = . Hence, a quadratic stochastic operator V  on 

measurable ( ),X F  is defined as follows: 

( ) ( ) ( ),

0 0

ij k

i j

V k P i j  
 

= =

= ,   (8) 

where k X  for arbitrary measure ( ),S X F .  

 Geometric quadratic stochastic operator is considered in this paper. 

Note that a Geometric distribution rG  with a real parameter r ,

0 1r  , defined on X   by the equation 

( ) ( )1 k

rG k r r= − ,   (9) 

for any k X . 

Let ( ),S X F   be a set of all probability measure and ( ), ,P i j   be 

a probability measure on ( ),X F  for any ,i j X . 

Definition 6: A quadratic stochastic operator V  in (7) is called a 

Geometric quadratic stochastic operator, if for any ,i j X , the 

probability measure ( ), ,P i j   is the Geometric distribution 
( ),r i j

G  with 

a real parameter ( ) ( ) ( ), , , 0 , 1r i j r j i r i j=    . 

In this paper, we are motivated to construct a class of Geometric 

quadratic stochastic operator defined on countable state space X  

generated by 2-partition   of arbitrary singleton. The trajectory 

behavior of such operator with initial measure ( ),S X F  is studied 

and described. 

 

A GEOMETRIC QUADRATIC STOCHASTIC OPERATOR 

GENERATED BY 2-PARTITION ξ OF SINGLETON 

 

Let ( ),X F  be a measurable space with countable state space X . 

Definition 7: A probabilistic measure   on ( ),X F  is said to be 

discrete, there exists a finitely many elements  1,..., nx x X , such 

that  ( )i ix p =  for 1,...,i n= , with 
1

1
n

i

i

p
=

= . Then, 

  ( )1\ ,..., 0nX x x =  and for any A F , ( ) ( )
i

i

x A

A x 


=  .  

Recall that a partition of ( ),X F , is a disjoint collection of elements 

of F  whose union is X . We shall be interested in finite partitions. 

They will be denoted as  1,..., kA A =  and is called measurable k -

partition.  

Let  1 2,A A =  be a measurable 2-partition of the state space 

 0,1,2,...X =  where 1A X , 2 1\A X A= , and  1 2,B B =  be a 

corresponding partition of the unit square X X , where 

1 1 1 2 2B A A A A=    , and 2 1 2 2 1B A A A A=    . Note that the 

consideration of this partition is designed by the condition 

( ) ( ), , , ,P i j P j i =  .  

We define the family ( ) , , : ,P i j i j X   of discrete probability 

measures on ( ),X F  as follows. If ( ), mi j B  where 1,2m = , then 

(i) for ( ) 1,i j B  assume ( ) ( )1 1, , 1 kP i j k r r= −  for 0,1,2,...k =  

(ii) for ( ) 2,i j B  assume ( ) ( )2 2, , 1 kP i j k r r= −  for 

0,1,2,...k =  

Using the fact that arbitrary singleton in the countable state space 

X  will result on different number of partitions in the unit square 

X X , thus we need to consider the following cases.  

Case 1. Let  1 1 1:A x x X=   where 1A  consists of a singleton 

1 0x =  and 2 1\A X A= . We consider a Geometric quadratic stochastic 

operator that  

( ) ( )

( ) ( )2

11

,

2 2

11  if 

1  ,if 

,k

ij k k

r r
P

jr r

i j B

i B

 −
= 

−



 
 

for ,i j X .  

Then, for any initial measure ( ),S X F , we have   

( ) ( ) ( ),

0 0

ij k

i j

V k P i j  
 

= =

=  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

00, , 0,

1 1 1

0 ,

1

2

1 1 1 1

1 1

2 2 2 2

1 1

2 2

1 1 1 1

2 2

0 0 0

0

1 0 1

1 0 1 0

1 0 1 1 0

2 1 0 1 0

k ij k i k

i j i

j k

j

k k

i j

k k

i j

k k

k

P P i j P i

P j

r r r r i j

r r i r r j

r r r r

r r

     

 

  

   

 

 

  

= = =



=

 

= =

 

= =

= + +

+

= −   + − 

+ − + −

= −   + −  −    

+ −  −  

 





