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ABSTRACT 

We consider a system of nonlinear time-fractional reaction-diffusion equations (TFRDE) on a finite spatial domain x ∈ [0, L], and time t ∈ [0, T]. The 
system of standard reaction-diffusion equations with Neumann boundary conditions are generalized by replacing the first-order time derivatives with 
Caputo time-fractional derivatives of order α ∈ (0, 1). We solve the TFRDE numerically using Grünwald-Letnikov derivative approximation for time-
fractional derivative and centred difference approximation for spatial derivative. We discuss the numerical results and propose the applications of 
TFRDE for the modelling of complex patterns in biological systems.  
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1. INTRODUCTION 
 

In recent years, the system of fractional reaction-
diffusion (FRD) equations have gained considerable 
popularity to study nonlinear phenomena arise in the 
disciplines of science and engineering [1]. Of these 
particular interests are patterns formations [2-6]. The 
evolution of pattern formation is best described by the 
fractional-order models because the fractional derivatives 
take into consideration the whole history of the system 
which is called the memory effect [7]. 

The fractional reaction-diffusion equation is a 
generalization of the standard reaction-diffusion equation 
with derivative of arbitrary real order. The fractional 
reaction-diffusion equation is obtained by replacing the 
first-order time derivative index by α ∈ (0,1), or the 
second-order spatial derivative index by β ∈ (1,2), or both 
in the standard reaction-diffusion equation, 

 
                                   (1) 

 
 where  and  are the fractional derivative operators, κ 
is the dimensionless diffusion coefficient and  denotes 
reaction kinetics.  
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There are several definitions of the fractional derivatives in 
literature such as the Riemann-Liouville, the Grünwald-
Letnikov and the Caputo derivatives [7,8]. 

The analytical solution to a single fractional 
differential equation can be obtained by means of Fourier 
and Laplace transforms and the solution is expressed in 
terms of Green’s and Mittag-Leffler functions [9-12]. The 
numerical approaches for approximating solutions to 
fractional reaction-diffusion equations have also been 
widely studied. Examples are finite difference method [13-
17], matrix approach [18-19], operator splitting method 
[20], Chebyshev polynomials approximation [21], Adomian 
decomposition method [22] and homotopy perturbation 
method [23]. 

In this paper we consider a one-dimensional system 
of nonlinear time-fractional reaction-diffusion equations 
(TFRDE) on a finite spatial domain  and time 

 with Neumann boundary conditions. We solve the 
system of TFRDE numerically using Grünwald-Letnikov 
derivative approximation for time-fractional derivative and 
centred difference approximation for spatial derivative.   
This paper is organized as follows. In Section 2, we present 
the mathematical model of this study. The numerical 
scheme will be outlined in Section 3. The computational 
results are discussed in Section 4 and the conclusion will be 
drawn in Section 5. 

 

http://www.ibnusina.utm.my/


Akil et al. / Malaysian Journal of Fundamental & Applied Sciences Vol.8, No.3 (2012) 126-130
 

     
| 127 | 

 
 

2. MATHEMATICAL MODEL  
 

In this section we introduce a one-dimensional 
system of nonlinear time-fractional reaction-diffusion 
equations (TFRDE) in the following form, 

 
,                    (2) 

 
.                    (3) 

 
The above system subjects to the zero-flux boundary 
conditions at both ends of the spatial domain, 
 

                           (4) 

 
Here,  and  denote the concentration for the 
two species,  and  are time characteristics of the system, 
and  and  are in general the nonlinear 
functions defined by 
 

,                                      (5) 
 

,                                  (6) 
 
where β and η are external parameters. The fractional 
derivatives  and  are the Caputo fractional 
derivatives in time of order , which are defined as 

 
                             (7) 

 
for    is a Caputo 
fractional derivative operator. It should be noted that when 
α = 1, the system of equations (2) and (3) correspond to the 
system of standard reaction-diffusion equations.  We have 
chosen the fractional derivative in the Caputo sense because 
it allows the utilisation of the initial condition into the 
formulation of the problem [7], which is similar to the 
integer-order differential equations. 
  
