
Malaysian Journal of Fundamental & Applied Sciences Vol.8, No.2 (2012) 83-88.

| 83 |

Malaysian Journal of Fundamental & Applied Sciences
available online at http://mjfas.ibnusina.utm.my

Splicing Systems over Permutation Groups of Length Two

N.Z.A. Hamzah1*, N.A. Mohd Sebry1, W.H. Fong2, N.H. Sarmin1, 2 and S. Turaev3

1 Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Malaysia
2 Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Malaysia
3 Faculty of Computer Science and Informational Technology, Universiti Putra Malaysia, Malaysia.

Received 20 October 2011, Revised 21 January 2012, Accepted 5 February 2012, Available online 15 February 2012

ABSTRACT

The first theoretical model of DNA computing, called a splicing system, for the study of the generative power of deoxyribonucleic acid (DNA) in the
presence of restriction enzymes and ligases was introduced by Head in 1987. Splicing systems model the recombinant behavior of double-stranded DNA
(dsDNA) and the enzymes which perform operation of cutting and pasting on dsDNA. Splicing systems with finite sets of axioms and rules generate
only regular languages when no additional control is assumed. With several restrictions to splicing rules, the generative power increase up to recursively
enumerable languages. Algebraic structures can also be used in order to control the splicing systems. In the literature, splicing systems with additive and
multiplicative valences have been investigated, and it has been shown that the family of languages generated by valence splicing systems is strictly
included in the family of context-sensitive languages. This motivates the study of splicing systems over permutation groups. In this paper, we define
splicing systems over permutation groups and investigate the generative power of the languages produced.

| Splicing System | Generative power | Regular Languages | Recursively Enumerable Languages | Permutation groups |

® 2012 Ibnu Sina Institute. All rights reserved.
http://dx.doi.org/10.11113/mjfas.v8n2.127

1. INTRODUCTION

The study of splicing system was first introduced by
Head in 1987 to model the generative power of
deoxyribonucleic acid (DNA) in the presence of restriction
enzymes and ligases. Head introduced splicing system as a
mathematical model of the recombinant behavior of double-
stranded DNA (dsDNA) and the enzymes which perform
operation of cutting and pasting on dsDNA. Splicing
system produces a language called splicing language [1]. In
[2], all splicing languages with finite sets of axioms and
rules have been proved to be regular. But not all regular
languages are splicing languages [3].

Groups have been used as a control mechanism in
splicing systems since splicing system with finite sets of
axioms and rules generate only regular languages. Thus, in
order to increase the generative power of splicing systems,
several restrictions are imposed on the splicing systems.
One kind of such restrictions is to control the splicing
operation by valences associated with the strings [4]. In this
restriction, the given valences are the elements of monoid
or group that are associated with the axioms. The strings are
accepted if the valences of the strings are equal to the
identity element.

In this paper, splicing system over permutation
group is defined and the languages produced by
permutation group of length two are determined in the
study of splicing languages with valences.

*Corresponding author at:
E-mail address: nz_akmar@yahoo.com (Nur Zatul Akmar Bt Hamzah)

2. PRELIMINARIES

Some formal definitions related to this research will

be presented in this section. The main definition which is
splicing system will first be defined.

Definition 1 [1] (Splicing System)
A splicing system S = (V, I, B, C) consists of a finite
alphabet V, a finite set I of initial strings in V * , and finite
sets B and C of triples (c, x, d) with c, x and d in V * , where
V * is the set of all strings over an alphabet V. For each such
triple the string cxd is called a site and the string x is called
a crossing. A language L is a splicing language if there
exists a splicing system S for which L = L(S).

When some restriction enzymes and ligases are
present in a test tube, they do not stop acting after one cut
and paste operation, but they act respectively on DNA [5].

A new model of computation based on the splicing
operation called an H system has been investigated by some
researchers [4, 5, 6]. The definitions of H scheme, H system
and extended H system are shown respectively in the
following.

