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Abstract 

In spatial analysis, it is important to identify the nature of the relationship that exists between variables. 
Normally, it is done by estimating parameters with observations which taken from different spatial units 
that across a study area where parameters are assumed to be constant across space. However, this 
is not so as the spatial non-stationarity is a condition in which a simple model cannot explain the 
relationship between some sets of variables. The nature of the model must alter over space to reflect 
the structure within the data. Non-stationarity means that the relationship between variables under 
study varies from one location to another depending on physical factors of the environment that are 
spatially autocorrelated. Geographically Weighted Regression (GWR) is a technique in which it applied 
to capture the variation by calibrating a multiple regression model, which allows different relationships 
to exist at different points in space. A robust algorithm has been successfully used in spatial analysis. 
GWR can theoretically integrate geographical location, altitude, and other factors for spatial analysis 
estimations, and reflects the non-stationary spatial relationship between these variables. The main 
goal of this study is to review the potential of the GWR in modelling the spatial relationship between 
variables either dependent or independent and its used as the spatial prediction models. Based on the 
application of GWR such as house property indicates that GWR is the best model in estimating the 
parameters. Hence, from the GWR model, the significance of the variation can also be tested. 
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INTRODUCTION 

The technique of linear regression has long resided in the analytical 

toolbox of the quantitative geographer. As a general technique for 

investigating the linkage between geographical variables, the method 

has featured in virtually countless publications. However, this is 

surprising in some respects, as the technique itself takes no account of 

location in its analysis of relationships between variables. The well-

known components of a regression model are 𝑋, a matrix containing a 

set of independent or predictor variables and 𝑦, a vector of dependent 

or response variables. The understanding of this method is when it is 

applied to geographical data in which each case corresponds to a 

geographical location. However, there may be situations when the 

nature of such models is not fixed over space. This is referred to here 

as spatial non-stationarity. Several more explicit ways of incorporating 

space have been considered. For example, Casetti (1972) proposed the 

expansion method where coefficients in the regression model were 

expressed as explicit functions of the spatial locations of the cases. The 

expansion method has been introduced to overcome the weaknesses of 

linear regression as the technique of regression plays no role in 

modelling processes when it is applied to geographical data in which 

each case corresponds to a geographical location. The nature of the 

models which is not fixed over spaces is referred as spatial non-

stationarity. The advantage of a technique of this sort is that, once the 

model has been calibrated, it is possible to map the variation in the 

original regression parameters, and to gain some understanding of the 

spatial patterns in the association between the predictor or response 

variables. 

In Malaysia, only few studies have employed the method of GWR 

in spatial variation and modelling (Eboy and Samat, 2015; Jamhuri et 

al., 2016).  GWR is used as spatial regression tools in modelling 

property rating valuation over Kota Kinabalu, Sabah (Eboy and Samat, 

2015) while Jamhuri et al. (2016) developed a toolbox’s extension of 

GWR with the application to the forestry sector. However, the best of 

our knowledge, the application of GWR in spatial modelling of rainfall 

data is still new in Malaysia. Our challenge now is to investigate on 

how GWR can be applied as a new geostatistical tool in the context of 

climate data in Malaysia and will the proposed GWR in spatial 

modelling technique be more efficient model compared to the 

traditional modelling such as Kriging method. 

Spatial modelling is an essential analytical process of spatial 

analysis which is conducted with geographical information system 

(GIS) due to describe the properties and processes of a given spatial 

features. According to McKenzie and Ryan (1999), Robinson and 

Metternicht (2006), a number of prediction methods have been 

suggested to interpolate data from sparse sampling points into 

continuous surfaces, varying from regression methods to geostatistical 

methods such as ordinary kriging, ordinary cokriging, regression 

kriging and other hybrid techniques. Regression methods involved such 

as simple linear regressions, nonlinear regressions, inverse distance 

weighting, generalized linear models and regression trees. Spatial non-

stationarity is a condition where a simple model cannot explain the 

relationship between some sets of variables. The nature of the model 
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must alter over space to reflect the structure within the data. Non-

stationarity means that the relationship between variable under study 

differs from one location to another depending on physical factors of 

the environment which are spatially autocorrelated. Non-stationarity is 

a conceptual data in which it is difficult to model due to the changing 

of mean and its variance. Since non-stationarity is unpredictable, it can 

not be modelled and forecasted. 

