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Abstract 

This study generalized the best copula to characterize the joint probability distribution between rainfall 
severity and duration in Peninsular Malaysia using two dimensional copulas. Specifically, to construct 
copulas, Inference Function for Margins (IFM) and Canonical Maximum Likelihood (CML) methods 
were specially exploited. For the purpose of achieving copula fitting, the derived rainfall variables by 
making use of the Standardized Precipitation Index (SPI) were fitted into several distributions. Five 
copulas, namely Gaussian, Clayton, Frank, Joe and Gumbel were put to the tests to establish the best 
data fitted copula. The tests produced acknowledged and satisfactory results of copula fitting for rainfall 
severity and duration. Surveying the Akaike Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC), only three copulas produced a better fit for parametric and semi parametric 
approaches. Finally, two consistency tests were conducted and the results shown that Frank Copula 
produced consistent results. 

Keywords: Archimedean Copula, Elliptical Copula, Multivariate Distribution, Hydrology 

© 2019 Penerbit UTM Press. All rights reserved 

INTRODUCTION 

Flood; as an overflow of a huge amount of water beyond its normal 

limits has never failed to challenge water resource management 

researchers. Natural disaster that is quite difficult to understand its 

features has flushed away a lot of money and flood is regarded as one 

of the most catastrophic natural disasters. These frequent climatic 

phenomena since past civilization are still haunting current civilization 

nowadays because of the impacts on the economic, environmental and 

social sectors. In Malaysia, it is the main meteorological disaster, while 

other disasters occur less frequently. In monetary terms, a typical flood 

costed RM1.2 billion in 2012 [1], more than damages incurred due to 

other disasters. As a measure of hydrological flood mitigation, it is 

undoubtedly very crucial to determine the probabilistic characteristics 

of rainfalls. Therefore, there are many ongoing investigations for 

hydrological floods quantitative estimation by considering future 

climate changes. 

Severity, intensity, depth, and duration are major characteristics of 

rainfalls in hydrologic design and floodplain management. They are 

normally employed when designing certain water supply systems. As 

rainfall characteristics are haphazard in nature, the suitable technique 

to discover rainfalls usually use probabilistic theories. Researchers 

among others, Renard and Lang [2]; Zhang and Singh [3]; Abdul Rauf 

and Zeephongsekul [4];  Daneshkhah et al. [5]; and Ozga-Zielinski et 

al. [6] evaluated the analyses of those characteristics. Probabilistic 

analysis approach of rainfalls is either univariate or multivariate. 

Univariate rainfall characteristic analysis has been widely used by most 

researchers since its first introduction due to a very encouraging results 

in the previous studies. 

Hydrologic events whether flood or drought, are considered 

multivariate events after taking into accounts some of the variables 

associated with them. Only a handful of researchers deliberately choose 

multivariate analysis of hydrologic events over low and inadequate data 

factors, complex mathematical treatments, and the very limited number 

of available models. On the other hand, a bivariate distribution is 

considered as a more common and easier method to explain the 

correlated hydrologic variables. However, there are some 

disadvantages for these bivariate distributions; one of them is that the 

same family is required for each marginal distribution. 

To curb such situations, multivariate distribution construction, by 

making use of copulas, may come in handy. Speaking of copulas, they 

are functions which merge univariate distribution functions, generating 

multivariate distribution functions. Due to the fact that they are fit for 

the purposes, many researchers in insurance and finance have 

extensively employed them to model the dependence structure and joint 

probability distributions since their initiation by Sklar [7]. The 

popularity and application of copulas in hydrology has rapidly 

dispersed as copulas are efficient for illustrating and describing the 

dependencies among multiple hydrologic variables [2,3,5,8-12]. 

Firstly, rainfalls are multivariate and they ought to be characterized 

by dependent random variables. As a result, univariate analyses are not 

fitting the purposes as expressively stated by Shiau [13]; Genest et al. 

[14]; and Genest et al. [15]. Secondly, in fact, traditional bivariate 

distributions required marginal distributions to be of the same family 

and this has complicated their solutions. As consequence, the number 

of available models has becoming limited. Thirdly, copulas act as 

functions that linked other multivariate distribution functions to 

univariate distributions. They are also able to model the dependence 

structure among random variables autonomously of the marginal 
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distributions. Lastly, copulas for continuous random variables are 

excellent in fabricating a multivariate distribution with any given 

different univariate distribution family and eventually can correspond 

to a suitable dependence structure among component random variables. 

The relationship between dependent random variables for given 

univariate marginal distributions had been reduced as a result of the 

sophisticated joint distribution modelling. 

Copulas are majorly exploited to model the dependence structure 

between two or more variables, for example, precipitation and soil 

moisture [16], drought severity and duration [17], drought intensity, 

duration and severity [18] and drought duration, affect area, and 

severity [19]. There are varieties of copula families, established and 

available to be exercised to model all kinds of different dependence 

structures [20-22]. Kelly and Krzysztofowicz [23] made use of Meta-

Gaussian Distribution in hydrology field in which it was among the 

pioneers, taking into account different marginal distributions that came 

with different covariance structures in bivariate frequency analysis. 

Shiau [13] in the study constructed a joint drought duration and severity 

distribution, made the most of the bivariate Ali-Mikhail-Haq, Clayton, 

Farlie-Gumbel-Morgenstern, Frank, Galambos, Gumbel-Hougaard and 

Plackett Copulas. The copula-based joint probabilities and return 

periods for drought duration and severity were seemed to meet 

empirical values prerequisites. Shiau et al. [24] applied the Clayton 

copula using the exponential distribution for drought duration and the 

gamma distribution for drought severity. Another researcher; Wong 

[18], applied trivariate Gaussian and Gumbel Copulas to fit rainfall that 

came out with results that the data was characterized way far better by 

Gumbel Copula by utilizing three parameter marginal Weibull 

distributions. To test on peak flows from a watershed in the framework 

of combined risk in Quebec, Canada, Favre et al. [25] developed a 

methodology for representing extreme values using copulas in which 

they have tested four copulas types. In their respective study, to harvest 

reliable results, they also modelled peak flows and volumes using three 

copulas. 

Thus, the current authors through this study believed that it was 

important to derive bivariate rainfall distribution using the copula 

method. As a result, four Archimedean Copulas and one Elliptical 

Copula were scrutinized and evaluated for comparisons. The authors 

also has opted a semi parametric method to estimate the joint 

distribution of rainfall characteristics due to its robustness. The main 

reason of implementing this approach was the marginal distributions 

that frequently used belong to specific parametric families and their 

adoption could lead to spurious inferences if the underlying 

assumptions about the shape or form of the probability distribution

were violated. 

