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Graphical abstract 

Abstract 

The terminology depolarization factors was firstly highlighted in the study of problems involving 
magnetic, where, it was initially used to describe magnetic properties of material. Recently, this 
terminology was investigated to describe composites, improve imaging techniques, and other 
field of researches related to potential theory in mathematics and physics. Due to our interest in 
electrical imaging using polarization tensor (PT) and since PT is actually related to the 
depolarization factors, in this paper, some properties of the depolarization factors are 
investigated for future applications. The values of these depolarization factors are firstly proven 
to be non-negative. Based on the previous studies which consider the incomplete elliptic 
integrals of the first and second kind with some suitable identities, the summation of the 
depolarization factors are shown to be equal to one. By using these two properties, the value for 
each depolarization factor for ellipsoid is then explained to be between zero and one. It is also 
shown in this paper that the depolarization factors can be characterized based on the values of 
the semi principal axes of the ellipsoid. Reversely, the semi principal axes of the ellipsoid can 
be classified based on the values of the depolarization factors. All properties presented in this 
paper could be useful and important in the future especially to use the depolarization factors in 
any related applications. 
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INTRODUCTION 

Depolarization factors (also known as demagnetizing factors) are 

widely used in potential problems. When a material of an irregular 

shape is magnetized by a uniformly applied field, the total field inside 

the material and its surrounding change. There might be some 

difficulty in measuring the magnetivity of the material due to the 

magnetization. Thus, depolarization factors were studied to correct 

the data on certain magnetic material [1]. Previously, the problems of 

potential for an ellipsoid were investigated by Maxwell [2]. Maxwell 

[2] derived the formula of the depolarization factors for ellipsoid from

a definite integral given by [3] where the depolarization factors were

actually defined and labeled as L, M, and .N In 1945, Osborn [4]

studied the depolarization factors of the general ellipsoid but gave a

slightly different formula of the depolarization factors by using the

elliptic integral expressions. In [4], the depolarization factors were

scalled in terms of 4 ,  4L M  and 4 .N 

In 1945, Stoner [5] introduced the formula of the depolarization 

factors for ellipsoids as integral equations in terms of modified 

factors, ,  a bD D and cD , not ,L M and .N In addition, some

derivations of the depolarization factors for sphere and spheroids 

(prolate and oblate shperoid) were presented here. Besides, there are 

also detailed discussion about depolarization factors for a few other 

geometries such as rectangle [1, 6] and cylinder [7]. In spite of all 

previous geometries mentioned, by using the method as suggested in 

[8], any complicated shapes can be equivalent to ellipsoid by setting 

their depolarization factors to be equal. Furthermore, Milton [9] used 

depolarization factors to study composite and he also showed some 

useful properties of depolarization factors, where the properties are 

reviewed in the following section. 

In another development, the Polarization Tensor (PT) has been 

widely explored for many purposes especially in electric and 

electromagnetism. Recently, PT has been used in the real applications 

such as electrical imaging [10], metal detection (for security 

screening [11,12], and landmine clearance [13]) and also 

electrosensing fish [14,15,16,17]. This terminology actually 

originates from the study of virtual mass for examples in [18,19]. 

Generally, PT is used to describe the the perturbation in electric [10, 

20,21,22] and electromagnetic fields [23,24,25,26,27] that occur due 

to the conductivity contrast between a conducting object and a free 

space such as 
2 or 3. Specifically, PT can also describe the 

conducting object itself [10] and thus, it is commonly referred as PT 

for the conducting object. Here, PT can be computed by using the 

explicit formula or also by making field measurements in the 

laboratory as well as during a field work. Some examples showing the 

computation of PT based on the explicit formula were given in [26, 

27,28,29,30,31,32] whereas [11,12,13] described how to determine 

PT based on field measurements. 

Due to its significant in those applications, there are many 

researches that discuss the properties of the PT [10,22,24, 

26,27,28,31,32,33,34,35]. These properties are important as an aid to 

classify the objects based on their PT. Moreover, some investigations 
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had adapted the depolarization factors for ellipsoid to reveal the 

properties of ellipsoid based on its PT. For example, Mohamad Yunos 

and Ahmad Khairuddin [34,35] investigated the PT for spheroid by 

adapting the depolarization factors into the analytical formula of the 

PT for ellipsoid. Besides, the findings in Ahmad Khairuddin et al. 