Although Brunsdon et al. (1996) was a pioneer of technique GWR, 

Fotheringham et al. (2002) were fully described the GWR by saying 

that Geographically Weighted Regression (GWR) technique was the 

first selecting a bandwidth that being involved at that time for an 

isotropic spatial weights kernel. A fixed bandwidth of Gaussian kernel 

was chosen through leave-one-out cross-validation ways. Since all the 

𝑛 regressions were well fitted in each step, so the demanding of the 

choices bandwidth could be happened. According to Brunsdon et al.

(1998), he expands the idea of Casetti (1972) which is the expansion 

method one is required to provide an explicit function to describe the 

variation of each element of the vector of regression coefficient (𝛽)
over space. The method proposed here was Geographically Weighted 

Regression (GWR) which attempts to overcome this problem by 

providing a nonparametric estimate of 𝐵𝑖(𝑝𝑖). 

The method of GWR was specifically designed to deal with issues 

of non-stationarity (Fotheringham et al., 2002). GWR handles the 

issues by measuring local relationships between the target variable and 

explanatory variables at various locations. The assumption of the 

stationarity structural stability over space might not be realistic due to 

the variations in relationships between the dependent and independent 

variables over space. Hence, spatial non-stationarity should be 

considered in analysing spatial data. Yu et al. (2009) proposed a paper 

in investigating the potential of spatial non-stationarity of the 

relationship between dependent and independent variables by applying 

the GWR technique. The calibration of GWR will then employs the 

geographically weighted local least squares regression approach. 

Basically, their studies attempt to highlight the issues of non-normality 

on spatial non-stationarity in GWR analysis for the first time. Ehlkes et 

al. (2014) stated that GWR was specifically designed as an extension 

of traditional regression in describing the relationship between 

variables. GWR can incorporate, detect and account for spatial non-

stationarity. 

GWR is a technique or method in which it is applied to capture the 

variation through a multiple regression model calibration which allows 

different relationships to exist at different points in space. Besides, the 

method of GWR also allows us to establish the relationship between 

dependent variables and independent variables and its used as the 

spatial prediction models. The purpose of this study is to review the 

effectiveness of GWR model in dealing with the issues of spatial non-

stationarity in estimating the parameters.  In this study, we can also see 

that GWR model not only can explore the variation of parameters but 

also can test the significance of the parameters.  

METHODS 

GWR is an exploratory technique which mainly intended to 

indicate where the non-stationarity takes place (Bivand, 2017). Simple 

linear regression is frequently used as modeling tools in geographical 

analysis in which the dependent variable is modelled as a linear 

function of a set of 𝑛 independent variable which known as predictor 

variables (Dobson, 1990).  

A global regression model can be written as : 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖
𝑘

   (1) 

where 𝑦𝑖 is the 𝑖𝑡ℎ observation of the dependent variable, 𝑥𝑖𝑘 is the 𝑖𝑡ℎ

observation of the 𝑘𝑡ℎ independent variable, the 𝜀𝑖 are independent 

normally distributed error terms with zero means and each 𝛽𝑘 must be 

determined from a sample of 𝑛 observation. GWR is a relatively simple 

technique which extends the traditional regression framework of the 

equation (1) by allowing the local parameter rather than global 

parameter to be estimated so that the model is rewritten as: 

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘 + 𝜀𝑖
𝑘

(2) 

where (𝑢𝑖, 𝑣𝑖) is the coordinates of 𝑖𝑡ℎ point in space and 𝛽𝑘(𝑢𝑖, 𝑣𝑖) is 

the realization of continuous function 𝛽𝑘(𝑢, 𝑣) at point 𝑖 which means 

that allows to be a continuous surface of parameter values and 

measurements of this surface at certain point denotes as the spatial 

variability of the surface. Note that (1) is a special case to (2) in which 

the parameter surface is assumed to be constant over space. Thus, the 

expression of GWR in (2) is a recognition of spatial variation in 

relationship might exist and will then provide a way which can be 

measured. The calibrating of (2) is assumed implicitly that the observed 

data near to location 𝑖, could have more influence on the estimation of 

the 𝛽𝑘(𝑢𝑖, 𝑣𝑖) rather than locate farther from 𝑖. Basically, (2) measures 

the relationships which exist in the model around each point 𝑖. 
Weighted least square will then provide a basic to understand on how 

the GWR operates. In weighted least square, a weighting factor is 

applied to each square difference before minimizing, so that the 

inaccuracy of some predictions will carry more penalty than others. In 

GWR, an observation is weighted proximately location 𝑖, so that the 

weighting of an observation is varies with 𝑖. Data obtained from 

observations which close to 𝑖 are weighted more than data obtained 

from observation far away, that is: 