Prior to copula fitting, the Standardized Precipitation Index (SPI), 

developed by Mckee et al. [26], was employed to defined floods. Each 

flood event was characterized by firstly fitted rainfall duration and 

severity, separately using probability distributions. Later on univariate 

marginal distributions were linked by certain copulas to create the joint 

distribution of rainfall duration and severity. The monthly rainfall series 

of 48 stations in Peninsular Malaysia were used as an example to 

exemplify the proposed methodology. 

MATERIALS AND METHODS 

Study area and data 
The field of research was solely focused on the Peninsular Malaysia 

located in the Northern latitude zone between 1 and 6o N and the 

Eastern longitude from 100 to 103o E. Regarding the weather in 

Peninsular Malaysia, it is generally hot and humid throughout the year. 

The level of temperatures and rainfall is strongly influenced by winds 

which blow from the Indian Ocean, also known as Southwest Monsoon 

Wind, blowing from May to September, and from the South China Sea 

which is the Northeast Monsoon Wind that blows from November to 

March. The transitional period between the two monsoon events that 

occur in March until April, and September until October is known as 

the intermonsoon period which brings constant rainfalls to almost all 

areas of the peninsula. The annual rainfall is eventually tabulated to be 

80% per year, ranging from 2000mm to 2500mm. 

As to make a statistical modelling, the author has taken into account 

and reviewed 51 years records of data during the years 1965-2015. 

These data involved 48 rainfall stations and they have been obtained 

with collaboration with the Department of Irrigation and Drainage 

Malaysia (DID). The study over a long period time of data was in line 

with the intention of the author who wanted the most accurate results 

of the rainfall patterns in Malaysia [27]. Furthermore, the longer the 

data period, the more useful the study was, especially as the credibility 

of the frequency estimator is closely related to the size of the sample 

during the analysis process happened later on [28]. All 48 intentionally 

selected rainfall stations were flood prone areas in Peninsular Malaysia 

(refer to Fig. 1) [29]. 

Fig. 1. Peninsular Malaysia flood affected area map 
Source: Department of Irrigation and Drainage Malaysia 

Standard Precipitation Index  
The Standardized Precipitation Index (SPI) was introduced by 

Mckee et al. [26] for the purpose of determining and monitoring the 

drought occurring in places or areas. The SPI calculation method was 

based on the long-term rainfall series for a specific period such as 1, 3, 

6 and 12 months. The first procedure to calculate the SPI was fitting the 

long-term rainfall record to a probability distribution. Once the 

probability distribution was successfully determined, the cumulative 

probability of observed rainfall was calculated and then inverse 

transformed by a standard normal distribution with zero mean and 

variance equal to one. The resulting quantile was the SPI that intended 

to be determined. Guttman [30] has detailed the way it calculates the 

process. SPI could be also used to measure rainfall deficits in terms of 

probability, for multiple time scales. If the SPI was positive then the 

observed rainfall was greater than the median, whereas if the SPI was 

negative, then it was below the median. The wet and dry conditions 

were classified according to SPI scales and they were listed in Table 1. 

Mckee et al. [26] defined the flood as a period in which the SPI kept 

becoming positive and achieved a value of 1.0 or more. 

In this study, the data at first went through a transformation into 

indices in the manner as described above and were subsequently 

exercised to compute the rainfall severity 𝑆 as represented by 

1

d

i

i

S SPI
=

= (1) 

where 𝑖 is the month and 𝑑 is the duration of rainfall. The rainfall 

severity occurs when the SPI value was greater than 1. 
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Table 1 Standard precipitation index (SPI) classification 

SPI Classification 

≥ 2 Extremely wet 
1.5 to 1.99 Very wet 
1.0 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal 
-1.0 to -1.49 Moderately dry 
-1.5 to -1.99 Severely dry 

≤ 2 Extremely dry 

 

Marginal distribution 
Determining the appropriate marginal distribution for each rainfall 

characteristic is one of the most important procedures in fitting copulas. 

The author in this research had considered two rainfall characteristics 

namely rainfall severity and duration. The distribution functions tested 

in this study were the Gamma, Log normal, Exponential, Weibull and 

Log Logistic distributions. As studied and acknowledged by Boulanger 

et al. [31], there was zero consistency in distribution that made it 

suitable for all areas, seasons and climates. Below were the equations 

of the probability density functions of the five distributions and also 

their domains: 

1. Gamma distribution 
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where 𝛼 is the scale parameter and 𝛽 is the shape parameter. 

 

2. Log Normal distribution 
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where 𝜇 and 𝜎 are the mean and standard deviation of ln 𝑋 respectively. 

 

3. Weibull distribution 
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where 𝛼 is the shape parameter and 𝛽 is the scale parameter. 

 

4. Exponential distribution 
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where 𝜆 is the rate parameter. 

 

5. Log Logistic distribution  
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(6) 

where 𝛼 is the shape parameter and 𝛽 is the scale parameter. 

The Maximum Likelihood Estimation (MLE) method is the 

standard method used to estimate the parameters of these marginal 

distributions. The best fitted distribution could be determined based on 

the smallest AIC value. 

 

Copula theory 
A copula is a powerful multivariate function describing dependence 

of variables transformed by their margins, which can simplify inference 

procedures of multivariate distributions and studies on hydrological 

dependence. Considering continuous random vector as (𝑋, 𝑌) with 

marginal distributions 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦), the joint distribution function 

could be articulated with its marginal distributions and copula function 

𝐶 [21] as stated below: 
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where 𝜃 is the copula’s parameter; 𝑢 and 𝑣 are realizations of the 

random variables 𝑈 = 𝐹𝑋(𝑥) and 𝑉 = 𝐹𝑌(𝑦). The density function of 

𝐶 was specified as: 
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The two-dimensional copula 𝐶 maps the two marginal distributions 

into the joint distribution as (0,1)2 → (0,1). The value of 𝜃 could be 

estimated either by inference functions for margins (IFM) or canonical 

maximum likelihood (CML). 

 
Types of copula 

• Elliptical Copula 

Copulas associated to elliptical distributions are very useful in real 

world applications since they have some properties of the multivariate 

normal distribution. The most commonly used and familiar Elliptical 

Copulas are the multivariate Gaussian Copula and the multivariate 

Student Copula. 

• Archimedean Copula 

The Archimedean Copula is one of the most opted copula functions by 

researchers as the measures computation of dependence has been 

simplified for use. Archimedean Copulas can be defined by the 

generator 𝜑(∙), a continuous strictly decreasing function from [0,1] to 
[0,∞) such that 𝜑(1) = 0. If 𝜑−1(∙) represents the inverse function of 

𝜑(∙), the Archimedean copula was defined by the equation below: 
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(9) 

 

Archimedean Copulas works with many different generators and they 

could be observed in Table 4.1 of Nelsen [21]. In general, 𝜑 is 

dependent on a parameter 𝜃 and it therefore be symbolized by 𝜑𝜃.  