[33] showed that the conductivity and material of a spheroid can be

classified according to its PT. Therefore, due to their relationship with

our current studies about PT, some properties of the depolarization

factors specifically for ellipsoid are revised and determined in this

paper.

FORMULATIONS AND RESULTS 

First, we review the mathematical formulation for the 

depolarization factors for ellipsoid. If an ellipsoid is placed in a 

uniform applied magnetic field (denoted as 
aH ), the magnetization 

(denoted as M ) and demagnetizing field (denoted as 
dH ) are both 

uniform [2] and are related by 

d a iH H d M 

where 
id for 1,2,3i  are called as the depolarization factors for the 

ellipsoid in the ,x y and z directions. Let ,a  b and c be the semi 

principal axes of an ellipsoid 
2 2 2

2 2 2
1

x y z

a b c
   . The definitions of

depolarization factors for ellipsoid, the triplet  1 2 3, ,d d d given by 

Milton [9] as follows: 

    
1 3 20 2 2 2

,
2

abc dy
d

y a y b y c




  

 (1) 

    
2 3 20 2 2 2

,
2

abc dy
d

y b y a y c




  

 (2) 

    
3 3 20 2 2 2

.
2

abc dy
d

y c y a y b




  


(3) 

Equation (1), (2) and (3) are used in this paper when describing 

depolarization factors for ellipsoid. 

Theorem 1 The depolarization factors  1 2 3, ,d d d for ellipsoid 

2 2 2

2 2 2
1

x y z

a b c
   each is a positive number.

Proof Since , , 0,a b c  obviously 0.
2

abc
 Now, in order to show

0id  for 1,2,3,i  we have to show that the improper integrals in 

(1), (2) and (3) are all positive. The integrands 

    
3 2

2 2 2

1
,

y a y b y c       
3 2

2 2 2

1

y b y a y c  

and 

    
3 2

2 2 2

1

y c y a y b  
are continuous and positive for 

 0,y  and , , 0.a b c  This suggests that the corresponding 

integrals are also positive. Thus, in order to show the integrals are 

positive, we must show that the integrals converge. 

We use comparison test in this proving. First, let 

  2 2 2 2y b y c b c   since  0, .y  Then, 

  2 2 2 2 ,y b y c b c  

   2 22 2

1 1
.

b cy b y c


 

So, 

      
3 23 2

2 2 22 2 2
0 0

  
0 ,

22

abc dy abc dy

y a b cy a y b y c

 

 
  

 

and from (1), 

 
1 3 2

2 2 2
0

 
0 1.

2

abc dy
d

y a b c



  




Similarly, by letting   2 2 2 2,y a y c a c   we may have 

  2 2 2 2 ,y a y c a c  

   2 22 2

1 1
.

a cy a y c


 
Thus, 

      
3 23 2

2 2 22 2 2
0 0

  
0 .

22

abc dy abc dy

y b a cy b y a y c

 

 
  

 

From (2), we have 

 
2 3 2

2 2 2
0

 
0 1.

2

abc dy
d

y b a c



  




Also, 

  2 2 2 2y a y b a b   gives 

  2 2 2 2 ,y a y b a b  

   2 22 2

1 1
.

a by a y b


 Hence, 

      
3 23 2

2 2 22 2 2
0 0

  
0 ,

22

abc dy abc dy

y c a by c y a y b

 

 
  

 

and from (3), 

 
3 3 2

2 2 2
0

 
0 1.