  
3 NUMERICAL SCHEME 

 
This section describes the numerical techniques to 

solve the system of TFRDE (2) and (3). We employed the 
numerical scheme as described by Gafiychuk et al. [4] and 
Ciesielski and Leszczynski [16]. The system of TFRDE (2) 
and (3) can be written as a single partial differential 
equation as 

 

                     (8) 
                      

for   The grid points in the space domain [0,L] and 
the time domain [0,T] are labeled 

 and , 
respectively, where  is the grid size in space and  is the 
grid size in time. The notation  represents the 
value of function u at the grid point . The second 
order spatial derivative was approximated using the centred 
difference scheme, 
 

.                      (9) 
 
The time-fractional derivative was discretized using the 
definition of Grünwald-Letnikov (GL) approximation due 
to the fractional derivative  defined in the GL sense is more 
flexible and straightforward for the numerical calculation 
purposes. The Caputo time fractional derivative is 
expressed in terms of the Riemann-Liouville (RL) fractional 
derivative, 
 

,                         (10) 
 
for   where  
  

  
 
The RL fractional derivative is equivalent to the definition 
of GL fractional derivative. The GL fractional derivative is 
defined as 
 

 
                                                                                          (11) 
                                                                                           
The fractional derivative (11) can be approximated within 
the interval  with subinterval as 
 

.                   (12) 
 
The term   is known as GL 
coefficient with the following properties 
 

  and 
 

                    (13) 
  

Applying (9) – (13), the numerical scheme for equation (8) 
becomes 
 

                                                                                          (14) 
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where ,  for  
 

We developed a semi implicit scheme in which both 
the spatial and the time-fractional derivatives were 
discretised implicitly. The stability and the accuracy of the 
method have been discussed in [15]. The numerical scheme 
for each time layer for equation (14) represents a system of 
algebraic equations with block diagonal matrix and was 
solved at each iterations using the Newton-Raphson method 
[24]. 

 
 

4. RESULTS & DISCUSSION 
 
The computer code for numerical scheme obtained in 

Section 3 was written in MATLAB 7.9.0(R2009b). The  

time and the spatial steps used in the simulation were 
varying from 0.005 to 0.1 and from 0.01 to 0.1, 
respectively. The initial conditions are similar to [5],  

, .  and  are the 
steady-state solution of equations (2) and (3) which 
correspond to homogeneous equilibrium state 

.   
Figures 1 and 2 show the results of computer 

solution of TFRDE considered above for different values of 
fractional index, α∈ (0,1) on the spatial domain  
and time domain  Here, the values of time 
characteristics are fixed at unity, τ1 = τ2 = 1. As the value of 
α increases from 0.1 to 0.9 with step 0.1, we can see the 
evolution of pattern formation in the steady-state solutions 
of and  and the system is stable.  

 

 
 

 
 

 

 

 
Fig. 1 Numerical solution of  u1(x,t) for different  values of α, α ∈ (0,1). 
The parameters are β = 2.0, η = -0.1, τ1 = τ2 = 1, κ1 = 0.05 and κ2 = 1.0. 
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Fig. Numerical solution of  u2(x,t) for different  values of α, α ∈ (0,1). 

The parameters are β = 2.0, η = -0.1, τ1 = τ2 = 1, κ1 = 0.05 and κ2 = 1.0. 

         
 

           
(a) α = 0.6      (b) α = 0.7   (c) α = 0.8      (d) α = 0.9 

 
Fig. 3 The dynamics of variables u1(x,t) (top panel) and u2(x,t) (bottom panel) when the ratio  is 0.135 

for α = 0.6 to α = 0.9. The parameters are β = 2.0, η = -0.1, κ1 = 0.05, κ2 = 1.0,  
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Our results in Figures 1 and 2 s how that α ≤ 0.5 the 
amplitude of both variables u1 and u2 increases steadily. 
However when α > 0.5 the amplitude increases drastically 
within time interval [0,10] and later becomes monotonous 
as time evolves.  Furthermore, this reveals that the history 
of the system which is called memory effect plays 
significant role in the formation of pattern. 

Figure 3 illustrates the transition of pattern formation 
in variables u1 and u2 from the steady-state structures 
(figures (a) and (b)) to the homogeneous oscillatory 
structures (figures (c) and  (d)) that eventually destroy the 
pattern formation when the value α increases from 0.6 to 
0.9 and the ratio of time characteristics,  was fixed at 
0.135. This shows that for α < 1, when the ratio of time 
characteristics less than unity and sufficiently small, the 
system becomes unstable. These temporal patterns 
behaviour have deep physical meaning that need to be 
investigated further such as the amount of energy transfer 
due to nonlinear interaction at each layer of the system.
  
 
5. CONCLUSION  

A system of TFRDE with cubic nonlinearity has 
been numerically studied on finite spatial and time domains. 
We have demonstrated the temporal patterns behaviour in 
the steady-state solutions of system of TFRDE when the 
fractional derivative index α increases from 0.1 to 0.9. We 
have also showed that at certain value of α the formation of 
patterns transform from the steady-state structure to the 
homogenous oscillatory structure, given that the ratio of 
time characteristics is sufficiently small. The system of 
fractional reaction-diffusion equations has proven useful in 
understanding the dynamics of nonlinear phenomena. 
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