In this study, four types of Archimedean copula; the Clayton, 

Frank, Joe and Gumbel together with one elliptical copula, namely 

Gaussian were employed to model dependence patterns of different 

hydrological variables. Table 2 depicts that different choices of 

generator yield several important bivariate families of copulas.

 
Table 2 Families of bivariate copulas 

Family of Copulas Copulas ( ),C u v  
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Φ is the cumulative distribution function of the standard normal variable.
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Estimating copula parameters 
Once the copula has been selected, the parameter of copulas has to 

be estimated. As part of the study, the parameters estimation of the most 

common copulas was thoroughly described. There were primarily two 

methods of doing this; a fully parametric method and a semi parametric 

method. The first method was the inference functions for margins 

(IFM) method by Joe [20], which relied on parametric univariate 

marginal distributions assumption. First the parameters of the margins 

are estimated and then each parametric margin was plugged into the 

copula likelihood. This full likelihood was maximized with respect to 

the copula parameters. However, to make this method a huge success, 

finding appropriate parametric models for the margins was a must. It 

might not be easy and straightforward particularly if they demonstrate 

an evidence of heavy tails or skewness. On the other hand, interestingly, 

even without parametric assumptions for the margins, the author could 

plug the univariate empirical cumulative distribution functions into the 

likelihood to yield a semi parametric method. This method signifies the 

pseudo-likelihood [32] or canonical maximum likelihood (CML) 

method and in which it has been described in Genest et al. [33]. 

Goodness of fit test 
The appropriate probability distribution could be determined by 

Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC). The lowest AIC and BIC values indicate that the tested 

model were approaching the actual model. AIC and BIC are expressed 

as: 

Given the observe value 𝑢𝑖,𝑗, i = 1,… ,N, j = 1,2, AIC and BIC for 

bivariate copula 𝐶 with parameter 𝜃 can be expressed as: 
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RESULTS 

The monthly SPI for Kuala Brang station starting from year 1965 

until 2015 could be seen in Fig. 2. This station was the wettest area in 

Peninsular Malaysia with the highest annual mean rainfall of 3737.11 

mm. Referring to the graph, it was apparent that Kuala Brang regularly 

faced very wet event once every five to 10 years with the SPI index was 

exceeded 2.0 in about 13 extremely wet events during these years. 

Fig. 2 The monthly SPI of Kuala Brang station (1965-2015). 

All parameters for the five marginal distributions used were 

estimated from the data sets using the method of MLE. For each station, 

the best fitted distribution for severity and duration was subsequently 

selected using the AIC. The one with the lowest AIC value indicated 

the best fitted marginal distribution. Based on the obtained results from 

the study of all stations, Log Logistic distribution was best to be used 

for examining rainfall severity, while rainfall duration was best fitted 

by a Weibull distribution. Table 3 thoroughly illustrated the best fitted 

distribution for severity and duration of each station. 

Table 3 The best fitted distribution for severity and duration. 

Station Severity Duration Station Severity Duration 

Meranti Llogis Weibull Kota Tinggi Lnorm Weibull 
Kuala Jambu Llogis Weibull Sembrong Llogis Weibull 
Stesen Keretapi Tumpat Lnorm Weibull Ladang Lambak Llogis Llogis 
Kampung Ibok Llogis Llogis Yong Peng Weibull Weibull 
Dungun Weibull Weibull Ladang Ulu Paloh Llogis Weibull 
Kuala Brang Lnorm Gamma Jementah Lnorm Gamma 
Kuala Telemong Weibull Weibull Segamat Weibull Weibull 
Marang Weibull Weibull Empangan Labong Llogis Weibull 
Kuala Terengganu Llogis Weibull Pusat Pertanian Endau Llogis Weibull 
Kampung Rahmat Weibull Weibull Stor Jps Endau Lnorm Weibull 
Banggol Exp Weibull Parit Nibong Llogis Weibull 
Setiu Lnorm Weibull Rantau Panjang Lnorm Llogis 
Pelangi Kampung Jawi 2 Llogis Weibull Jeniang Weibull Weibull 
Bentong Llogis Llogis Telok Rimba Llogis Weibull 
Paya Membang Weibull Weibull Jasin Lnorm Gamma 
Kampung Serambi Gamma Weibull Jalan Empat Llogis Llogis 
Kerdau Weibull Weibull Ladang Bukit Bertam Gamma Weibull 
Sanggang Weibull Weibull Batu Kurau Llogis Weibull 
Pekan Llogis Weibull Ladang Sepang Lnorm Weibull 
Penor Llogis Weibull Sungai Mangg Llogis Weibull 
Kuala Krau Weibull Weibull Ladang Bukit Kerayong Llogis Weibull 
Paya Kangsar Weibull Weibull Ladang Tuan Mee Weibull Weibull 
Ladang Kuala Reman Llogis Weibull Tanjung Karang Lnorm Weibull 
Kuala Lipis Llogis Weibull Sungai Bernam Lnorm Weibull 

Llogis = Log Logistic, Lnorm = Log Normal, Exp = Exponential 

Prior to fitting the copulas, examination on the dependence 

structure between two rainfall characteristics was an important aspect 

by computing the Kendall’s tau measure of concordance. The values of 

these measures were between 0.75 and 0.88 which were statistically 

significant positive correlation. For each of the five copulas selected, 

estimation of the parameter 𝜃 using the IFM and CML methods 

together with their goodness of fit tests results were displayed in Table 

A1 and Table A2 respectively (refer to Appendix A).  

The best model selected for each case was the one with the lowest 

AIC and BIC values. In Table A1, Gaussian Copula was the commonly 

selected and the best copula to characterize the association between 

rainfall severity and duration. While in Table A2, Frank copula showed 

a dominant result. The locations of the copulas for chosen stations in 

Peninsular Malaysia for IFM and CML methods respectively were 

shown in Fig. 3 (a) and Fig. 3 (b). 
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(a) 

(b) 

Fig. 3 (a) Location of copulas for each station by using IFM; (b) Location 
of copulas for each station by using CML. 

The results as stated in Table A1 and Table A2 indicated that only 

three copulas were suitable to be represented the association between 

rainfall severity and duration in Peninsular Malaysia. They were 

Gaussian, Clayton and Frank for a parametric method; and Frank, Joe 

and Gumbel for a semi parametric method. To arrive at the final stage, 

two consistency tests were later on conducted, namely Interquartile 

Range (IQR) and standard deviation (SD). The authors found that Frank 

Copula was perfect and appropriate to be used as a generalized method 

for analysing flood in Peninsular Malaysia as it produced the smallest 

IQR and SD values which were the desired values. Significant 

information and data statistics were specified in Table 4 and Table 5 to 

be referred. 

