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Abstract 

The objective of this paper is to extend the information embedded in option-implied distribution to 
asset allocation model. This paper examines whether a parameter estimated from an option-implied 
distribution can improve a minimum-variance portfolio which consists of many risky assets. The 
option-implied distribution under a risk-neutral assumption is called risk-neutral density (RND) 
whereas a risk-world density (RWD) is calculated by incorporating a risk-premium. The computation 
of option-implied distributions is based on the Dow Jones Industrial Average (DJIA) index options 
and its constituents. The data covers the period from January 2009 until December 2015. Portfolio 
performance is evaluated based on portfolio volatility and Sharpe ratio. The performance of a 
portfolio based on an option-implied distribution is compared to a naive diversification portfolio. The 
empirical evidence shows that for a portfolio based on an option-implied distribution, the volatility of 
the portfolio is reduced and the Sharpe ratio is increased.  
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INTRODUCTION 

Asset allocation problem discusses on how investors should 
allocate their capital on different assets so that their investments 
provide them with higher return with respect to risk. Markowitz 
model [1] is widely used among market participants to solve asset 
allocation problems. Researchers endeavour to increase the 
performance of Markowitz model by expanding or introducing a new 
parameter or factor. However, literature has pointed out a few 
weaknesses of an asset allocation model based on this model. Firstly, 
the performance of the portfolio does not perform satisfactorily in 
terms of portfolio volatility, Sharpe ratio, certainty-equivalent return,
or turnover as compared to a naïve diversification portfolio [2]. 
Secondly, parameter estimation based on a historical asset price leads 
to an estimation error and affect the performance of an optimal 
portfolio [2]. Generally, parameter estimation of a portfolio model 
which is based on historical asset prices is considered as a backward-
looking data.   

Therefore, researchers are motivated to propose an alternative way 
to overcome the weaknesses stated above. Instead of using a 
backward-looking information, researchers shift their attentions to use 
a forward-looking information such as option prices, in order to 
calculate the parameters of an asset allocation model [3]. 

An option is a financial contract that gives the right but not an 
obligation to sell or to buy an underlying asset at a specified price at a 
maturity date. Option price has a characteristic of a forward-looking 
information in which the payoff function depends on the underlying 
asset price in the future. Thus, the distribution of option prices gives 
an overview of how the underlying asset prices are evolved. Due to 
this reason, researchers [4–6] believe that the information contains in 
an implied distribution is essentially a forward-looking information 

and provides a more accurate estimation of a parameter such as 
volatility. A distribution of option prices provides an expectation of 
market participants in the future. Previous literature highlighted that 
volatility extracted from a forward-looking information is better than 
that of a backward-looking information [7]. Thus, moments estimation 
such as mean, volatility, and covariance which are derived from a 
forward-looking information are expected to be accurate and can be 
used in asset allocation models.  

Option-implied distributions that are extracted from option prices 
are known as risk-neutral density (RND) and risk-world density 
(RWD). RND is calculated under a risk-neutral assumption of the 
investors’ preference. In contrast, RWD is calculated by incorporating 
the risk-premium of investors. Option-implied distribution is useful in 
forecasting the future price of an underlying asset [8–13], monetary 
policy purposes [14,15], and risk aversion [10,11,16,17]. However, 
little attention has been given to the application of an option-implied 
distribution to a portfolio selection. [3] estimated the parameter of 
asset allocation model based on an RND estimation. A cubic 
smoothing spline is used to estimate the RNDs and the RWD 
estimation, the same function used by [16]. [3] developed a portfolio 
with one risk-free and one risky asset.  

This paper is different with that of [3] in which a fourth-order 
polynomial is used in RND estimation and a calibration function is 
used to estimate the RWD. The main contribution of this paper is to 
enhance the performance of a portfolio with many risky assets by 
extending the information embedded in an option-implied distribution. 
The performance of a portfolio based on option-implied distribution is 
then compared to a naïve diversification portfolio. To the best of our 
knowledge, this study is the first to extract the estimation parameter 
from option-implied distributions (RND, RWD-P, RWD-NP) and 
apply to a portfolio selection model. Plus, this paper differs from [3] 
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in terms of the approach used in the RND and RWD estimations. In 
addition, this study constructs a portfolio which contains many risky 
assets as compared to that of [3], in which they used a portfolio of 
only two assets.  
 