2

abc dy
d

y c a b



  




By comparison test, each integral converges and therefore, 

1 2 3, , 0.d d d 

Theorem 1 and its proof support the claim on page 133 by Milton 

[9]. Next, we reprove the next property which has been given in 

Stoner [5] and Milton [9]. In our proof, a different identity is used to 

simplify 
2.d

Proposition 2 The depolarization factors  1 2 3, ,d d d satisfy 

1 2 3 1.d d d  

Proof In our proof, we will use the incomplete elliptic integrals of the 

first and second kind given as below, 
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  0 2 2 2
( , )

1 1

x dz
F k

z k z
 

 
 , 

(4) 

 

 

2 2

0 2

1
( , )

1

x dz k z
E k

z






 , (5) 

where, 

 
 

2 2

2 2
,

a b
k

a c






2

2
1  .

c
x

a
 

      In order to use (4) and (5), we transform (1), (2) and (3) first. By 

using the substitution    2 2 2 2z a c a y   as given by Stoner [5], 

(1), (2) and (3) become 

    

2

1 3 2 02 2 2 2 2
,

1 1

xabc z dz
d

a c z k z


  
 (6) 

    

2

2 3 2 302 2 2 2 2

,

1 1

xabc z dz
d

a c z k z


  

 (7) 

     

2

3 3 2 302 2 2 2 2

.

1 1

xabc z dz
d

a c z k z


  

 (8) 

By using the following identity 

     

 
 

2 2
2

2 22 2 2 2 2 2

11 1

11 1 1 1

k zz

k zz k z z k z

  
  

    
 

(9) 

in (6) , 
1d can be expressed as 

1
2 2 2 2

( )
.

( ) ( )
d

abc F E

a b a c




 
(10) 

The next relation 

 

 

 

    

2 2
2 2

30 0 02 2 2 2 2 2 2

1 1 (1 )

1 1 1 1

x x xz z zd k z
dz dz dz

dz k z k z z k z

    
  

     

  

(11) 

and the identity 

 

 

 

    

2 2 2
2 2

2 2 2 2 2 2

1 1 (1 )

1 1 1 1

z k z k z

k z z z k z

  
 

   
(12) 

can be used in (7) to get the expression for 2d in terms of (4) and (5) 

as follows 

2

2 2 22 2 2 2 2 2 2 2

( )
.

( ) ( ) ( ) ( )
d

abc E F abcE c

b ca b a c b c a c


  

   
(13) 

      Besides, the term for 3d can be obtained by using the relation 

below 

 

 

 

     

2 2 2 2
2 2

30 0 02 2 2 2 2

1 1 (1 )

1 1 1 1

x x xz k z k zd k z
dz dz dz

dz z z z k z

    
  

     

  

(14) 

in (8) where  

2

3 2 2 2 2 2 2
.

( ) ( )
d

b abcE

b c b c a c
 

  
(15) 

Now, we sum up (10), (13) and (15) to obtain 

2 2

1 2 3 2 2 2 2
,

                   1.

c b
d d d

b c b c
    

 



Proposition 2 shows that for any value of depolarization factors, 

the summation of the depolarization factors must always equal to 1. 

By using the information in Theorem 1 and Proposition 2, we propose 

another property of the depolarization factors in the next theorem. 

Theorem 3 The depolarization factors  1 2 3, ,d d d each satisfy 

0 1id  for 1,2,3.i 

Proof First of all, we consider 
1d where we want to show that 

0 1.id  This can be proven by contradiction. Assume that 

10 1d  is false as 
1 10  or 1.d d  Obviously, 

1 0d  is a 

contradiction since 
1 0d  according to Theorem 1. So, 

1 0.d 

Next, if 
1 1d  , from Proposition 2, we obtain 

2 31 1.d d   So, 

2 30 .d d  This is a contradiction since 
2 3, 0d d  according to 

Theorem 1. Hence, 
1 1.d 

Therefore, since 
1 0d  and 

1 1d  from both cases, we have 

proved that 
10 1.d  The same steps can be repeated for 

2d and 
3d . 

Hence, it is proven that 0 1id  for 1,2,3.i 

According to Theorem 3, the values for the depolarization factors 

are between 0 and 1. Many examples to numerically justify Theorem 

3 can be found in [5] and [9]. The next theorem relates semi principal 

axes of an ellipsoid and its depolarization factors. 

Theorem 4 Let ,a b and c be the semi principal axes of ellipsoid 
2 2 2

2 2 2
1

x y z

a b c
   and 

id is the depolarization factors for 1,2,3.i 

i. a b c  if and only if 
1 2 3.d d d 

ii. a b c  if and only if 
1 2 3.d d d 

Proof  We prove part (i) as similar steps can be used to prove part 

(ii). Assume a b c  . We want to show 1 2 3d d d  . First, we 

consider a b . We must show 1 2d d . We have  

,a b
2 2,a b
2 2,y a y b  

2 2

1 1
,

y a y b


 

         
3 2 3 20 02 2 2 2 2 2

,
2 2

abc dy abc dy

y a y b y c y b y a y c

 


     

 

which implies 1 2d d from (1) and (2). 