Table 4 Consistency tests results for parametric copula. 

Copula IQR SD 

AIC BIC AIC BIC 
Gaussian 23.48 23.45 17.98 17.95 
Clayton 29.65 29.46 21.69 21.64 
Frank 20.68 20.49 17.20 17.14 

Table 5 Consistency tests results for semi parametric copula. 

Copula IQR SD 

AIC BIC AIC BIC 
Frank 11.88 11.94 10.18 10.14 
Joe 22.85 23.04 15.48 15.50 
Gumbel 16.69 16.76 11.01 11.02 

DISCUSSION AND CONCLUSIONS 

When it comes to understanding the global water cycle and climatic 

phenomena, researchers could not investigating the interdependence of 

hydrologic and climatic variables for granted. Hence, researchers have 

extensively exploited copulas as it could be witnessed in many 

statistical literatures for constructing joint distributions in an effort to 

model the suitable dependence structure of these variables. There were 

a few multivariate copulas that perfectly model the rainfall data 

including the Archimedean and Elliptical Copulas. These two copulas 

have been presented and evaluated above. 

Although the Archimedean Copula family comes with a large 

variety of copulas, they could be constructed easily. Either the 

correlation amongst hydrologic variables was positive or negative; 

many copulas of this kind could be applied without hassles. Due to this 

reasons it has become a choice when performing hydrologic analyses. 

The implementation of these properties has been stated by Genest & 

Mackay [34] and Favre et al. [25] in their studies. Using four 

Archimedean Copulas to rainfall bivariate analysis, only the Frank 

Copula had been proven to be more proper for the analysis of both IFM 

and CML approaches. This was a result of Frank Copula’s ability to 

maintain the consistency of the results, compared to other copulas. 

Also, Frank Copula could be exercised as a generalized method based 

on the datasets used in testing the best fitted copula. 

Instead, the elliptical copulas offer substantial practical interests as 

they could simply be applied in dimensions, even if they were more 

than two; and they were comprised of a generalized classical 

multivariate normal distribution. Daneshkhah et al. [5] cited in their 

study that Elliptical Copula modelled the dependencies of the flood 

variables for parametric approach more accurately, even though it was 

not for the semi parametric. Hence, Gaussian Copula performed very 

well for IFM method, but not for CML. 

Particularly in hydrologic studies that deal with a variety of cases 

in which the modelling of multivariate hydrologic variables was of 

particular interest. For that reason, this study presented the models that 

implied important implications and would be beneficial for many areas 

of water resources and hydrologic systems. 
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APPENDIX A 

Table A1   Goodness of Fit tests for IFM. 
Station Copula Estimate 𝜽 Maximum 

Likelihood 
AIC BIC 

Meranti Gaussian 0.95 56.38 -110.77 -108.86 
Clayton 6.47 55.48 -108.96 -107.05 
Frank* 20.07 56.41 -110.81 -108.90 
Joe 4.44 39.12 -76.23 -74.32 
Gumbel 4.26 50.01 -98.02 -96.11 

Kuala Jambu Gaussian* 0.96 48.90 -95.79 -94.08 

Clayton 5.16 39.80 -77.59 -75.88 
Frank 18.80 44.41 -86.82 -85.11 
Joe 5.83 40.28 -78.55 -76.84 
Gumbel 4.87 46.81 -91.62 -89.91 

Stesen Keretapi Tumpat Gaussian 0.95 52.05 -102.10 -100.25 
Clayton 4.68 41.29 -80.58 -78.73 
Frank* 19.51 53.30 -104.59 -102.74 
Joe 4.47 36.53 -71.06 -69.21 
Gumbel 4.03 45.52 -89.03 -87.18 

Kampung Ibok Gaussian* 0.97 64.23 -126.46 -124.63 
Clayton 8.32 58.47 -114.94 -113.11 
Frank 25.24 61.57 -121.14 -119.31 
Joe 6.27 49.41 -96.82 -94.99 
Gumbel 5.59 59.97 -117.94 -116.11 

Dungun Gaussian* 0.97 64.81 -127.63 -125.74 
Clayton 7.60 55.90 -109.80 -107.90 
Frank 24.08 60.31 -118.61 -116.72 
Joe 6.40 49.59 -97.19 -95.30 
Gumbel 5.55 59.89 -117.77 -115.88 

Kuala Brang Gaussian 0.93 43.21 -84.43 -82.69 
Clayton 5.27 41.43 -80.86 -79.13 
Frank* 18.06 44.05 -86.09 -84.35 
Joe 4.00 27.55 -53.10 -51.36 
Gumbel 3.72 36.61 -71.21 -69.48 

Kuala Telemong Gaussian 0.95 57.64 -113.28 -111.31 
Clayton* 8.66 71.17 -140.34 -138.37 
Frank 24.38 67.49 -132.99 -131.02 
Joe 3.47 31.15 -60.30 -58.32 
Gumbel 3.70 44.01 -86.03 -84.06 

Marang Gaussian 0.95 62.85 -123.70 -121.71 
Clayton* 6.93 64.66 -127.32 -125.33 
Frank 19.44 59.75 -117.49 -115.51 
Joe 4.20 41.32 -80.65 -78.66 
Gumbel 4.07 52.91 -103.81 -101.82 

Kuala Terengganu Gaussian 0.95 58.11 -114.21 -112.30 
Clayton 6.97 60.15 -118.30 -116.38 
Frank* 24.01 62.98 -123.96 -122.04 
Joe 4.26 38.08 -74.16 -72.25 
Gumbel 4.27 49.60 -97.19 -95.28 

Kampung Rahmat Gaussian 0.96 62.55 -123.10 -121.19 
Clayton* 10.29 71.10 -140.19 -138.28 
Frank 22.72 60.00 -118.00 -116.09 
Joe 4.71 40.51 -79.02 -77.11 
Gumbel 4.65 53.00 -104.00 -102.09 

Banggol Gaussian 0.98 63.45 -124.91 -123.10 
Clayton* 10.86 64.71 -127.43 -125.62 
Frank 28.09 62.93 -123.85 -122.05 
Joe 6.09 42.07 -82.15 -80.34 
Gumbel 5.73 54.45 -106.90 -105.09 

Setiu Gaussian 0.89 40.08 -78.16 -76.19 
Clayton 3.33 34.83 -67.67 -65.70 
Frank* 13.06 42.45 -82.90 -80.93 
Joe 2.90 24.40 -46.80 -44.83 
Gumbel 2.76 32.22 -62.43 -60.46 