 

         

( ) ( ) ( ) 2 2

1 11 0 1 0kr r  = −   +  −      

( ) ( ) ( ) 2 21 2 0 1 0kr r  + −  −   , and 

 

( ) ( ) ( )2

,

0 0

ij k

i j

V k P V i V j  
 

= =

=   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

00, , 0,

1 1 1

0 ,

1

2

1 1 1 1

1 1

2 2 2 2

1 1

0 0 0

0

1 0 1

1 0 1 0

k ij k i k

i j i

j k

j

k k

i j

k k

i j

P V V P V i V j P V i V

P V V j

r r V r r V i V j

r r V V i r r V V j

     

 

  

   

  

= = =



=

 

= =

 

= =

= + +

+

= −   + − 

+ − + −

 





 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

1 1 1 1

2 2

1 0 1 1 0

2 1 0 1 0

k k

k

r r V r r V

r r V V

 

 

= −   + −  −    

+ −  −  

         

( ) ( )( ) ( )( )
2 2

1 11 0 1 0kr r V V  = − + −
  

 

( ) ( ) ( )( )2 21 2 0 1 0kr r V V  + − −  .  

 

Thus, by using induction on the sequence ( )nV k , we produce the 

following recurrent equation: 

 

( )

( ) ( )( ) ( )( )

1

2 2

1 11 0 1 0

n

k n n

V k

r r V V



 

+

 = − + −
  

 

( ) ( ) ( )( )2 21 2 0 1 0k n nr r V V  + − −
  ,  (10) 

where 0,1,2,...n = .  



 Karim et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 15, No. 6 (2019) 872-877  

 

875 

One can show that the limit behavior of the recurrent equation (9) is 

fully determined by limit behavior of recurrent equation ( )0nV   such 

that  

( )

( ) ( )( ) ( )( )

1

2 2

1

0

1 0 1 0

n

n n

V

r V V



 

+

 = − + −
  

   

( ) ( ) ( )( )21 2 0 1 0n nr V V  + − −
  ,  (11) 

for 0,1,2,...n = .  

Case 2. Let  1 1 1:A x x X=   where 1A  consists of a singleton 

1 0x   and 2 1\A X A= . Thus, for any initial measure ( ),S X F , 

we have  

( ) ( ) ( ),

0 0

ij k

i j

V k P i j  
 

= =

=  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

1 1

1 1 1

1 1

1

1 1 1

1 1

1 1

, 1 1 , ,

0 0 1 1

1 1 1

, , , 1

0 1 1 0 0

1

, 1 , 1 , 1

0 1 1

x x

x x k ij k ij k

i j i x j x

x x x

ij k ij k ih k

i j x i x j i

x

x j k x j k ix k

j j x i x

P x x P i j P i j

P i j P i j P i x

P x j P x j P i x

     

     

     

− −  

= = = + = +

− − − 

= = + = + = =

−  

= = + = +

= + +

+ + +

+ + +

  

    

  

         

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

1 1

1 1 1

1 1
2

1 1 1 1 1

0 0

1 1

0 0

1

1 1

0 0

1 1

1 1 2 2 1

0 0 0

1 1

1 1 1

1 1

1 1 1

1

x x
k k

i j

x x
k

i j

x x
k

i j

x x x
k k

i j i

r r x r r i j

r r i j

r r i j

r r i j r r x i

  

 

 

   

− −

= =

= =

−

= =

− −

= = =

  
= −   + −    

   

  
+ − − −  

   

  
+ − −  

   

  
+ − − + −  

   

+ −

 

 

 

  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1

1

2 2 1 2 2 1

0 0

2 2 1

0

1 1

1 1

x x
k k

j j

x
k

i

r r x i r r x j

r r x i

   

 

−

= =

=

 
+ − − 

 

 
+ − − 

 

 



 

( ) ( )( ) ( )( )
2 2

1 1 1 11 1kr r x x  = − + −
 

 

( ) ( ) ( )( )2 2 1 11 2 1kr r x x  + − −  , and  

 