𝜷̂(𝑢𝑖, 𝑣𝑖) = (𝑿𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿)−1𝑿𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚 (3) 

where 𝜷̂ is an estimate of 𝜷 and 𝑾(𝑢𝒊, 𝑣𝒊) is a matrix of 𝑛 by 𝑛 whose 

off-diagonal elements are zero and whose diagonal elements denote the 

geographically weighted of observed data for point 𝑖. Note that, there 

is no reasons that 𝑖 must be the location of a data point. Local estimates 

of the parameters can in fact be derive for any point in space regardless 

of whether that point is one at which data have been observed. 

Choice of spatial weighting function  
It has been stated in GWR that 𝑾(𝑢𝑖, 𝑣𝑖) or more convenient terms, 

𝑾(𝑖) is a weighting scheme based on the proximity of point 𝑖 to the 

sampling location around 𝑖 without an explicit relationship being stated. 

The choice of a relationship will be considered here. Firstly, consider 

the implicit weighting scheme of the Ordinary Least Square (OLS) 

framework in (1) as 

𝑤𝑖𝑗 = 1       ∀𝑖, 𝑗 (4) 

where 𝑗 represents a specific point in space at which data are observed 

and 𝑖 represents any point in space for which parameter are estimated. 

In global model, each observation has a weight of unity. Based on 

locality, initial step towards weighting may be excluded from model’s 

calibration observation which further than some distance d from 

locality. This can be done by setting their weights to zero. The 

weighting function are: 

𝑤𝑖𝑗 = {
1           if  𝑑𝑖𝑗 < 𝑑,

0           otherwise
} 

(5) 

where  𝑑𝑖𝑗  is distance between the location of observation 𝑖 and 𝑗. 

Equation in (5) will simplify the procedure of calibration since only a 

subset of data will be used in calibration for each regression point. 

However, equation (5) will suffer discontinuity problems as 𝑖 varies 

around the study area, the regression coefficient would drastically 

change as one sample point moves into or out of the circular buffer 

around 𝑖. It is possible to relate 𝑑𝑖𝑗  to 𝑤𝑖𝑗 with a continuous function as 

one way to combat the problem of discontinuous of weights. One 

obvious choice is: 

𝑤𝑖𝑗 = exp [−
1

2
(

𝑑𝑖𝑗

𝑏
)

2

] 
(6) 

where 𝑏 is referred to as the bandwidth. If 𝑖 and 𝑗 coincide in which 𝑖
also happens to be a point in space where the data are observed, the 

weighting of data at that point will be unity and the weighting of the 
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other data will decrease according to a Gaussian curve as the distance 

between  𝑖 and 𝑗 increases. In latter case, the inclusion of data in 

calibration procedure become fractional. Here the value of the weight 

would decay gradually with distance to the extend when 𝑑𝑖𝑗 = 𝑏 the 

weighting would be 0.05. Alternative weighting function could be 

 

𝑤𝑖𝑗 = { [1 − (
𝑑𝑖𝑗

𝑏
)

2

]

2

       if 𝑑𝑖𝑗 < 𝑏,

 0                               otherwise

}. 

(7) 

 

The equation (7) can be referred to the kernel function and denoted with 

letter 𝐾 as in 𝑤𝑖𝑗 = 𝐾(𝑑𝑖𝑗). In each case, as 𝑑 does in basic step 

function, the constant 𝑏 will provide some control range of the 

geographical data. When a certain distance is reached, the degree of 

weighting would decay with distance and then will suddenly drop to 

zero. 