Pelangi Kampung Jawi 2 Gaussian* 0.97 55.59 -109.18 -107.46 
Clayton 7.38 49.06 -96.13 -94.41 
Frank 23.13 52.41 -102.82 -101.10 
Joe 5.35 36.95 -71.90 -70.19 
Gumbel 4.93 46.66 -91.33 -89.61 

Bentong Gaussian* 0.99 60.65 -119.31 -117.78 
Clayton 9.88 48.57 -95.14 -93.61 
Frank 36.27 57.43 -112.86 -111.34 
Joe 11.06 51.63 -101.25 -99.73 
Gumbel 8.58 59.05 -116.10 -114.57 

Paya Membang Gaussian 0.96 56.65 -111.31 -109.44 
Clayton* 8.09 62.25 -122.49 -120.62 
Frank 21.22 56.49 -110.98 -109.10 
Joe 4.07 34.91 -67.81 -65.94 
Gumbel 4.07 46.04 -90.08 -88.21 

Kampung Serambi Gaussian 0.95 59.80 -117.59 -115.66 
Clayton 7.81 63.60 -125.20 -123.27 
Frank* 26.30 69.33 -136.67 -134.74 
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Joe 4.31 34.69 -67.38 -65.45  
Gumbel 4.27 48.28 -94.55 -92.62 

Kerdau Gaussian 0.98 65.66 -129.31 -127.58  
Clayton* 11.46 66.47 -130.95 -129.21  
Frank 29.19 61.48 -120.96 -119.22  
Joe 6.83 46.26 -90.52 -88.78  
Gumbel 6.36 58.18 -114.37 -112.63 

Sanggang Gaussian* 0.97 62.51 -123.02 -121.17  
Clayton 7.84 58.38 -114.76 -112.91  
Frank 23.26 58.85 -115.70 -113.85  
Joe 5.55 43.41 -84.82 -82.97  
Gumbel 5.08 54.59 -107.18 -105.33 

Pekan Gaussian* 0.95 55.32 -108.64 -106.77  
Clayton 4.93 45.29 -88.58 -86.71  
Frank 18.18 50.25 -98.50 -96.63  
Joe 5.44 45.59 -89.17 -87.30  
Gumbel 4.62 52.86 -103.72 -101.85 

Penor Gaussian 0.95 50.33 -98.66 -96.81  
Clayton 7.20 55.30 -108.60 -106.75  
Frank* 22.11 56.50 -111.00 -109.15  
Joe 3.58 28.77 -55.53 -53.68  
Gumbel 3.72 39.51 -77.03 -75.18 

Kuala Krau Gaussian 0.97 67.23 -132.47 -130.54  
Clayton 8.33 66.98 -131.97 -130.04  
Frank* 26.54 70.41 -138.81 -136.88  
Joe 4.51 39.27 -76.54 -74.61  
Gumbel 4.58 52.94 -103.88 -101.95 

Paya Kangsar Gaussian* 0.99 73.79 -145.58 -143.82  
Clayton 14.11 72.10 -142.20 -140.44  
Frank 37.63 72.39 -142.78 -141.02  
Joe 7.98 50.42 -98.84 -97.08  
Gumbel 7.28 63.99 -125.98 -124.22 

Ladang Kuala Reman Gaussian* 0.95 43.45 -84.90 -83.21  
Clayton 5.68 38.91 -75.82 -74.13  
Frank 18.12 41.91 -81.83 -80.14  
Joe 4.10 28.60 -55.21 -53.52  
Gumbel 3.91 36.51 -71.01 -69.32 

Kuala Lipis Gaussian* 0.97 53.03 -104.05 -102.39  
Clayton 7.74 49.36 -96.72 -95.05  
Frank 25.62 51.88 -101.76 -100.10  
Joe 5.57 36.72 -71.43 -69.77  
Gumbel 5.22 46.32 -90.64 -88.98 

Kota Tinggi Gaussian 0.95 50.27 -98.55 -96.76  
Clayton 4.53 39.76 -77.52 -75.73  
Frank* 20.30 50.42 -98.84 -97.05  
Joe 4.79 37.22 -72.44 -70.66  
Gumbel 4.26 45.16 -88.33 -86.54 

Sembrong Gaussian 0.96 53.70 -105.40 -103.61  
Clayton* 7.70 56.74 -111.48 -109.69  
Frank 22.73 54.51 -107.01 -105.23  
Joe 4.37 33.72 -65.45 -63.66  
Gumbel 4.30 44.43 -86.86 -85.07 

Ladang Lambak Gaussian* 0.94 52.08 -102.16 -100.29  
Clayton 4.84 41.70 -81.39 -79.52  
Frank 15.85 45.64 -89.28 -87.41  
Joe 4.32 41.08 -80.17 -78.29  
Gumbel 3.90 48.31 -94.62 -92.75 

Yong Peng Gaussian 0.95 54.37 -106.74 -104.91  
Clayton* 10.20 70.18 -138.37 -136.54  
Frank 25.34 60.70 -119.40 -117.57  
Joe 3.71 30.06 -58.13 -56.30  
Gumbel 3.95 41.95 -81.91 -80.08 

Ladang Ulu Paloh Gaussian* 0.96 62.41 -122.82 -120.89  
Clayton 6.43 56.69 -111.38 -109.45  
Frank 20.61 59.97 -117.94 -116.01  
Joe 4.54 42.37 -82.74 -80.81  
Gumbel 4.36 53.50 -104.99 -103.06 

Jementah Gaussian 0.94 50.71 -99.43 -97.60  
Clayton 5.32 45.44 -88.87 -87.04  
Frank* 20.10 53.01 -104.03 -102.20  
Joe 4.07 30.93 -59.86 -58.03  
Gumbel 3.85 41.27 -80.54 -78.71 

Segamat Gaussian 0.93 41.69 -81.38 -79.62  
Clayton* 7.92 54.84 -107.67 -105.91  
Frank 21.43 50.12 -98.25 -96.49  
Joe 3.27 22.46 -42.93 -41.17  
Gumbel 3.40 32.67 -63.34 -61.58 

Empangan Labong Gaussian 0.95 52.14 -102.28 -100.47  
Clayton 6.80 51.23 -100.46 -98.66  
Frank* 22.48 54.53 -107.05 -105.25  
Joe 4.12 31.86 -61.72 -59.92  
Gumbel 4.10 42.27 -82.54 -80.73 

Pusat Pertanian Endau Gaussian 0.91 43.50 -85.01 -83.06  
Clayton* 6.77 56.30 -110.59 -108.64  
Frank 19.00 54.88 -107.77 -105.82  
Joe 2.58 22.35 -42.69 -40.74  
Gumbel 2.86 31.81 -61.62 -59.67 

Stor Jps Endau Gaussian* 0.96 49.49 -96.98 -95.26  
Clayton 5.51 41.29 -80.59 -78.87  
Frank 21.19 48.02 -94.04 -92.33  
Joe 4.74 33.52 -65.04 -63.33 
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Gumbel 4.34 42.21 -82.43 -80.71 