Data 

The data used in this study were based on the historical prices of 
Dow Jones Industrial Average (DJIA) index and option prices of Dow 
Jones Industrial Average (DJIA) index option. Option prices were 
obtained from Optiondata.net while historical prices were obtained 
from Datastream database. The dataset covered the period from 
January 2009 until December 2015. The London Interbank Offer Rate 
(LIBOR) for one-month was used as the interest rate.  

There were several filtering criteria imposed to the dataset before 
obtaining the final dataset. Firstly, this study only used out-of-the-
money (OTM) of call and put options due to the liquidity reason. 
Secondly, this study only considered options with one-month maturity 
by referring to the Chicago Board Options Exchange (CBOE) 
calendar. Thirdly, options with the bid or ask quotes equal to zero 
were eliminated and that the ask quotes were greater than the bid 
quotes. Fourthly, option prices that violated the arbitrage condition 
were excluded. Lastly, only options with the lowest delta value less 
than or equals to 0.25 and the highest delta value equal or greater than 
0.75 were used.  

Generally, there are 30 companies listed in DJIA index. However, 
only 22 companies were constantly listed in DJIA index from the 
period January 2009 until December 2015 as depicted in Table 1. 
 
Table 1  Components of DJIA index that consistently listed for the 
period 2009 until 2015.  

  Name Mnemonic 
1 AMERICAN EXPRESS U:AXP 

2 BOEING U:BA 

3 CATERPILLAR U:CAT 

4 CHEVRON U:CVX 

5 EI DU PONT DE NEMOURS U:DD 

6 WALT DISNEY U:DIS 

7 GENERAL ELECTRIC U:GE 

8 HOME DEPOT U:HD 

9 INTERNATIONAL BUS.MCHS. U:IBM 

10 INTEL @INTC 

11 JOHNSON & JOHNSON U:JNJ 

12 JP MORGAN CHASE & CO. U:JPM 

13 COCA COLA U:KO 

14 3M U:MMM 

15 MERCK & COMPANY U:MRK 

16 MICROSOFT @MSFT 

17 PFIZER U:PFE 

18 PROCTER & GAMBLE U:PG 

19 UNITED TECHNOLOGIES U:UTX 

20 VERIZON COMMUNICATIONS U:VZ 

21 WAL MART STORES U:WMT 

22 EXXON MOBIL U:XOM 
 
 

Table 2 shows the summary statistics of the DJIA index and stock 
options. After filtering procedures, we obtained 83 sets of options 
with a constant one-month maturity from the year 2009 until 2015. 
The total option used for index options is 1,677 options and for stock 
options is 26,926 options. The stock options are the options of the 22 
companies that are listed in the DJIA index.   

Table 2 Summary statistics of options for DJIA index and its 
constituents. 

  DJIA 
   Index options Stock options  

No of Call 943 9911 

No of Put 734 17015 

Total 1677 26926 
   

Underlying asset price ($)  
Minimum 71.15 8.85 

1st quartile 107.54 41.2 

Median 127.42 64.55 

Mean 131.88 70.78 

3rd quartile 162.95 91.02 

Maximum 182.99 213.21 
   

Strike ($)   
Minimum 55 2.5 

1st quartile 105 38 

Median 126 61 

Mean 130.1 67.69 

3rd quartile 160 89 

Maximum 193 235 
   

Midprice ($)   
Minimum 0.02 0.015 

1st quartile 0.26 0.06 
Median 0.55 0.155 
Mean 0.764 0.408 

3rd quartile 1.085 0.475 

Maximum 5.55 32.42 
   

Implied Volatility  
Minimum 0.038 0.012 

1st quartile 0.117 0.186 

Median 0.16 0.251 

Mean 0.187 0.294 

3rd quartile 0.223 0.341 

Maximum 0.679 0.7 
 
 
METHODOLOGY 
 

The analysis of this study consists of four stages: calculation of 
RND, calculation of RWD, calculation of mean, variance and 
covariance, and application of the estimated parameter in an asset 
allocation model. This subsection explains the procedure for each 
stage of calculation. 
 