Definition 2 [6] (H Scheme)
An H scheme is a pair = (,)V Rσ , where V is an alphabet
and * * * *# $ #R V V V V⊆ is a set of splicing rules over ,V
where *V is the set of all strings over an alphabet .V The
symbols $ and # are not in .V

http://www.ibnusina.utm.my/

Hamzah et al. / Malaysian Journal of Fundamental & Applied Sciences Vol.8, No.2 (2012) 83-88.

| 84 |

Definition 3 [6] (H System)
An H System is a triple = (, ,)V A Rγ with respect to a pair
(,)Aσ , where (,)V Rσ = is an H scheme and *A V⊆ is
the set of axioms and 1 2 3 4= # $ #r u u u u R∈ is the set of

splicing rules, for some *
1 2 1 2, , ,x x y y V∈ , then 1 1 2 2=x x u u x

, 1 3 4 2=y y u u y , 1 1 4 2=z x u u y , 1 3 2 2=w y u u x .

Therefore, () () (){ *, | , ,rA z w V x y z wσ = ∈ � for

some ,x y A∈ , }r R∈ , and *
0

() = ()i
i

A Aσ σ
≥ , where

0 () =A Aσ , and 1() = () (()), 0i i iA A A iσ σ σ σ+ ∪ ≥ . The
language generated by an H system γ is defined by

*() = ()L Aγ σ .

Definition 4 [6] (Extended H System)
An extended H system is a construct of γ = (, , ,)V T A R
where V is an alphabet, T V⊆ is the terminal alphabet,

*A V⊆ is the set of axioms, and * * * *# $ #R V V V V⊆ is the
set of splicing rules.

When =T V , the system is said to be a non-

extended H system. The pair σ = (,)V R is the underlying
H scheme of γ . The language generated by γ is defined
by * *() = ()L A Tγ σ ∩ .

An example of extended H system is shown in the

following.

Example 1 [6] Extended H system
Consider an extended H system ({ , , },a b cγ =
{ },{ , },{ # $ # })n ma a b ca a b c a , where , n m are two given
positive integers. The only splicing rule that can be applied
to the two existing axioms, na b and mca , is # $ #a b c a .
The operation of this splicing is (| , |) (,).n m n ma b c a a cb+�
No other new strings can be obtained in this splicing
operations of extended H system using the rule # $ #a b c a .

Then for { , }n mA a b ca= , the computation of

extended splicing system is shown in the following:

0 () = { , }n mA a b caσ ,
1 0() = () { , }n mA A a cbσ σ +∪ ,

1() = (),i A Aσ σ 2i ≥ .

Therefore, * 0 1() = () () { , , ,n mA A A a b ca cbσ σ σ∪ =

}n ma +

 and () = { }n mL aγ + .

Next, permutation groups can be used as valences in
extended H systems. The definition of permutation group is
stated in the following.

Definition 5 [7] (Permutation Group)
Let A be a finite set {1, 2, 3, 4, .. , n}. The group of all
permutations of A or permutation group A is the
symmetric group on n letters and is denoted by .nS

Then, the definition of Chomsky grammar that is
used to determine the generative power of valences in
splicing systems is also presented.

Definition 6 [6] (Chomsky Grammar)
A Chomsky grammar is a quadruple = (, , ,)G N T S P
where:
N is a finite set of nonterminals,
T is a finite set of terminals,
S ∈ N is the start symbol (the axiom),
P is a finite set of production rules u v→ , where

()*, .u v N T∈ ∪

The language of G , denoted by ()L G is the set of
terminal strings derivable from the start symbol S .
Symbolically, *() = { | }L G w T S w∈ ⇒ . A grammar is
accepted only when the produced word contains no
auxiliary symbol [6].

Regular grammar, context-free grammar and
context-sensitive grammar are among the types of Chomsky
grammar. The formal definitions of regular grammar,
context-free grammar and context-sensitive grammar are
presented respectively in the following.

Definition 7 [8] (Regular Grammar)
A grammar = (, , ,)G N T S P is regular if the production
has the form u v→ , where u N∈ , and { }v T TNλ∈ ∪ ∪ .
If v is equal to λ , the production is called a λ -production.

The language produced by such a grammar is called

a regular language.