Now, suppose b c and we will show that 2 3.d d Since ,b c

2 2,b c
2 2,y b y c  

2 2

1 1
,

y b y c


 

         
3 2 3 20 02 2 2 2 2 2

,
2 2

abc dy abc dy

y b y a y c y c y a y b

 


     

 
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which also indicates that 
2 3d d from (2) and (3). By combining all 

the proof, it is proven that 
1 2 3d d d  if a b c  . 

      Next, we assume 
1 2 3d d d  and we want to show that 

a b c  . This can be proven by contrapositive. Assume a b or  

b c and we want to show 
1 2d d or 

2 3d d , respectively. Since 

,a b we have  
2 2,a b
2 2,y a y b  

2 2

1 1
,

y a y b


 

         
3 2 3 20 02 2 2 2 2 2

,
2 2

abc dy abc dy

y a y b y c y b y a y c

 


     

 

which leads to 
1 2.d d

      Now, assume .b c So, we have  

2 2,b c
2 2,y b y c  

2 2

1 1
,

y b y c


 

         
3 2 3 20 02 2 2 2 2 22 2

abc dy abc dy

y b y a y c y c y a y b

 


     

 

which imply that 
2 3.d d As the contrapositive has been proven true, 

this means the original statement is also true, which is if 
1 2 3d d d 

then .a b c 

Based on Theorem 4, we can predict the range among the 

depolarization factors based on the semi principal axes of the 

ellipsoid. Reversely, we can describe the semi principal axes of the 

ellipsoid based on the values of the depolarization factors. In this 

theorem, the value of the semi principal axes and the depolarization 

factors can be reordered accordingly. For example, c a b  if and 

only if 
3 1 2.d d d  Furthermore, based on this theorem and 

considering only equality and not inequality, we can have the next 

two corollaries.    

Corollary 5 Let ,a b and c be the semi principal axes of ellipsoid 
2 2 2

2 2 2
1

x y z

a b c
   and id is the depolarization factors for 1,2,3.i 

a b c  if and only if 1 2 3.d d d 

Proof Assume .a b c  Consider .a b We need to show 1 2.d d

By substituting a b into both (1) and (2), we will immediately 

obtain 1 2.d d Then, assume b c and we must show 2 3.d d

Again, by substituting b c into (2) and (3), we directly obtain 

2 3.d d This proof indicates that if a b c  then 1 2 3.d d d 

      Next, suppose 1 2 3d d d  and we need to prove a b c  . 

Since 1 2 ,d d we will have 

         
3 2 3 20 02 2 2 2 2 2

,
2 2

abc dy abc dy

y a y b y c y b y a y c

 


     

 

which implies 
2 2

1 1
.

y a y b


 
After some derivations, we have 

2 2a b which also means .a b  Hence, it is clear that a b

because , 0.a b 

      Now, let 
2 3.d d We must show .b c By considering the 

formula of 
2d and 

3d from (2) and (3), we have 

         
3 2 3 20 02 2 2 2 2 2

,
2 2

abc dy abc dy

y b y a y c y c y a y b

 


     

 

and further derivation will give 
2 2

1 1
.

y b y c


 
Then, we obtain 

2 2b c and since , 0,b c  .b c By combining all proofs, we have 

shown that if 
1 2 3d d d  then a b c  .  

Corollary 6 Let ,a b and c be the semi principal axes of ellipsoid 
2 2 2

2 2 2
1

x y z

a b c
   and 

id is the depolarization factors for 1,2,3.i 

i. a b if  and only if 
1 2.d d

ii. a c if  and only if 
1 3.d d

iii. b c if  and only if 
2 3.d d

Proof We initially come out with this corollary in our previous 

studies and the proof is already given in [36]. 