( ) ( ) ( )2

,

0 0

ij k

i j

V k P V i V j  
 

= =

=   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1

1

1 1 1

1 1

, 1 1 ,

0 0

1

, ,

1 1 0 1

x x

x x k ij k

i j

x

ij k ij k

i x j x i j x

P V x V x P V i V j

P V i V j P V i V j

   

   

− −

= =

−  

= + = + = = +

= +

+ +



   
        

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1

1

1

1

1 1

1

1

1

1 1

, , 1

1 0 0

1

, 1 , 1

0 1

, 1

1

x x

ij k ix k

i x j i

x

x j k x j k

j j x

ix k

i x

P V i V j P V i V x

P V x V j P V x V j

P V i V x

   

   

 

− −

= + = =

− 

= = +



= +

+ +

+ +

+

  

 



 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

1 1

1 1

1 1
2

1 1 1 1 1

0 0

1 1

0 0

1

1 1

0 0

1

1 1 2 2 1

0 0

1 1

1 1 1

1 1

1 1 1

x x
k k

i j

x x
k

i j

x x
k

i j

x x
k k

i j

r r V x r r V i V j

r r V i V j

r r V i V j

r r V i V j r r V x V i

  

 

 

   

− −

= =

= =

−

= =

−

= =

  
= −   + −    

   

  
+ − − −  

   

  
+ − −  

   

  
+ − − + −  

   

 

 

 

 
1 1

0

x

i

−

=



  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1

1

2 2 1 2 2 1

0 0

2 2 1

0

1 1 1

1 1

x x
k k

j j

x
k

i

r r V x V i r r V x V j

r r V x V i

   

 

−

= =

=

 
+ − + − − 

 

 
+ − − 

 

 



( ) ( )( ) ( )( )
2 2

1 1 1 11 1kr r V x V x  = − + −
  

 

( ) ( ) ( )( )2 2 1 11 2 1kr r V x V x  + − −  . 

 

By using induction on the sequence ( )nV k , the following 

recurrent equation is obtained  

 

( )

( ) ( )( ) ( )( )

1

2 2

1 1 1 11 1

n

k n n

V k

r r V x V x



 

+

 = − + −
  

( ) ( ) ( )( )2 2 1 11 2 1k n nr r V x V x  + − −
 

,  (12) 

where 0,1,2,...n = . 

 

From this, it is clear that the limit behavior of the recurrent equation 

(12) is fully determined by limit behavior of recurrent equation 

( )1

nV x  such that  

( )

( ) ( )( ) ( )( )1

1

1

2 2

1 1 1 11 1

n

x n n

V x

r r V x V x



 

+

 = − + −
  

 

( ) ( ) ( )( )1

2 2 1 11 2 1x n nr r V x V x  + − −
  ,  (13) 

for 0,1,2,...n = . 

In other words, for both cases, we can generalize that for any singleton 

1 1x A  the recurrent equation in (12) is fully determined by limit 

behavior of recurrent equation in (13).  

As n→ ,  then the recurrent equation (13) can be written as 

follows: 

( ) ( ) ( ) ( )1 1
22

1 1 2 21 1 1 2 1x xx r r x x r r x x = − + − + −  −   
,   (14) 

where 1 1x A . 

By solving the equation in (14), we have single fixed point *

1x as in Fig. 

1. 
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Fig. 1  Graph of the Function in (13) for Some Fixed Values 1r  and 2r . 

From Fig. 1, using simple calculus, one can show that the trajectory 

behavior of quadratic stochastic operator in (12) which defined on zero-

dimensional simplex, 
0S  converges to this fixed point *

1x . Then, we 

can say that the quadratic stochastic operator in (12) is regular. Thus, 

for any initial measure  , we have: 

( ) *

11lim n

n
xV x

→
=  . 

Then, passing the limit in (12), for any singleton k , we have 

( )1lim n

n
V k+

→

( ) ( )( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

2 2

1 1 1 1

2 2 1 1

2 2
* * * *

1 1 1 1 2 2 1 1

1 1
lim

1 2 1

1 1 1 2 1

k n n

n k n n

k k

r r V x V x

r r V x V x

r r x x r r x x

 

 
→

  − + −
   =  
  + − −

  

   = −  + − + −  −
   

 

( ) ( ) ( ) ( ) ( )
1 2

2 2
* * * *

1 1 1 11 2 1r rG k x x G k x x   =  + − +  −
   

.  