Definition 8 [8] (Context-free Grammar)
A grammar = (, , ,)G N T S P is context-free if the
production has the form u v→ , where u N∈ , and

*()v N T∈ ∪ . If v is equals λ , the production is called a
λ -production.

Context-free grammar will produce a language called
a context-free language.

Definition 9 [9] (Context-sensitive Grammar)
A grammar = (, , ,)G N T S P is context-sensitive if each
production has the form u v→ , where , ()u v N T +∈ ∪ ,
and length() length()u v≤ .

The language produced by context-sensitive
grammar is known as the context-sensitive language.

Hamzah et al. / Malaysian Journal of Fundamental & Applied Sciences Vol.8, No.2 (2012) 83-88.

| 85 |

3 PERMUTATION GROUPS AS VALENCES IN
SPLICING SYSTEMS

A method of regulated rewriting of rules using

valences has been introduced by Paun [10]. An integer
(valence) is assigned to the used strings and the integer is
computed for a derivation of a new value (new valence).

Extended valence H system over group of integer
numbers (, ,0)+Z and positive rational numbers (, ,1)+ ⋅Q
have been introduced in [4] for the study of generative
power of extended valences H systems.

For this research, elements of permutation groups
are used as valences in splicing systems to compute the
generative power of extended valence H systems over
permutation groups.

A definition of extended valence H system over
permutation group is defined in the following.

Definition 10 Extended Valence H System Over
 Permutation Group nS
Let (nS , ⋅ , (1)) be a permutation group nS with operation,
⋅ , and the identity, (1). An extended valence H system
over permutation group nS is a construct of

= (, , ,)V T A Rγ , where:
V is an alphabet,
T V⊆ is the terminal alphabet,

A is a finite subset of nV S∗ × ,

$ #R V V V V∗ ∗ ∗ ∗⊆ is the set of splicing rules.
For 1 2 3(,), (,), (,)x v y v w v nV S∗∈ × and r R∈ ,

where , ,x y w ,V ∗∈ 1 2 3, ,v v v ,nS∈ the splicing operation
is 1 2[(,), (,)]x v y v r� 3(,),w v if and only if (,) rx y w� and

3 1 2=v v v⋅ . Then ()L γ = {x T ∗∈ | (,)x e ()}.Aσ ∗∈

An element of a permutation group is associated to

each axiom, A , and the value of group operation of new
strings is computed with each splicing operation. The
complete strings produced are considered to be valid if the
computation of the associated elements of the group
produces the identity element.

Two examples of computations of splicing systems
over permutation groups of length two are presented below.
First, an example of splicing system over permutation
group of length two involving one initial string is shown in
the following.

Example 2 Splicing system over permutation group of

length two involving one initial string.
Let (2S , ⋅ , (1)) be a permutation group of 2 =S {(1), (12)}
with the multiplicative operation, ⋅ , and the identity, (1).
An extended valence H system over 2S is a construct of

= (, , ,)V T A Rγ , where:
= { , , }V a c d ,
= { , , }T a c d ,

A is a finite subset of 2V S∗ × = {[, (12)]}cad ,
{ # $ # }R c a a d⊆ is the set of splicing rules.

By applying # $ #c a a d to initial strings ,cad the

new strings produced are w =[{ , }, (12)(12)]caad cd =
[{ , }, (1)]caad cd .

The H scheme for this stage is 1()Aσ = 0 () Aσ ∪

{[, (1)],caad [, (1)]}.cd Note that 0 ()Aσ = A . Therefore,
1()Aσ ={[, (12)],cad [, (1)],caad [, (1)]}.cd

The next stage of splicing operation is obtained by

applying # $ #c a a d to strings caad and ,cad and the new
strings produced are w =[{ , }, (1)(12)]caaad cd =

3[{ , }, (12)]ca d cd .

In this stage, the rule # $ #c a a d can also be applied

to strings ,caad and the new strings produced are w =
[{ , }, (1)(1)]caaad cd = 4[{ , }, (1)]ca d cd .

The splicing system for this stage is 2 ()Aσ = 1()Aσ
3 {[, (12)],ca d∪ [, (12)],cd 4[, (1)],ca d [, (1)]}.cd

Thus, 2 ()Aσ = {[, (12)],cad [, (1)],caad [, (1)],cd

3[, (12)],ca d [, (12)],cd 4[, (1)],ca d [, (1)]}.cd

Continuing this splicing process, the resulting

language is only accepted if the value of valences is equal
to the identity.