Risk-neutral density 

Price of a call option is given by the discounted value of expected 
payoff on the maturity date, T with respect to the risk-neutral 
probability 

( ) ( )-rT
T T T0

C(T,K)= e S - K,0 f S dS∫
∞

             (1) 

where C is the European call price; TS is the price of the underlying 
asset; K is the strike price; 𝑟𝑟 is the continuously compounded risk-free 
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rate; and ( )Tf S is the RND function. The RND can be obtained by 
the second derivative of equation (1)with respect to strike prices [18]. 
Numerically, it can be approximated by using the following equation:  

1

( )
1

2

2( ) rT n n n
n

C C Cf K e
K

− + −− +
≈

∆
                    (2) 

Equation (2) can be applied based on the assumption that the 
option prices are continuum. However, this assumption does not exist 
in the real market. Thus, interpolation and extrapolation techniques 
are used to create continuum option prices. This paper uses a fourth-
order polynomial to interpolate the option prices using the seminal 
works of [19]. The pseudo-points are added from the highest and 
lowest strike prices to extrapolate the option prices in a horizontal 
manner [8]. 

The procedures to estimate the RNDs are referred from [19]. 
Firstly, implied volatility of option prices is calculated by using 
Black-Sholes-Merton (BSM) model. The bisection method is used to 
calculate the implied volatility numerically. Secondly, the fourth-
order polynomial interpolation takes place in the implied-volatility-
strike prices space. Thirdly, 5000 points are evaluated by using an 
implied volatility function and are converted to call prices by using 
BSM model. Finally, the RNDs are obtained by using equation (2). 
Note that, the BSM model is only a medium to estimate the RNDs 
without imposing the assumption of this model.  

Risk-world density 
The RNDs estimation obtained is adjusted for risk premium. This 

study uses parametric and non-parametric calibrations to obtain the 
RWDs estimation.  

The general framework to adjust the RNDs to RWDs can be 
explained as follows. RND is represented by Q and RWD is 
represented by P.  

Let ( )Qf x and ( )QF x be the risk-neutral density and cumulative 
distribution function of TS , respectively, while TS is the price of an 
underlying asset at maturity, T.  A random variable, U is defined as  

( )Q TU F S= and  ( )C u is the calibration function. Generally, a real-

world cumulative distribution function, ( )PF x , and a real-world 

density function, ( )Pf x ,  can be expressed as follows: 

( ) ( )( ),P QF x C F x=                                  (3) 

( ) ( ) ( )( ) ( )( ) ( ).Q QP
P Q Q

Q

dC F x dFdF x dCf x c F x f x
dx dx dF dx

= = = =      (4) 

This paper uses parametric and non-parametric calibrations to 
calibrate the RNDs into RWDs estimation. The parametric calibration 
uses a beta distribution as a calibration function as recommended by 
[20]. The beta distribution has an advantage in which it allows to have 
a different shape to accurately estimate the RND. The calibration 
function based on a beta distribution can be defined as follows: 

( ) ( ) ( ) 11

0

1 1 ,
,

u
C u h h dh

B
βα

α β
−−= −∫                      (5) 

where                   ( ) ( ) ( )
( )

,B
α β

α β
α β

Γ Γ
=

Γ +

Based on equations (4) and (5), the relationship between RND and 
risk-world density by using parametric calibration (RWD-P) can be 
expressed as follows: 

( )
( ) ( )( )

( ) ( )
11 1

.
,

Q Q
P Q

F x F x
f x f x

B

βα

α β

−− −
=                         (6) 

The maximum likelihood estimation is applied to estimate the 
parameters,α and β .  

The use of non-parametric calibration is referred from [11]. There 
are four steps to obtain the risk-world density by using parametric 
calibration (RWD-NP) by using the non-parametric calibration. 
Firstly, extract the cumulative risk-neutral probability from the 
underlying asset at option’s maturity, ( )t Q Tu F S= . Secondly, convert 

tu into ( )1
t th u−= Φ , where ( )tuΦ is the cumulative distribution 

function of the standard normal density. Finally, the Gaussian kernel 
density is used to smooth the series of th . Equations (7) and (8) 
represent the Gaussian kernel density and cumulative distribution of 
kernel density, respectively. The computation of bandwidth is referred 
from the [21] where 0.20.9 hW Nσ= . 