In addition, by using Proposition 2 and Corollary 6, we can easily 

show that 1 2 3

1

3
d d d   when a b c  without using (1), (2) and 

(3). Similarly, we can easily show that 

3 1 21 2 1 2d d d    when ,a b

2 1 31 2 1 2d d d    when ,a c

1 2 31 2 1 2d d d    when .b c

For spheroids with semi principal axes a b c  and ,a b c 

the formula for 
1d can be further simplified, as shown by Stoner [5] 

and Milton [9]. We state their results in the next proposition. The 

proofs for Proposition 7 are already given by Stoner [5].  However, in 

this paper, we modified the technique to prove it for simplification. 

Proposition 7 Let ,a b and c be the semi principal axes of ellipsoid 
2 2 2

2 2 2
1

x y z

a b c
   and 

1d is the depolarization factor for the ellipsoid 

in the x direction. 

i. If a b c  then 
2

1 2

1 1 1
ln 1 ,

2 1
d

 

  

   
   

  
where 

2

1 .
b

a


 
   

 

ii. If a b c  then 
2 1 2

1

1 2

1 (1 )
1 sin ,d




 

 
  

 
where 

2

1 .
a

b


 
   

 

Proof For part (i), suppose .a b c  Define 

2

1
b

a


 
   

 
where 

0 1.  We must show that 
2

1 2

1 1 1
ln 1 .

2 1
d

 

  

   
   

  
For 

convenience, we will introduce a symbol which is .
b

a
  Thus, 
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can also be written as 21 .   By using the substitution 

2 2
2

2

a b
z

a y





given by Stoner [5] into (1), (1) can be reduced to 

2 1 22 2
(1 )

1 2 3 2 20
.

(1 ) 1

z
d dz

z








  (16) 

The integrand in (16) can be written as 

2

2 2

1
1,

1 1

z

z z
 

 

so, the term 
1d in (16) can be expressed as 

2 1 22
(1 )

1 2 3 2 20

1
1 

(1 ) 1
d dz

z







 
 

and solved using integration involving inverse hyperbolic function 

and natural logarithm. This can be further simplified to  

2

1 2

1 1 1
ln 1

2 1
d

 

  

   
   

  

which is defined for 0 1.        

      Proceed to prove part (ii), assume a b c  and define 

2

1
a

b


 
   

 
such that 0 1.  We need to show 

2 1 2
1

1 2

1 (1 )
1 sin .d




 

 
  

 
Similarly, first we let 

a

b
  so that 

21 .   Again, by using the substitution in Stoner [5], (1) can be 

expressed as  

2 1 2 2
(1 )

1 2 3 2 2 3 20
 .

(1 ) (1 )

z
d dz

z








  (17) 

The integral expression (17) can be simplified by using the following 

relation 

2 1 2 2 1 2 2
(1 ) (1 )

2 1 2 2 3 2 2 1 20 0

1
  .

(1 ) (1 ) (1 )

d z z
dz dz

dz z z z

    
  

   
 

and became 

2 1 2 2 1 2(1 ) (1 )

1 2 3 2 2 1 2 2 1 20 0

1
  .

(1 ) (1 ) (1 )

d z
d dz dz

dz z z

 



  
  

   
 

This can be further reduced when we consider the standard integral  

1

2 1 2

1
sin .

(1 )
dz z

z




Thus, (17) can be expressed as 

2 1 2
1

1 2

1 (1 )
1 sind




 

 
  

 

which is defined for 0 1.        

DISCUSSION AND CONCLUSION 

In this paper, the depolarization factors for ellipsoid and its 

properties were revised. A few other useful properties of the 

depolarization factors were also determined with the hope to apply 

them in our future researches. Firstly, we showed that the values of 

the depolarization factors should always be positive. Next, the 

relation indicating that the summation of the depolarization factors 

must equal to one was explained. Specifically, we then proved that 

the values for each depolarization factor must actually between zero 

and one. In this study, it was also presented that the semi principal 

axes of an ellipsoid can be categorized according to its depolarization 

factors. Reversely, it was shown that the value of the depolarization 

factors also depended on the semi principal axes of the ellipsoid. 

Finally, for two types of ellipsoid, we revised that their depolarization 

factors can be determined without using integrals of the general 

formula for depolarization factors.    
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