Therefore, the language of this extended valence H
system is 2() = { , 1}nL ca d nγ ≥ . From the Chomsky
grammar, the grammars that generate this language are
context-sensitive and context-free grammar but not regular.
These two grammars are shown in the following.

The generating grammar (context-sensitive
grammar) that produced context-sensitive languages:

({ , },{ , , }, ,)G S A a c d S P= with production rules

S cAd→ ,
| .A aaA aa→

The derivations of the language 2() = { ,nL ca dγ

1}n ≥ by using context-sensitive grammar are shown in the
following.

For n = 1,

.S cAd caad⇒ ⇒

For n = 2,
.S cAd caaAd caaaad⇒ ⇒ ⇒

Hamzah et al. / Malaysian Journal of Fundamental & Applied Sciences Vol.8, No.2 (2012) 83-88.

| 86 |

For n = 3,

.S cAd caaAd caaaaAd caaaaaad⇒ ⇒ ⇒ ⇒

For n a finite number, it is clear that context-

sensitive grammars generate 2() = { , 1}.nL ca d nγ ≥
The generating grammar (context-free grammar) that

produced context-free languages:

 ({ , },{ , , }, ,)G S A a c d S P= with production rules
S cAd→ ,

| .A aaA λ→

The derivations of the language 2() = { ,nL ca dγ
1}n ≥ by using context-sensitive grammar are shown in the

following.

For n = 1,
.S cAd caaAd caa d caadλ⇒ ⇒ ⇒ ⇒

For n = 2,

.S cAd caaAd caaaaAd caaaa d caaaadλ⇒ ⇒ ⇒ ⇒ ⇒

For n = 3,

S cAd caaAd caaaaAd caaaaaaAd⇒ ⇒ ⇒ ⇒ ⇒
.caaaaaa d caaaaaadλ ⇒

For n a finite number, it is clear that context-free

grammars generate 2() = { , 1}.nL ca d nγ ≥
The two grammars above are not characterized as

regular grammars because the production rules of any
regular grammar must have either a rightmost variable or a
leftmost variable.

Since regular grammar is not characterized in both
context-sensitive grammar and context-free grammar, the
language ()L γ will not produce a regular language. From
the Chomsky hierarchy, () = .L CS REGγ −

Next, an example of splicing system over
permutation group of length two involving two different
initial strings is presented.

Example 3 Splicing system over permutation group of

length two involving two different initial
strings.

Let (2S , ⋅ , (1)) be a permutation group of 2 =S {(1), (12)}
with the multiplicative operation, ⋅ , and the identity, (1).
An extended valence H system over 2S is a construct of

= (, , ,)V T A Rγ , where:
 V = { , , , }a b c d ,

= { , , }T a b c ,

A is a finite subset of 2V S∗ × = {[, (12)],cad [, (21]}dbc ,

R ⊆ 1{ = # $ # ,r a d d b 2 = # $ # ,r a d c a 3 = # $ # }r b c d b is
the set of splicing rules.

By applying 1 = # $ #r a d d b to initial strings cad

and dbc , the resulting new strings are w =
[{ , }, (12)(21)]cabc dd = [{ , }, (1)]cabc dd .

Next, by applying 2 = # $ #r a d c a to initial strings

,cad the resulting new strings are w =
[{ , }, (12)(12)]caad cd = [{ , }, (1)]caad cd .

Then, by applying 3 = # $ #r b c d b to initial strings

,dbc the resulting new strings are w =
[{ , }, (21)(21)]dbbc dc = [{ , }, (1)]dbbc dc .