1

1( ) ,
N

t

t

h hg h
NW W

φ
=

− =  
 

∑                                 (7) 

1

1( ) .
N

t

t

h hG h
N W=

− = Φ 
 

∑                                (8) 

Based on Equations (4) and (7),  the relationship between RND and 
RWD-NP can be expressed as follows : 

( ) ( ) ( )Q

( )
.p

f x g h
f x

hφ
=                                   (9) 

Option-implied mean, variance, and covariance 
The computations of mean and variance of the option-implied 

distribution are referred from Figlewski [19].  
Let x be a continuous random variable with density ( )f x . Let 

( )y g x= be the one-to-one transformation of x such that the 

derivative of ( )1x g y−= with respect to y is continuous. The  

( )y g x= is a continuous random variable with density 

( ) ( ) ( )( )1 1
Y X

df y g y f g y
dy

− −=                        (10)      

where ( )1g y− is the inverse function. 
The calculation of mean and variance of returns that derived from 

RND, RWD-P, and RWD-NP can be calculated as follows: 

a) Risk-neutral density (RND) 

( )( ) ,r
RND RND

T Tf r S f S= ×                        (11)  

( )( ) ,RND

r

RNDr r f r drµ
∞

−∞
= ∫                        (12)  

( ) ( )
2

var ( ) .
r

RND RND RNDr r f r drµ
∞

−∞
= −∫           (13)  

b) Risk-world density using parametric calibration (RWD-P) 

( )( ) ,r
RWD P RWD P

T Tf r S f S− −= ×              (14) 

( )( ) ,
r

RWD P RWD Pr r f r drµ
∞− −

−∞
= ∫             (15) 

( ) ( )
2

var ( ) .
r

RWD P RWD P RWD Pr r f r drµ
∞− − −

−∞
= −∫     (16) 

c) Risk-world density using non-parametric calibration (RWD-
NP) 

( )( ) ,r
RWD NP RWD NP

T Tf r S f S− −= ×            (17) 

( )( ) ,
r

RWD NP RWD NPr r f r drµ
∞− −

−∞
= ∫            (18) 

( ) ( )
2

var ( ) .
r

RWD NP RWD P RWD NPr r f r drµ
∞− − −

−∞
= −∫   (19) 
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Option-implied covariance 
The option-implied covariance is calculated using the seminal 

works of [22] and [23] by combining the historical correlation and 
option-implied volatility. The variance of a portfolio can be written as 

2
, , , , , ,

1 1

N N

P t i t j t i t j t ij t
i j

w wσ σ σ ρ
= =

= ∑∑                  (20) 

where ,i tw is the weight, N is the number of stocks, and ,i tσ is the 

volatility of stock i at time t. While, ,ij tρ represents the pair-wise 

correlation between stock i and stock j and the 2
,P tσ is the variance of 

the portfolio at time t. Assume that the volatilities and the weight are 
given, the only parameter that needs to be estimated is the pair-wise 
correlation among the stocks, ,ˆij tρ . [23] calculated the implied-
correlation matrix with the assumption that all pairwise correlations 
are allowed to be different. [23] showed that the relationship between 
historical and expected correlation by single fixed proportions can be 
represented as follows: 

( ), , ,ˆ 1 .ij t ij t ij tρ ρ α ρ= − −                           (21) 

When substitute equation (21) into equation (20), it will yield 

( )( )2
, , , , , , ,

1 1
1 .

N N

P t i t j t i t j t ij t ij t
i j

w wσ σ σ ρ α ρ
= =

= − −∑∑         (22) 

The correlation between two stocks is derived from one-year 
rolling windows of historical asset prices. The fixed proportions, α , 
can be computed by equation (23). 

1
2

, , , , , ,
1

1

, , , , ,
1

.
(1 )

N N

P t i t j t i t j t ij t
i j i

t N N

i t j t i t j t ij t
i j i

w w

w w

σ σ σ ρ
α

σ σ ρ

−

= ≠
−

= ≠

−
= −

−

∑∑

∑∑
               (23) 

The computation for each day weight uses closing market 
capitalization of all current index components from the previous day. 
According to [22], the implied covariance, ∑ , can be estimated 
using a diagonal matrix G of standard deviation and a correlation 
matrix, ψ , such that  

.G Gψ∑ =                                 (24) 

Asset allocation strategies  
Naïve diversification portfolio is constructed based on an equally 

amount of wealth ( )1 N across all N available stocks. This portfolio 
is considered as the benchmark because it exhibits a good 
performance portfolio even though it does not rely on any 
optimization model [2,22]. The benchmark portfolio uses 1/N 
weightage portfolios which are being calculated based on 60 months 
and 60 days rolling windows. 