 

Calibrating the weighting function 
One difficulty in GWR is that the estimated parameters in which it 

depends on the weighting function. For example, in Equation (5), as 𝑑 

become larger, the nearest will be the solution model to OLS and if 𝑑 

is equal to the maximum distance between points in the system, then 

two models; OLS and GWR will be equal. Equivalently, the weights 

tend to one for all pairs of the points as 𝑏 tends to infinity so that the 

estimated parameters become uniform and GWR becomes equivalent 

to OLS. Several numbers of criteria have been proposed in selecting a 

suitable bandwidth. Consider the selection of 𝑏 in (6). One possibility 

is to choose 𝑏 using a ‘least square’ criterion. One way to proceed 

would be to minimize the quantity, 

 

𝑧 = ∑[𝑦𝑖 − 𝑦̂𝑖(𝑏)]2

𝑛

𝑖=1

 
(8) 

 

where  𝑦̂𝑖(𝑏) is the fitted value of 𝑦𝑖 using bandwidth of 𝑏. To find the 

fitted value of 𝑦𝑖, it is necessary to estimate 𝛽𝑘(𝑢𝑖 , 𝑣𝑖) at each points of 

data and then combine these with the 𝑥-values at these points. Suppose 

𝑏 is made to be very small so that the weighting of all points will 

become negligible except for 𝑖 itself. The value of equation (8) will 

become zero if the fitted values at the sampled points are more likely to 

the actual values. The idea of optimizing the value of 𝑏 become zero is 

not a good way to do so due to two reasons. First, the parameter of such 

models will be undefined in the limiting case and second, the estimating 

will move wildly throughout space to give locally a good fitted value at 

each point 𝑖. Cross-validation (CV) approach is suggested as the 

solution for local regression and kernel density. Here, a score of the 

form 

 

CV = ∑[𝑦𝑖 − 𝑦̂≠𝑖(𝑏)]2

𝑛

𝑖=1

 
(9) 

 

is used where 𝑦̂≠𝑖(𝑏) is the fitted value of 𝑦𝑖 with the observation for 

point 𝑖 omitted from the calibrating process. Since 𝑏 becomes very 

small, the model is calibrated only on samples which are closed to 𝑖 and 

not at 𝑖 itself. This is because the approach has desirable property in 

countering the ‘wrap around’ effect. A similar method of deriving the 

bandwidth in which provides a trade-off between goodness-of-fit and 

degrees of freedom is to minimize the Akaike Information Criterion 

(AIC) which is defined in GWR as: 

 

AIC = 2𝑛 log𝑒(𝜎̂) + 𝑛 log𝑒(2𝜋) + 𝑛 {
𝑛 + tr(𝑺)

𝑛 − 2 − tr(𝑺)
} 

(10) 

 

where 𝑛 is the sample size, 𝜎̂ is the estimate standard deviation of the 

error term and tr(𝑺) denotes as the trace of the hat matrix which is a 

function of the bandwidth. Since AIC can be used in Poisson and 

logistic GWR as well as in linear models, AIC has an advantage to be 

more general in application rather than CV statistics. Besides that, AIC 

can also be used in assessing whether the GWR provides better fit than 

global model by considering the varying degrees of freedom in two 

models. 
 
 

Testing the significance of spatial non-stationarity 
In this section, the development of a hypothesis test will be 

considered to justify the use of spatially weighting regression model. 

 

𝐻𝑜: 𝛽𝑖𝑗 = 𝛽        ∀𝑖, 

𝐻1: 𝛽𝑖𝑗  ≠ 𝛽        not all the same ∀𝑖. 

(11) 

 

Variance of 𝛽𝑖𝑗  across 𝑖 is one of the useful statistical test to measure 

the variability of 𝛽𝑖𝑗  as 𝑖 varies for a fixed 𝑗. 

 

𝑣𝑗 =
∑ (𝛽𝑖𝑗 − 𝛽𝑗)

2
𝑖

𝑁
. 

(12) 

 

Under the null hypothesis, 𝐻𝑜, we assume that 𝛽𝑖𝑗  do not vary with 𝑖 

for variable 𝑗. This suggests that, if the GWR model were calibrated 

with locations of the observations which is randomly assigned to the 

predictor and response variables, a little difference will then occur in 

patterns of 𝛽𝑖𝑗 . This happen when 𝛽𝑖𝑗  are fixed over space and spatial 

location should not affect the calibration. Therefore, Monte Carlo is 

used to test and to compare the distribution of the 𝑣𝑗  under the 

randomization hypothesis. The procedure for a given 𝑗 is as follows: 

a. Make a note of 𝑣𝑗  for the correctly located observation. 

b. Randomly ‘scramble’ the location of 𝑝𝑗 among the 

observation. 

c. Repeat the previous step 𝑃 − 1 times, note that 𝑣𝑗  each time. 

d. Compute the rank of 𝑣𝑗  for the correctly located case, 𝑅. 

e. The 𝑝-value for the randomization hypothesis is 
𝑅

𝑝
.  