The H scheme for this stage is 1()Aσ = 0 ()Aσ

 {[, (1)],cabc∪ [, (1)],dd [, (1)],caad [, (1)],cd

[, (1)],dbbc [, (1)]}.dc Note that 0 ()Aσ = A . Therefore,
1()Aσ = {[, (12)],cad [, (21],dbc [, (1)],cabc [, (1)],dd

[, (1)],caad [, (1)],cd [, (1)],dbbc [, (1)]}.dc

Continuing the splicing process to the next stage,

and by applying 1 = # $ #r a d d b to strings:
1. caad and dbbc : the resulting new strings are w =

[{ , }, (1)(1)]caabbc dd = 2 2[{ , }, (1)]ca b c dd .
2. caad and dbc : the resulting new strings are w =

[{ , }, (1)(21)]caabc dd = 2[{ , }, (21)]ca bc dd .
3. cad and dbbc : the resulting new strings are w =

[{ , }, (12)(1)]cabbc dd = 2[{ , }, (12)]cab c dd .

Then, by applying 2 = # $ #r a d c a to strings:

1. caad and cad : the resulting new strings are w =
[{ , }, (1)(12)]caaad cd = 3[{ , }, (12)]ca d cd .

2. caad : the resulting new strings are w =
[{ , }, (12)(12)]caaaad cd = 4[{ , }, (1)]ca d cd .

Next, by applying 3 = # $ #r b c d b to strings:

1. dbbc and dbc : the resulting new strings are w =
[{ , }, (1)(21)]dbbbc dc = 3[{ , }, (21)]db c dc .

2. dbbc : the resulting new strings are w =
[{ , }, (21)(21)]dbbbbc dc = 4[{ , }, (1)]db c dc .

Therefore, 2 ()Aσ = 1() Aσ ∪ 2 2{[, (1)]ca b c ,

[, (1)],dd 2[, (21)]ca bc , [, (21)],dd 2[, (12)],cab c

[, (12)],dd 3[, (12)],ca d [, (12)],cd 4[, (1)],ca d [, (1)],cd
3[, (21)],db c [, (21)],dc 4[, (1)],db c [, (1)]}.dc

Hamzah et al. / Malaysian Journal of Fundamental & Applied Sciences Vol.8, No.2 (2012) 83-88.

| 87 |

Thus, 2 ()Aσ = {[, (12)]cad , [, (21],dbc [, (1)],cabc

[, (1)],dd 2[, (1)],ca d [, (1)],cd 2[, (1)],db c [, (1)],dc
2 2[, (1)]ca b c , [, (1)],dd 2[, (21)],ca bc [, (21)],dd

2[, (12)],cab c [, (12)],dd 3[, (12)],ca d [, (12)],cd
4[, (1)],ca d [, (1)],cd 3[, (21)],db c [, (21)],dc 4[, (1)],db c

[, (1)]}.dc

Continuing this splicing process, the resulting

language is only accepted if the value of valences is equal
to identity.

The language for this extended valence H system is
() = { , = 2 , where , , 1}.m nL ca b c m n k m n kγ + ≥ From the

Chomsky grammar, the grammars that generate this
language are context-sensitive and context-free grammar
but not regular. These two grammars are shown in the
following.

The generating grammar (context-sensitive
grammar) that produced context-sensitive languages:

({ , , },{ , , }, ,)G S A B a b c S P= with production rules

S cABc→ ,
| ,A aaA abB→

.B bbB→

The derivations of the language
() = { , m nL ca b c mγ + = 2 where , , 1}n k m n k ≥ by using

context-sensitive grammar are shown in the following.

Case 1: For k = 1, when m, n = 1:
.S cAc cabc⇒ ⇒

Case 2: For k = 2, when m = 1 and n = 3:

.S cAc cabBc cabbbc⇒ ⇒ ⇒

Case 3: For k = 3, when m = 2 and n = 4:
.S cAc caaBc caabbBc caabbbbc⇒ ⇒ ⇒ ⇒

Case 4: For k = 4, when m = 6 and n = 2:

.S cAc caaAc caaaaAc caaaaaaBc caaaaaabbc⇒ ⇒ ⇒ ⇒ ⇒

For m, n, and k finite numbers, it is clear that
context-sensitive grammars generate () = { ,m nL ca b cγ
m n+

2k= where m, n, 1}k ≥ .
The generating grammar (context-free grammar) that

produced context-free languages:

 ({ , , },{ , , }, ,)G S A B a b c S P= with production rules
 S cABc→ ,

| ,A aaA abB→
| .B bbB λ→

The derivations of the language () = { ,m nL ca b c mγ +
= 2 where , , 1}n k m n k ≥ by using context-sensitive

grammar are shown in the following.