Parit Nibong Gaussian 0.93 43.36 -84.73 -82.92  
Clayton 5.30 42.32 -82.64 -80.83  
Frank* 16.72 44.13 -86.25 -84.45  
Joe 3.30 26.68 -51.36 -49.55  
Gumbel 3.34 34.83 -67.66 -65.85 

Rantau Panjang Gaussian* 0.97 53.45 -104.90 -103.23  
Clayton 6.24 44.28 -86.55 -84.89  
Frank 21.32 46.95 -91.90 -90.24  
Joe 6.00 41.44 -80.87 -79.21  
Gumbel 5.21 49.02 -96.03 -94.37 

Jeniang Gaussian 0.95 60.33 -118.66 -116.69  
Clayton* 10.68 79.67 -157.35 -155.37  
Frank 28.22 73.50 -145.01 -143.04  
Joe 4.05 35.68 -69.36 -67.39  
Gumbel 4.23 50.01 -98.02 -96.05 

Telok Rimba Gaussian* 0.96 57.49 -112.98 -111.17  
Clayton 6.77 51.61 -101.23 -99.42  
Frank 21.53 54.61 -107.21 -105.41  
Joe 4.63 37.93 -73.86 -72.06  
Gumbel 4.45 48.27 -94.55 -92.74 

Jasin Gaussian* 0.97 61.71 -121.41 -119.65  
Clayton 7.37 52.22 -102.44 -100.68  
Frank 27.02 59.31 -116.61 -114.85  
Joe 5.28 38.67 -75.34 -73.58  
Gumbel 5.01 49.95 -97.91 -96.14 

Jalan Empat Gaussian* 0.98 59.01 -116.03 -114.44  
Clayton 11.32 53.61 -105.22 -103.63  
Frank 35.11 56.64 -111.27 -109.69  
Joe 9.29 49.86 -97.71 -96.13  
Gumbel 7.84 58.06 -114.12 -112.54 

Ladang Bukit Bertam Gaussian* 0.96 56.57 -111.14 -109.36  
Clayton 6.74 49.59 -97.19 -95.40  
Frank 22.09 53.78 -105.56 -103.77  
Joe 5.01 37.57 -73.14 -71.36  
Gumbel 4.58 47.79 -93.57 -91.79 

Batu Kurau Gaussian 0.95 47.38 -92.75 -90.97  
Clayton 5.37 42.41 -82.83 -81.04  
Frank* 19.25 48.53 -95.07 -93.28  
Joe 3.93 29.77 -57.53 -55.75  
Gumbel 3.80 38.81 -75.63 -73.84 

Ladang Sepang Gaussian* 0.96 62.15 -122.30 -120.37  
Clayton 5.37 51.64 -101.28 -99.35  
Frank 21.92 61.87 -121.75 -119.82  
Joe 5.28 46.07 -90.14 -88.21  
Gumbel 4.67 56.31 -110.63 -108.70 

Sungai Mangg Gaussian 0.96 45.96 -89.92 -88.25  
Clayton 6.45 43.43 -84.86 -83.19  
Frank* 21.46 46.96 -91.91 -90.25  
Joe 4.80 30.29 -58.57 -56.91  
Gumbel 4.43 39.39 -76.79 -75.12 

Ladang Bukit Kerayong Gaussian 0.95 42.93 -83.86 -82.25  
Clayton* 9.51 51.51 -101.03 -99.42  
Frank 26.03 48.58 -95.16 -93.55  
Joe 4.32 26.69 -51.38 -49.77  
Gumbel 4.43 36.35 -70.69 -69.08 

Ladang Tuan Mee Gaussian 0.86 23.34 -44.68 -43.10  
Clayton* 5.17 32.04 -62.09 -60.50  
Frank 14.25 29.53 -57.05 -55.47  
Joe 3.45 20.00 -37.99 -36.41  
Gumbel 3.25 26.13 -50.26 -48.67 

Tanjung Karang Gaussian* 0.97 64.27 -126.55 -124.76  
Clayton 6.07 47.89 -93.79 -92.00  
Frank 24.79 58.48 -114.96 -113.17  
Joe 7.59 53.08 -104.16 -102.37  
Gumbel 6.06 61.11 -120.22 -118.44 

Sungai Bernam Gaussian 0.94 52.76 -103.52 -101.59  
Clayton 5.09 48.75 -95.50 -93.56  
Frank* 20.26 58.21 -114.43 -112.50  
Joe 3.51 30.14 -58.28 -56.35  
Gumbel 3.45 40.82 -79.65 -77.72 

 

Table A2   Goodness of Fit tests for CML. 
Station Copula Estimate 𝜽 Maximum 

Likelihood 
AIC BIC 

Meranti Gaussian 0.91 41.27 -80.55 -78.64  
Clayton 2.47 21.52 -41.04 -39.13  
Frank 15.72 46.71 -91.41 -89.50  
Joe* 6.49 51.61 -101.23 -99.32  
Gumbel 4.27 49.74 -97.48 -95.57 

Kuala Jambu Gaussian 0.90 30.80 -59.61 -57.90  
Clayton 2.19 14.80 -27.60 -25.88  
Frank 14.41 34.80 -67.60 -65.88  
Joe* 6.94 43.76 -85.53 -83.81  
Gumbel 4.20 39.37 -76.74 -75.03 

Stesen Keretapi Tumpat Gaussian 0.92 40.63 -79.26 -77.41  
Clayton 2.77 23.23 -44.46 -42.61  
Frank* 16.96 46.74 -91.49 -89.64 
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Joe 5.35 40.71 -79.42 -77.57  
Gumbel 3.99 43.53 -85.06 -83.21 

Kampung Ibok Gaussian 0.89 32.02 -62.04 -60.21  
Clayton 2.02 14.67 -27.33 -25.50  
Frank 13.18 35.83 -69.67 -67.84  
Joe* 6.84 48.26 -94.52 -92.69  
Gumbel 4.03 42.08 -82.17 -80.34 

Dungun Gaussian 0.90 36.51 -71.02 -69.13  
Clayton 2.45 21.09 -40.18 -38.29  
Frank* 13.81 40.33 -78.67 -76.77  
Joe 4.83 37.90 -73.79 -71.90  
Gumbel 3.57 39.71 -77.42 -75.53 

Kuala Brang Gaussian 0.92 36.30 -70.59 -68.85  
Clayton 3.12 24.04 -46.09 -44.35  
Frank* 15.31 38.86 -75.73 -73.99  
Joe 4.91 33.13 -64.26 -62.52  
Gumbel 3.83 37.28 -72.55 -70.81 