 

RESULTS AND DISCUSSION 
In this section, we will discuss the application of GWR in two 

different cases that highlighted different approach in the analysis. The 

results are presented in the forms of tables which were adapted from 

the articles. 

First case study focused on spatial varying relationship between 

house price and floor area done by Lu et al. (2011). In their study, the 

performance of GWR method was compared to OLS.  

Second case study discussed the issue of non-stationarity and how 

the GWR method can be used to handle these issues. We reviewed the 

work done by Yu et al. (2009) which focused on the relationship 

between tobacco outlet density and demographic factors.  

 
Case study I 

Lu et al. (2011) studied the analysis of a non-Euclidean distance 

metric on London house price data using GWR. Basically, the idea of 

their study focused on GWR model in which it was used to explore the 

spatial varying relationship between house price and floor area in 

London. Sample of 372 properties sold within London area during 2001 

were used in their studies. Their study area were divided by the river 

Thames and this makes the network distance (ND) significantly 

different from Euclidean distance (ED) which affected by the density 

of the bridges along river. A regression model between price and floor 

area has been proposed and its GWR expression was written as: 

 

𝑃𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) + 𝛽1(𝑢𝑖 , 𝑣𝑖)𝐹𝐿𝑅𝐴𝑅𝐸𝐴𝑖 . (13) 

 

To facilitate the analysis, the sampled houses location has been used as 

regression points. Their study focused on comparing between two types 

of distance; the network distance and euclidean distance, which are 

more significant in measuring the house price.  Lu et al. (2011) 

proposed five different ways in calibrating the model. First model refers 

to an ordinary least square (OLS) while the second model is a GWR 

model. Then, the model was calibrated using ED and ND respectively 

with fixed and adaptive spatial kernels. Cross-validation (CV) approach 

was chosen to employ the selection for bandwidth of each calibration 
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in GWR. Table 1 showed that all the performance of  GWR approaches 

was better than OLS.  

 
Table 1 Comparison of Akaike Information Criterion (AIC) and adjusted 
𝑅2 values for different model calibration. 
 

 OLS 
Model 

GWR 
Model 

(Fixed & 
ED) 

GWR 
Model 

(Adaptiv
e & ED) 

GWR 
Model 

(Fixed & 
ND) 

GWR 
Model 

(Adaptiv
e & ND) 

AIC 9529.11 9065.08
9 

9078.04
5 

9057.17
8 

9078.18
7 

Adjuste

d 𝑹𝟐 

0.46719
16 

0.82418
92 

0.81805
45 

0.82546
11 

0.81556
02 

 

After the model calibration, results show a significant improvement for 

fixed kernel and ND based on the smallest AIC values and the largest 

adjusted 𝑅2. Clearly, results from calibration of GWR model with fixed 

kernels and ND confirmed that the performance of GWR had achieved 

its feasible improvement. 

 

Case study II 
Regression analysis is a statistical technique that is most frequently 

used in investigating the relationship between given observation and a 

set of factors. Yu et al. (2009) examined the relationships between three 

demographic factors at census tract level such as percentage of African 

American residents, percentage of Hispanic residents and median 

household income and the tobacco outlets density in the tracts. These 

studies covered all 15037 retail outlets licensed selling tobacco in 

2004. The number of tobacco outlets per 10 km of roadway in a census 

tract, one of the primary linkage between tobacco and accessibility of 

outlet population was used to calculate the tobacco outlets density. 

They conducted the preliminary analyses at both municipality and 

census block group levels. Although there was about 1950 census tract 

in New Jersey, this studies only focused on 1938 residential tracts 

which were recorded the demographic data.  