Thus, for any initial measure  , the strong limit of the sequence 

nV   exists and is equal to the convex linear combination 

( )1lim n

n

V k+

→

 

 

( ) ( ) ( ) ( ) ( )
1 2

2 2
* * * *

1 1 1 11 2 1r rx x G k x x G k   = + − + −
   

, 

 

of two Geometric measures 
1r

G and 
2r

G . It is clear that  

 

( ) ( ) ( ) ( ) ( ) ( )
1 2

2 2
* * * *

1 1 1 11 2 1r rFix V x x G k x x G k = + − + −
  

 .  

By Definition 4, the convergence of the trajectory indicates that the 

limit exists. Hence, it is regular. 

In the next section, we provide the analytical proof of Geometric 

quadratic stochastic operator generated by 2-partition   of a singleton. 

 

 

 

Analytical proof of a geometric quadratic stochastic 

operator generated by 2-partition ξ of singleton 

Based on the equation (14), it is obvious that the equation is a 

quadratic equation. Hence, we can rewrite the right-hand side equation 

as follows: 

 

( ) ( ) ( ) ( ) ( )1 1 1 1 12

1 1 2 2 1 1 2 2 1 12 1 1 2 1 1 1x x x x xy r r r r x r r r r x r r   = − − − − − − − + −    ,   (15) 

where 1 1x A , and 1 20 , 1r r  . It is obvious that a function (15) maps 

the segment  0,1 (one-dimensional simplex) into itself with  

( ) 1

1 10 1
1 x

x x
y y r r

= =
= = −  . 

Since we have assumed that 10 1r   to avoid the analysis of 

particularities, then the following statements are valid. 

Theorem 1:  A fixed point of the transformation (15) is a unique and 

belongs to open interval ( )0,1 . 

Proof In fact, the equation 

( ) ( ) ( ) ( )( )1 12

1 1 2 22 2 , 1 ; 1x xx A B x A B x A A r r B r r= − − − + = − = − ,   (16) 

has a root in the interval ( )1,  when ( )2 0A B−  , and has a root in 

the interval ( ),0−  when ( )2 0A B−  . If  ( )2 0A B− = , then we 

can clearly see that the equation became a linear with 

( ) 1

1 11 0xA r r= −  . Thus, for all cases, a root in  0,1  is unique. It is 

evident that this root differs from 0 to 1. 

Now, let us consider the discriminant of the quadratic equation (16) 

to investigate the local character of the fixed point, where  

 

( ) ( )
2

4 1 1 2A A B = − + − .   (17) 

By using simple calculus, we have that 0 2   , and   takes all 

value in this interval. 

Theorem 2: If  0 2   , then a fixed point is attractive. 

Proof  Let   is a fixed point, where  

 

( )

( )

2 1

4

A B

A B


− + − 
=

−
.  (18) 

(a) Graph 1.1 when 1 0.1r =  and 2 0.9r =  for 1 0x =  

 

(b) Graph 1.2 when 1 0.35r =  and 2 0.75r =  for 1 2x =  
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Its character is defined by ( )f  , where ( )f x  is a right hand side 

of the equation (16), and ( )f x  is its derivative. Let ( )f = , where  

 

( ) ( )4 2A B A B = − − −  .  (19) 

It is easy to verify that  

 

             1 = −   ,  (20) 

for a fixed point in the interval ( )0,1 . Since 0 2   , then we will 

have 1 2 1−   . Note that, if  1   , then   is an attractive point, 

and if  1   , then   is a repelling point. Thus, any unique fixed 

point in the open interval ( )0,1  is attractive, and the statement of the 

Theorem 2 follows from the equality in (20). 

It is shown that the trajectory behavior of quadratic stochastic 

operator in (13) converges to a fixed point in the open interval ( )0,1 .  

 
Proposition: A Geometric quadratic stochastic operator generated 

by 2-partition   of a singleton is a regular transformation. 

 

CONCLUSION 
 

A limit behavior of Geometric quadratic stochastic operator 

generated by 2-partition   of arbitrary singleton is a regular 

transformation.  
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