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ABSTRACT 

The first theoretical model of DNA computing, called a splicing system, for the study of the generative power of deoxyribonucleic acid (DNA) in the 
presence of restriction enzymes and ligases was introduced by Head in 1987. Splicing systems model the recombinant behavior of double-stranded DNA 
(dsDNA) and the enzymes which perform operation of cutting and pasting on dsDNA. Splicing systems with finite sets of axioms and rules generate 
only regular languages when no additional control is assumed. With several restrictions to splicing rules, the generative power increase up to recursively 
enumerable languages. Algebraic structures can also be used in order to control the splicing systems. In the literature, splicing systems with additive and 
multiplicative valences have been investigated, and it has been shown that the family of languages generated by valence splicing systems is strictly 
included in the family of context-sensitive languages. This motivates the study of splicing systems over permutation groups. In this paper, we define 
splicing systems over permutation groups and investigate the generative power of the languages produced. 
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1. INTRODUCTION 

The study of splicing system was first introduced by 
Head in 1987 to model the generative power of 
deoxyribonucleic acid (DNA) in the presence of restriction 
enzymes and ligases. Head introduced splicing system as a 
mathematical model of the recombinant behavior of double-
stranded DNA (dsDNA) and the enzymes which perform 
operation of cutting and pasting on dsDNA. Splicing 
system produces a language called splicing language [1]. In 
[2], all splicing languages with finite sets of axioms and 
rules have been proved to be regular. But not all regular 
languages are splicing languages [3]. 

Groups have been used as a control mechanism in 
splicing systems since splicing system with finite sets of 
axioms and rules generate only regular languages. Thus, in 
order to increase the generative power of splicing systems, 
several restrictions are imposed on the splicing systems. 
One kind of such restrictions is to control the splicing 
operation by valences associated with the strings [4]. In this 
restriction, the given valences are the elements of monoid 
or group that are associated with the axioms. The strings are  
accepted if the valences of the strings are equal to the 
identity element.  

In this paper, splicing system over permutation 
group is defined and the languages produced by 
permutation group of length two are determined in the 
study of splicing languages with valences. 

*Corresponding author at:  
E-mail address: nz_akmar@yahoo.com (Nur Zatul Akmar Bt Hamzah) 

2. PRELIMINARIES  
   
Some formal definitions related to this research will 

be presented in this section. The main definition which is 
splicing system will first be defined. 

Definition 1 [1] (Splicing System) 
A splicing system S = (V, I, B, C) consists of a finite 
alphabet V, a finite set I of initial strings in V * , and finite 
sets B and C of triples (c, x, d) with c, x and d in V * , where 
V * is the set of all strings over an alphabet V. For each such 
triple the string cxd is called a site and the string x is called 
a crossing. A language L is a splicing language if there 
exists a splicing system S for which L = L(S). 

When some restriction enzymes and ligases are 
present in a test tube, they do not stop acting after one cut 
and paste operation, but they act respectively on DNA [5].  

A new model of computation based on the splicing 
operation called an H system has been investigated by some 
researchers [4, 5, 6]. The definitions of H scheme, H system 
and extended H system are shown respectively in the 
following. 

Definition 2 [6] (H Scheme)
An H scheme is a pair = ( ,  )V Rσ , where V is an alphabet 
and * * * *# $ #R V V V V⊆ is a set of splicing rules over ,V
where *V is the set of all strings over an alphabet .V The 
symbols $ and # are not in .V
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Definition 3 [6] (H System)  
An H System is a triple = ( ,  ,  )V A Rγ  with respect to a pair 
( ,  )Aσ , where ( ,  )V Rσ =  is an H scheme and *A V⊆  is 
the set of axioms and 1 2 3 4= # $ #r u u u u R∈  is the set of 

splicing rules, for some *
1 2 1 2, , ,x x y y V∈ , then 1 1 2 2=x x u u x

, 1 3 4 2=y y u u y , 1 1 4 2=z x u u y , 1 3 2 2=w y u u x . 
 