Generally, Yu et al. (2009) examined and estimated the relationship 

expression written as: 

 

𝑜𝑢𝑡𝑙𝑒𝑡. 𝑑𝑛 = 𝑓(𝑝𝑐𝑡. 𝑎𝑎, 𝑝𝑐𝑡. ℎ𝑖𝑠𝑝, 𝑚𝑒𝑑. 𝑖𝑛𝑐) (14) 

 

where  𝑜𝑢𝑡𝑙𝑒𝑡. 𝑑𝑛 was representing the outlet density in a particular 

census tract, 𝑝𝑐𝑡. 𝑎𝑎 would represents the percentage of African 

American, 𝑝𝑐𝑡. ℎ𝑖𝑠𝑝 would represents the percentage of Hispanics, 

𝑚𝑒𝑑. 𝑖𝑛𝑐 would represents the median household income and linear 

functional form (𝑓) would preferred be the estimation.  

According to Leung et al. (2000) and Fotheringham et al. (2002), 

GWR models were fitted the data better than OLS models due to the 

decrease of degrees of freedom. ANOVA test which has been 

developed by Brunsdon et al. (1999) would then be used to statistically 

test whether GWR model was improved significantly from OLS model 

or not by considering the decrease of degrees of freedom. Table 2(a) 

and Table 2(b) were reported as the results of OLS estimation of both 

transformed and non-transformed data. Based on the results, the used 

of usual diagnostic statistics had indicated both models are significant 

and selected demographic factors explained that the variation of the 

outlet densities were around 45% which included either dependent 

variable was transformed or not. Clearly, two estimations with 

transformed model and non-transformed model were varied in GWR 

analysis.  

 
Table 2(a) OLS results for non-transformed data. 

 

 Estimate Std. 
error 

𝒕 value Pr(< |𝒕|) 

(Intercept) 2.849 0.570 4.998 6.32× 10−7 

Pct.AA 5.261 0.705 7.465 1.26× 10−13 

Pct. Hisp. 28.53 0.949 30.065 < 2 × 10−16 

Median 
Inc. 

-3.468×
10−5 

7.394×
10−6 

-4.691 2.91× 10−6 

Adjusted 𝑹𝟐 = 𝟎. 𝟒𝟒𝟎𝟔; 𝑭-statistic= 𝟓𝟎𝟗. 𝟓 on 3 and 1934 DF 

𝒑-value:< 𝟐. 𝟐 × 𝟏𝟎−𝟏𝟔; AIC= 𝟏𝟐𝟕𝟕𝟏. 𝟐𝟖 

 
Table 2(b) OLS results for transformed data. 

 
 Estimate Std. 

error 
𝒕 value Pr(< |𝒕|) 

(Intercept) 1.020 0.116 8.785 < 2 × 10−16 

Pct.AA 1.201 0.144 8.369 < 2 × 10−16 

Pct. Hisp. 4.741 0.193 24.527 < 2 × 10−16 

Median 
Inc. 

-1.747×
10−5 

1.506×
10−6 

-11.599 < 2 × 10−16 

Adjusted 𝑹𝟐 = 𝟎. 𝟒𝟓𝟏; 𝑭-statistic= 𝟓𝟑𝟏. 𝟓 on 3 and 1934 DF 

𝒑-value:< 𝟐. 𝟐 × 𝟏𝟎−𝟏𝟔; AIC= 𝟔𝟔𝟎𝟒. 𝟐𝟔 

 

AIC values of both OLS estimation has been used as an alternative 

measure of goodness-of-fit and then will be compared with the AIC 

values in GWR.  In terms of statistic, application of GWR in the models 

was justified as the significantly improve exists for both models in their 

corresponding OLS counterparts even though degrees of freedom was 

reduced. Table 3(a) and Table 3(b) recorded the test of ANOVA for 

GWR models improvements over the OLS models for both transformed 

and non-transformed data by considering added computation 

complexity and the decrease of degrees of freedom.  

 
Table 3(a) ANOVA test for GWR models’ improvement over OLS of non-
transformed data. 

 𝐒𝐒𝒂 𝐃𝐅𝒂 𝐌𝐒𝒂 𝐅 𝐏𝐫 (> 𝐅) 

OLS 
residuals 

82150.12
0 

1934.00
0 

42.477 n.a. n.a. 

GWR 
improveme

nt 

27220.63
5 

136.437 199.51
0 

n.a. n.a. 

GWR 
residuals 

54929.48
5 

1797.56
3 

30.558 6.528
9 

< 𝟐. 𝟐
× 𝟏𝟎−𝟏𝟔 

With 1011.269 and 1836.223 degrees of freedom for the 𝑭 test; 
AIC= 𝟏𝟐𝟐𝟏𝟏. 𝟐𝟗 

 
Table 3(b) ANOVA test for GWR models’ improvement over OLS of 
transformed data. 