Case 1: For k = 1, when m, n = 1:
.S cAc cabBc cab c cabcλ⇒ ⇒ ⇒ ⇒

Case 2: For k = 2, when m = 1 and n = 3:

.S cAc cabBc cabbbBc cabbb c cabbbcλ⇒ ⇒ ⇒ ⇒ ⇒

Case 3: For k = 3, when m = 2 and n = 4:
.S cAc caaBc caabbBc caabb c caabbbbcλ⇒ ⇒ ⇒ ⇒ ⇒

Case 4: For k = 4, when m = 6 and n = 2:

S cAc caaAc caaaaAc caaaaaaBc⇒ ⇒ ⇒ ⇒ ⇒
.caaaaaabbBc caaaaaabb c caaaaaabbcλ⇒ ⇒

For m, n, and k finite numbers, it is clear that

context-free grammars generate () = { , m nL ca b c m nγ + = 2k
where m, n, 1}k ≥ .

The two grammars above are not characterized as
regular grammars because the production rules of any
regular grammar must have either a rightmost variable or a
leftmost variable.

Since regular grammar is not characterized in both
context-sensitive grammar and context-free grammar, the
language ()L γ will not produce a regular language. From
the Chomsky hierarchy, () = .L CS REGγ −

From the two examples, some splicing systems over
permutation groups of length two involving one initial
string and two different initial strings have increased the
generative power of splicing systems since they do not only
generate the regular languages. Therefore, the results of this
research show that splicing systems over some permutation
groups have increased the generative power of splicing
systems.

4 CONCLUSION

This paper initiates the study of permutation groups

in splicing systems. Since splicing systems only generate
regular languages, the use of valences increases the
generative power of splicing systems up to context-
sensitive languages. The results of this paper show that
splicing systems over some permutation groups have
increased the generative power of extended splicing
systems.

ACKNOWLEDGEMENT

 The authors would like to acknowledge Research
Management Center (RMC), UTM for the partial financial
funding under Research University Fund Vote No. 02J65.
The first and second authors would like to thank Ministry

Hamzah et al. / Malaysian Journal of Fundamental & Applied Sciences Vol.8, No.2 (2012) 83-88.

| 88 |

of Higher Education (MOHE) for MyMaster scholarship
programme under the Tenth Malaysia Plan (10MP).

REFERENCES

[1] T. Head, Formal Language Theory and DNA: An Analysis of the

Generative Capacity of Specific Recombinant Behaviors, Bulletin
of Mathematical Biology, 49(1987), 737–759.

[2] D. Pixton, Regularity of Splicing Languages, Discrete Applied
Mathematics, 69(1996), 101–124.

[3] R.W. Gatterdam, Splicing Systems and Regularity, International
Journal of Computer Math., 31(1989), 63–67.

[4] V. Manca, and G. Paun, Arithmetically Controlled H Systems,
Computer Science Journal of Moldova, 6(1998), 103–118.

[5] G. Paun, G. Rozernberg, and A. Salomaa, DNA Computing: New
Computing Paradigms, Springer-Verlag, Heidelberg, 1998.

[6] R. Freund, L. Kari, and G. Paun, The Existence of Universal
Computers, Theory of Computing Systems, 32(1999), 69 –112.

[7] J. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley
Publishing Company Inc., Philippines, 1997.

[8] N. Vugt, Models of Molecular Computing, PhD Thesis, Leiden
University, 2002.

[9] T. A. Sudkamp, Languages and Machines: An Introduction to the
Theory of Computer Science, Addison-Wesley Longman Inc.,
California, 1997.

[10] H. Fernau, and R. Stiebe, Regulation by Valences, in Rovan, B.
(Ed.), Mathematical Foundations of Computer Science 1997 22nd
International 47 Symposium (MFCS ’97) Proceedings, Springer-
Verlag, Slovakia, 129 (1997), 239–248.