Kuala Telemong Gaussian 0.87 34.36 -66.71 -64.74  
Clayton 2.18 19.34 -36.69 -34.72  
Frank* 13.25 41.84 -81.67 -79.70  
Joe 3.70 30.52 -59.05 -57.08  
Gumbel 3.00 34.39 -66.77 -64.80 

Marang Gaussian 0.88 37.16 -72.31 -70.32  
Clayton 2.35 22.06 -42.13 -40.14  
Frank* 13.32 43.29 -84.58 -82.59  
Joe 3.86 33.45 -64.90 -62.91  
Gumbel 3.12 37.67 -73.34 -71.35 

Kuala Terengganu Gaussian 0.85 28.32 -54.64 -52.73  
Clayton 2.17 18.17 -34.34 -32.42  
Frank* 12.62 37.14 -72.28 -70.37  
Joe 3.23 23.07 -44.15 -42.24  
Gumbel 2.75 27.54 -53.08 -51.16 

Kampung Rahmat Gaussian 0.89 36.33 -70.66 -68.74  
Clayton 2.42 21.10 -40.20 -38.29  
Frank* 14.00 41.82 -81.63 -79.72  
Joe 4.42 35.76 -69.52 -67.60  
Gumbel 3.41 38.71 -75.42 -73.51 

Banggol Gaussian 0.90 34.30 -66.59 -64.78  
Clayton 2.33 17.87 -33.75 -31.94  
Frank 14.55 38.83 -75.67 -73.86  
Joe* 6.10 42.92 -83.85 -82.04  
Gumbel 4.01 41.26 -80.52 -78.72 

Setiu Gaussian 0.88 34.71 -67.42 -65.45  
Clayton 2.27 20.78 -39.57 -37.59  
Frank* 11.87 37.89 -73.78 -71.81  
Joe 3.83 32.45 -62.90 -60.93  
Gumbel 3.05 35.60 -69.19 -67.22 

Pelangi Kampung Jawi 2 Gaussian 0.92 36.44 -70.89 -69.17  
Clayton 2.70 19.42 -36.84 -35.13  
Frank 17.84 42.34 -82.68 -80.97  
Joe* 7.04 44.94 -87.87 -86.16  
Gumbel 4.63 43.70 -85.40 -83.69 

Bentong Gaussian 0.91 27.97 -53.94 -52.42  
Clayton 2.39 13.92 -25.85 -24.32  
Frank 16.25 32.14 -62.27 -60.74  
Joe* 8.53 41.62 -81.23 -79.71  
Gumbel 4.78 36.40 -70.80 -69.27 

Paya Membang Gaussian 0.89 34.45 -66.90 -65.03  
Clayton 2.27 18.55 -35.09 -33.22  
Frank* 13.60 39.05 -76.10 -74.22  
Joe 4.47 35.13 -68.26 -66.39  
Gumbel 3.38 37.06 -72.12 -70.25 

Kampung Serambi Gaussian 0.92 44.59 -87.18 -85.24  
Clayton 2.90 26.35 -50.70 -48.76  
Frank* 17.78 52.91 -103.81 -101.88  
Joe 5.29 42.59 -83.19 -81.25  
Gumbel 4.01 46.75 -91.49 -89.56 

Kerdau Gaussian 0.92 35.36 -68.73 -66.99  
Clayton 2.58 18.94 -35.88 -34.15  
Frank* 16.83 41.33 -80.67 -78.93  
Joe 6.08 40.44 -78.89 -77.15  
Gumbel 4.21 40.65 -79.30 -77.56 

Sanggang Gaussian 0.92 39.93 -77.86 -76.01  
Clayton 2.69 22.41 -42.83 -40.98  
Frank* 16.67 46.32 -90.64 -88.79  
Joe 5.53 41.95 -81.90 -80.05  
Gumbel 4.02 44.01 -86.02 -84.17 

Pekan Gaussian 0.87 29.32 -56.63 -54.76  
Clayton 1.82 13.04 -24.08 -22.21  
Frank 11.45 32.30 -62.61 -60.73 
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Joe* 5.19 40.09 -78.17 -76.30  
Gumbel 3.42 36.83 -71.65 -69.78 

Penor Gaussian 0.88 31.89 -61.77 -59.92  
Clayton 2.18 17.02 -32.05 -30.20  
Frank* 13.31 37.11 -72.22 -70.37  
Joe 4.07 30.79 -59.59 -57.74  
Gumbel 3.16 33.22 -64.43 -62.58 

Kuala Krau Gaussian 0.90 37.61 -73.21 -71.28  
Clayton 2.23 19.08 -36.16 -34.22  
Frank 14.27 42.99 -83.98 -82.05  
Joe* 5.56 45.67 -89.34 -87.41  
Gumbel 3.80 44.62 -87.24 -85.31 

Paya Kangsar Gaussian 0.90 32.93 -63.85 -62.09  
Clayton 2.22 15.90 -29.81 -28.04  
Frank 14.45 36.51 -71.03 -69.27  
Joe* 7.22 47.35 -92.70 -90.94  
Gumbel 4.29 42.07 -82.15 -80.39 

Ladang Kuala Reman Gaussian 0.90 30.13 -58.26 -56.57  
Clayton 2.18 14.35 -26.69 -25.00  
Frank 14.18 33.29 -64.57 -62.88  
Joe* 7.38 44.65 -87.30 -85.61  
Gumbel 4.29 39.01 -76.02 -74.33 

Kuala Lipis Gaussian 0.93 35.04 -68.08 -66.42  
Clayton 2.62 17.87 -33.74 -32.08  
Frank 19.24 42.01 -82.02 -80.35  
Joe* 8.90 49.64 -97.29 -95.63  
Gumbel 5.18 44.88 -87.76 -86.09 

Kota Tinggi Gaussian 0.89 31.74 -61.48 -59.70  
Clayton 2.34 17.67 -33.34 -31.55  
Frank* 14.57 37.62 -73.23 -71.45  
Joe 4.67 32.46 -62.93 -61.15  
Gumbel 3.50 34.42 -66.84 -65.06 

Sembrong Gaussian 0.90 34.44 -66.89 -65.10  
Clayton 2.75 21.65 -41.30 -39.52  
Frank* 16.08 41.85 -81.69 -79.91  
Joe 4.37 30.36 -58.72 -56.94  
Gumbel 3.52 34.94 -67.87 -66.09 

Ladang Lambak Gaussian 0.87 29.07 -56.15 -54.28  
Clayton 1.83 13.08 -24.17 -22.30  
Frank 10.95 30.75 -59.51 -57.63  
Joe* 4.90 37.16 -72.32 -70.45  
Gumbel 3.27 34.73 -67.45 -65.58 