 𝐒𝐒𝒂 𝐃𝐅𝒂 𝐌𝐒𝒂 𝐅 𝐏𝐫 (> 𝐅) 

OLS residuals 3408.9
001 

1934.000
0 

1.7626 n.a. n.a. 

GWR 
improvement 

1252.9
084 

180.9464 6.9242 n.a. n.a. 

GWR 
residuals 

2155.9
918 

1753.053
6 

1.2298 5.630
1 

< 𝟐. 𝟐
× 𝟏𝟎−𝟏𝟔 

With 1062.870 and 1804.046 degrees of freedom for the 𝑭 test; 
AIC= 𝟔𝟎𝟏𝟒. 𝟕𝟕 

 

where SS𝑎 represents sum of squares, DF represents degrees of freedom 

and MS represents mean of squares.  

Spatial non-stationarity test for the coefficients of independent 

variables in GWR models was one way in applying the GWR 

techniques. Fotheringham et al. (2002) used Monte Carlo simulation to 

test a non-parametric on a spatial non-stationarity. While Brunsdon et 

al. (1996) preferred natural choice for a formal statistical test of spatial 

non-stationarity by using the sample variance of the estimated 

coefficients. The null hypothesis of all estimated coefficients which is 

same with particular independent variables will then be tested by a 

constructed 𝐹 test has been fully explained in Leung et al. (2000).  

In this study, Yu et al. were using a practical yet natural choice of 

testing spatial non-stationarity to provide sufficient insights for 

understanding the potential impact of non-normality on non-

stationarity. The coefficients of two GWR models were estimated with 

non-transformed and transformed tobacco outlet density and these two 

models will then be tested the null hypothesis of  each independent 

variables to see their spatial non-stationarity. These stationarity test of 

two models will be compared to determing the impact of non-normality 

on spatial non-stationarity.  

Results of stationarity test for both GWR models of transformed 

model and non-transformed model were listed in Table 4(a) and Table 

4(b) respectively. Clearly, Table 4(a) and Table 4(b) illustrated the non-

normality distribution of the regression through the relationships of the 

spatial non-stationarity. Based on Table 4(a), there were no significant 
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variation of the relationships across spaces by looking at the 𝐹 

statistical test for percentages of African Americans (Pct.AA) and 

percentages of Hispanics (Pct.Hisp.) in the census tracts. While median 

household income was experienced a significant variation over space. 

If the basic assumption was invalid, these particular results of 

justification could be wrongly as in classical regression analysis, the 

normal distribution can be stationary without effect the final analytical 

results.   

 
Table 4(a) Stationarity test for GWR models of non-transformed data. 

 Intercept Pct.AA Pct.Hisp. Median 
Income 

𝑭 statistic 5.027 1.066 1.006 1.793 

Numerator 
d.f. 

491.937 75.798 106.078 325.729 

Denominator 
d.f. 

1927.644 1927.644 1927.644 1927.644 

𝒑 values 0.000 0.331 0.466 0.000 

 

Table 4(b) Stationarity test for GWR models of transformed data. 

 Intercept Pct.AA Pct.Hisp. Median 
Income 

𝑭 statistic 3.280 2.375 1.746 2.156 

Numerator 
d.f. 

465.845 85.059 112.748 324.023 

Denominator 
d.f. 

1920.951 1920.951 1920.951 1920.951 

𝒑 values 0.000 0.000 0.000 0.000 

 

From examinations, the data sets with and without transformed 

were acceptable in terms of its statistical inference when it was applied 

on global ordinary least squares regression. These data sets give a 

similar conclusion in which both supports the common understanding 

between tobacco outlet distribution and demographic factors.  

 

CONCLUSION 
 

The analysis of spatially varying relationships using geographically 

weighted regression (GWR) has been widely employed in variety of 

application such as in finding the relationship between house price data 

and demographic factors, health disease and climate factors and rainfall 

with its elevation. Based on the results of the above-mentioned studies, 

GWR is the best method that often used to handle the issues of non-

stationarity that exist in data sets at varies location. Continuation of this 

study, GWR can be used in establishing the relationship of various 

variables at different locations. 
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