This paper employs a minimum-variance strategy to construct a 
portfolio with many risky assets. This strategy assumes that the 
expected return of each stock is the same. The minimum-variance 
strategy is achieved when the minimum variance of portfolio return is 
obtained with respect to the weight and is equal to one. The 
construction of a portfolio based on a minimum-variance strategy is 
based on two conditions: short-selling is allowed and short selling is 
not allowed.  

Denote that Nw R∈ is the vector of portfolio weights invested in 
stocks, N NR ×∑∈ is the estimated covariance matrix. A minimum-
variance strategy with short selling is allowed can be expressed as 

min

. 1 1 1,2,...,

T

w
T

w w

s t w i N

Σ

= =
              (25) 

For a minimum-variance strategy with short selling is not allowed can 
be expressed as 

min

. 1 1
0 1,2,...,

T

w
T

i

w w

s t w
w i N

Σ

=
≥ =

                (26) 

The performance of the portfolio is evaluated based on portfolio’s 
volatility and Sharpe ratio. Sharpe ratio can be calculated as follows:  

ˆ
ˆ

SR µ
σ

=                                            (27) 

where µ̂ is the return of the portfolio and σ̂ is the volatility of a 
portfolio.  

RESULTS AND DISCUSSION 

This section presents the empirical findings of the performance of 
a portfolio based on the option-implied distribution (RND, RWD-P 
and RWD-NP) and is compared to a naïve portfolio. The performance 
of a naïve portfolio which uses 60 months and 60 days rolling 
windows. The portfolio volatility and Sharpe ratio are used as the 
benchmarks of the portfolio performance. A portfolio is considered a 
better performance than the other portfolio if it has a low volatility 
and a high value of Sharpe ratio.  

The performance measurements are identified as the average of 
the observed monthly means (expected return of portfolio), µ̂ , 
standard deviation of the portfolio, σ̂ , and Sharpe ratio (SR). The 
values in the parentheses show the p-value of a one-sided t-test for 
higher mean, lower standard deviation, and higher Sharpe ratio in 
comparison with that of the benchmark strategies. The performance of 
minimum-variance strategies which are based on the option-implied 
distribution when short-selling is allowed is presented in Table 3. The 
first parenthesis represents the comparison with a portfolio that uses 
60 days rolling window and the second parenthesis is compared with a 
portfolio that uses 60 months rolling windows.  

Generally, a portfolio based on an option-implied distribution 
provides a statistical significance difference at a 5 % level of 
significance compared with the benchmark portfolio. Portfolio 
volatilities based on RND, RWD-P, and RWD-NP moments are 
slightly lower than that of the benchmark portfolio value. Yet, the 
value of Sharpe ratio based on option-implied distribution portfolio is 
lower than that of the benchmark. In details, the performance of a 
portfolio based on RND is better than the performance of portfolios 
based on RWD-P and RWD-NP in terms of Sharpe ratio. However, a 
portfolio based on RWD-P provides the lowest volatility as compared 
to other portfolios.  

Table 3  Performance of minimum-variance portfolio with short selling is 
allowed. 

µ̂ σ̂ SR 

60 days -0.004361 0.07796 -0.055939 
60 
months -0.005045 0.095877 -0.05262 

RND -0.000826 0.007048 -0.108065 

(0.000) (0.000) (0.970) 

(0.000) (0.000) (0.990) 

RWD-P -0.00307 0.00666 -0.51896 

(0.000) (0.000) (0.430) 

(0.000) (0.000) (1.000) 
RWD-
NP -0.0008 0.0071 -0.1957 

(0.000) (0.000) (0.9650) 

(0.000) (0.000) (0.9070) 
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The performance of minimum-variance strategies that are based 
on option-implied distribution when short-selling is not allowed is 
presented in Table 4. Generally, a portfolio based on option-implied 
distribution has statistical significance difference compared with the 
benchmark portfolio. It is apparent from this table that the portfolios 
based on RND, RWD-P, and RWD-NP perform better with a higher 
expected return, lower volatility, and higher Sharpe ratio when 
compared with the benchmark portfolio. The results suggest that the 
performance of the portfolio improves when short sale constraints is 
imposed. This finding is consistent with [24] in which the prohibiting 
short sale enhances the performance of a portfolio. In details, it is 
apparent that the expected return of portfolios based on RWD-P and 
RWD-NP moments have slightly higher values than that of the 
portfolio based on RND moments. Portfolio based on RWD-P has the 
lowest volatility of 1.326 %, followed by the portfolio based on 
RWD-NP 1.377 %, and the portfolio based on RND has the highest 
volatility, 1.61%. The portfolios based on RWD-P and RWD-NP have 
higher Sharpe ratios than that of the portfolio based on RND 
moments. 