Yong Peng Gaussian 0.89 32.55 -63.10 -61.27  
Clayton 2.54 20.70 -39.40 -37.58  
Frank* 14.61 39.87 -77.74 -75.91  
Joe 3.61 25.58 -49.15 -47.32  
Gumbel 3.07 30.62 -59.24 -57.41 

Ladang Ulu Paloh Gaussian 0.87 32.83 -63.66 -61.73  
Clayton 1.91 14.92 -27.84 -25.90  
Frank 12.42 37.31 -72.61 -70.68  
Joe* 5.09 42.02 -82.05 -80.12  
Gumbel 3.45 39.95 -77.90 -75.97 

Jementah Gaussian 0.93 43.74 -85.48 -83.65  
Clayton 3.02 25.17 -48.34 -46.51  
Frank 18.02 48.64 -95.28 -93.45  
Joe 6.42 47.16 -92.31 -90.48  
Gumbel* 4.52 48.73 -95.45 -93.62 

Segamat Gaussian 0.89 31.66 -61.31 -59.55  
Clayton 3.02 23.69 -45.38 -43.62  
Frank* 15.15 38.66 -75.31 -73.55  
Joe 3.46 22.33 -42.67 -40.91  
Gumbel 3.08 28.61 -55.22 -53.46 

Empangan Labong Gaussian 0.91 35.55 -69.10 -67.29  
Clayton 2.36 18.17 -34.35 -32.54  
Frank 14.92 39.72 -77.45 -75.64  
Joe* 6.81 47.31 -92.63 -90.82  
Gumbel 4.26 44.00 -86.00 -84.19 

Pusat Pertanian Endau Gaussian 0.84 28.12 -54.23 -52.28  
Clayton 1.77 13.44 -24.88 -22.92  
Frank* 11.04 33.59 -65.17 -63.22  
Joe 4.14 32.47 -62.94 -60.99  
Gumbel 2.99 32.44 -62.89 -60.94 

Stor Jps Endau Gaussian 0.93 38.42 -74.83 -73.12  
Clayton 2.94 21.70 -41.39 -39.68  
Frank 17.77 42.87 -83.74 -82.03  
Joe 6.85 43.83 -85.66 -83.95  
Gumbel* 4.64 44.03 -86.05 -84.34 

Parit Nibong Gaussian 0.85 25.55 -49.10 -47.29  
Clayton 1.76 11.59 -21.19 -19.38  
Frank 10.85 28.68 -55.35 -53.55 
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Joe* 4.15 29.65 -57.30 -55.50  
Gumbel 3.00 29.31 -56.61 -54.81 

Rantau Panjang Gaussian 0.92 34.72 -67.44 -65.78  
Clayton 2.71 18.84 -35.69 -34.02  
Frank 16.94 38.94 -75.87 -74.21  
Joe* 7.26 43.42 -84.84 -83.18  
Gumbel 4.65 41.67 -81.34 -79.67 

Jeniang Gaussian 0.89 36.91 -71.82 -69.85  
Clayton 2.46 22.79 -43.57 -41.60  
Frank* 14.77 46.24 -90.48 -88.51  
Joe 4.25 34.96 -67.91 -65.94  
Gumbel 3.37 39.18 -76.36 -74.39 

Telok Rimba Gaussian 0.90 34.03 -66.07 -64.26  
Clayton 2.17 16.07 -30.14 -28.33  
Frank 14.68 38.73 -75.46 -73.65  
Joe* 7.49 51.42 -100.84 -99.03  
Gumbel 4.39 44.93 -87.87 -86.06 

Jasin Gaussian 0.91 34.54 -67.08 -65.32  
Clayton 2.41 17.92 -33.83 -32.07  
Frank 15.06 38.34 -74.69 -72.93  
Joe* 6.37 42.93 -83.86 -82.10  
Gumbel 4.16 41.01 -80.02 -78.26 

Jalan Empat Gaussian 0.94 34.95 -67.90 -66.31  
Clayton 3.06 19.68 -37.35 -35.77  
Frank* 19.96 40.57 -79.14 -77.55  
Joe 6.78 37.97 -73.94 -72.36  
Gumbel 4.69 38.99 -75.98 -74.39 

Ladang Bukit Bertam Gaussian 0.93 40.10 -78.21 -76.42  
Clayton 3.04 24.23 -46.46 -44.67  
Frank 16.18 42.69 -83.38 -81.59  
Joe 5.88 41.62 -81.24 -79.45  
Gumbel* 4.27 43.75 -85.51 -83.73 

Batu Kurau Gaussian 0.89 30.47 -58.93 -57.15  
Clayton 2.17 15.84 -29.68 -27.89  
Frank* 13.46 35.50 -69.01 -67.22  
Joe 4.59 31.82 -61.65 -59.86  
Gumbel 3.37 33.05 -64.10 -62.32 

Ladang Sepang Gaussian 0.90 38.59 -75.19 -73.26  
Clayton 2.48 22.03 -42.05 -40.12  
Frank* 14.89 45.62 -89.23 -87.30  
Joe 4.46 35.94 -69.88 -67.95  
Gumbel 3.45 39.67 -77.34 -75.41 

Sungai Mangg Gaussian 0.94 40.45 -78.90 -77.24  
Clayton 3.32 23.55 -45.09 -43.43  
Frank 18.99 43.33 -84.66 -82.99  
Joe 7.41 44.77 -87.53 -85.87  
Gumbel* 5.02 45.43 -88.85 -87.19 

Ladang Bukit Kerayong Gaussian 0.91 30.37 -58.75 -57.14  
Clayton 2.57 16.63 -31.27 -29.66  
Frank* 16.66 35.68 -69.36 -67.75  
Joe 6.02 35.28 -68.56 -66.95  
Gumbel 4.18 35.52 -69.03 -67.42 

Ladang Tuan Mee Gaussian 0.87 23.04 -44.08 -42.50  
Clayton 2.77 17.42 -32.84 -31.25  
Frank 14.27 29.08 -56.17 -54.59  
Joe 4.84 27.20 -52.41 -50.82  
Gumbel* 3.74 29.65 -57.29 -55.71 

Tanjung Karang Gaussian 0.92 37.60 -73.20 -71.41  
Clayton 2.47 18.79 -35.58 -33.79  
Frank 16.95 43.17 -84.34 -82.56  
Joe* 8.81 56.25 -110.50 -108.72  
Gumbel 4.98 49.25 -96.50 -94.71 

Sungai Bernam Gaussian 0.90 37.68 -73.36 -71.43  
Clayton 2.44 21.70 -41.39 -39.46  
Frank* 14.68 44.64 -87.28 -85.35  
Joe 4.02 32.65 -63.31 -61.38  
Gumbel 3.24 37.04 -72.08 -70.15 

 

 