Table 4  Performance of minimum-variance portfolio with short selling is 
not allowed. 

µ̂ σ̂ SR 

60 days -0.004361 0.07796 -0.055939 
60 
months -0.005045 0.095877 -0.05262 

RND 0.0008847 0.0162725 0.0580429 
(0.000) (0.000) (0.000) 

(0.000) (0.000) (0.000) 

RWD-P 0.0011962 0.0132608 0.082678 
(0.000) (0.000) (0.000) 

(0.000) (0.000) (0.000) 
RWD-
NP 0.0013806 0.0137706 0.0841527 

(0.0000) (0.0000) (0.000) 

(0.0000) (0.0000) (0.000) 

The analysis of asset allocation by using option-implied moments 
which is based on a portfolio when short sales are not allowed is 
depicted in Table 5.  Figure 1 illustrates the information contains in 
Table 5. The weightage of portfolio based on RND for thirteen 
companies are: DIS (1.11 %), GE (24.61 %), HD (0.36 %), INTC 
(9.11 %), JNJ (4.01 %), KO (9.84 %), MRK (0.58 %), MSFT (1.97 
%), PFE (34.66 %), PG (1.80 %), VZ (8.47 %), and WMT (3.48 %). 
The portfolio based on RWD-P has weightage in fifteen companies as 
follows: DD (0.04%), DIS (1.03 %), GE (26.86 %), HD (0.53 %), 
INTC (10.01 %), JNJ (2.51 %), KO (6.31 %), MRK (0.63 %), MSFT 
(1.00 %), PFE (36.74 %), PG (1.71 %), UTX (0.08 %), VZ (11.90 %), 
and WMT (0.64 %). For portfolio based on RWD-NP, the fourteen 
companies and their weights are: DD (0.05 %), DIS (1.11 %), GE 
(27.77 %), HD (0.37 %), INTC (9.48 %), JNJ (3.93 %), KO (7.12 %), 
MRK (0.58 %), MSFT (1.99 %), PFE (36.90 %), PG (1.26 %), VZ 
(9.21 %), and WMT (0.23 %). The portfolios based on RND, RWD-P,
and RWD-NP allocate the highest proportions to the PFE company.  

CONCLUSION 

This study constructs portfolios based on option-implied moments 
namely RND, RWD-P, and RWD-NP which consist of DJIA index 
components. The objective of this study is to extend the estimation 
parameter from option-implied distribution to asset allocation model. 
In addition, this study examines the performance of these portfolios 
and comparison is made with a naïve portfolio. The empirical results 
indicate that the performance of a portfolio based on option-implied 
moments has a significant difference when compared with the naïve 

portfolio. The performance of a portfolio based on option-implied 
distribution improves when short-sale constraints are imposed. In 
details, portfolios based on RWD-P and RWD-NP provide better 
performance with lower volatility and higher Sharpe ratio when 
compared with RND.  

Table 5  Average weights for a minimum-variance portfolio with short-
selling constraints according to companies. 

Company RND RWD-P RWD-NP 

AXP 0.0000 0.0000 0.0000 

BA 0.0000 0.0000 0.0000 

CAT 0.0000 0.0000 0.0000 

CVX 0.0000 0.0000 0.0000 

DD 0.0000 0.0004 0.0005 

DIS 0.0111 0.0103 0.0111 

GE 0.2461 0.2686 0.2777 

HD 0.0036 0.0053 0.0037 

IBM 0.0000 0.0000 0.0000 

INTC 0.0911 0.1001 0.0948 

JNJ 0.0401 0.0251 0.0393 

JPM 0.0000 0.0000 0.0000 

KO 0.0984 0.0631 0.0712 

MMM 0.0000 0.0000 0.0000 

MRK 0.0058 0.0063 0.0058 

MSFT 0.0197 0.0100 0.0199 

PFE 0.3466 0.3674 0.3690 

PG 0.0180 0.0171 0.0126 

UTX 0.0000 0.0008 0.0000 

VZ 0.0847 0.1190 0.0921 

WMT 0.0348 0.0064 0.0023 

XOM 0.0000 0.0000 0.0000 

Fig. 1  Average weights for a minimum-variance portfolio with short-
selling constraints according to companies. 
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