Therefore, ( ) ( ) ( ){ *,  | , ,rA z w V x y z wσ = ∈ �  for 

some ,x y A∈ , }r R∈ , and *
0

( ) = ( )i
i

A Aσ σ
≥ , where 

0 ( ) =A Aσ , and 1( ) = ( ) ( ( )),  0i i iA A A iσ σ σ σ+ ∪ ≥ . The 
language generated by an H system γ  is defined by 

*( ) = ( )L Aγ σ .  
   

Definition 4 [6] (Extended H System)  
An extended H system is a construct of γ  = ( ,  ,  ,  )V T A R  
where V  is an alphabet, T V⊆  is the terminal alphabet, 

*A V⊆  is the set of axioms, and * * * *# $ #R V V V V⊆  is the 
set of splicing rules. 

 
When =T V , the system is said to be a non-

extended H system.  The pair σ  = ( , )V R  is the underlying 
H scheme of γ . The language generated by γ  is defined 
by * *( ) = ( )L A Tγ σ ∩ .  

 
An example of extended H system is shown in the 

following. 
  

Example 1 [6] Extended H system 
Consider an extended H system ({ ,  ,  },a b cγ =   
{ },{ ,  },{ #  $ # })n ma a b ca a b c a , where ,  n m are two given 
positive integers. The only splicing rule that can be applied 
to the two existing axioms, na b  and mca , is #  $ #a b c a . 
The operation of this splicing is ( | ,  | ) ( ,  ).n m n ma b c a a cb+�  
No other new strings can be obtained in this splicing 
operations of extended H system using the rule #  $ #a b c a . 

 
Then for  { ,  }n mA a b ca= , the computation of 

extended splicing system is shown in the following: 
 

0 ( ) = { , }n mA a b caσ ,  
1 0( ) = ( ) { , }n mA A a cbσ σ +∪ ,  

1( ) = ( ),i A Aσ σ  2i ≥ .  
 
Therefore, * 0 1( ) = ( ) ( )  { ,  ,  ,n mA A A a b ca cbσ σ σ∪ =   

}n ma +

 and ( ) = { }n mL aγ + .   
 

Next, permutation groups can be used as valences in 
extended H systems. The definition of permutation group is 
stated in the following. 

Definition 5 [7] (Permutation Group) 
Let A  be a finite set {1, 2, 3, 4, .. , n}. The group of all 
permutations of A  or permutation group A  is the 
symmetric group on  n  letters and is denoted by  .nS   
 

Then, the definition of Chomsky grammar that is 
used to determine the generative power of valences in 
splicing systems is also presented. 
 
Definition 6 [6] (Chomsky Grammar) 
A Chomsky grammar is a quadruple = ( , , , )G N T S P  
where: 
N  is a finite set of nonterminals,  
T  is a finite set of terminals,  
S  ∈  N  is the start symbol (the axiom),  
P  is a finite set of production rules u v→ , where  

( )*,  .u v N T∈ ∪  
 

The language of G , denoted by ( )L G  is the set of 
terminal strings derivable from the start symbol S . 
Symbolically, *( ) = { | }L G w T S w∈ ⇒ . A grammar is 
accepted only when the produced word contains no 
auxiliary symbol [6]. 

Regular grammar, context-free grammar and 
context-sensitive grammar are among the types of Chomsky 
grammar. The formal definitions of regular grammar, 
context-free grammar and context-sensitive grammar are 
presented respectively in the following. 

 
Definition 7 [8] (Regular Grammar) 
A grammar = ( , , , )G N T S P  is regular if the production 
has the form u v→ , where u N∈ , and { }v T TNλ∈ ∪ ∪ . 
If v  is equal to λ , the production is called a λ -production. 

 
The language produced by such a grammar is called 

a regular language.  
 

Definition 8 [8] (Context-free Grammar) 
A grammar = ( , , , )G N T S P  is context-free if the 
production has the form u v→ , where u N∈ , and 

*( )v N T∈ ∪ . If v  is equals λ , the production is called a 
λ -production. 
 

Context-free grammar will produce a language called 
a context-free language.  
 
Definition 9 [9] (Context-sensitive Grammar) 
A grammar = ( , , , )G N T S P  is context-sensitive if each 
production has the form u v→ , where , ( )u v N T +∈ ∪ , 
and length( ) length( )u v≤ . 
 

The language produced by context-sensitive 
grammar is known as the context-sensitive language. 
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3 PERMUTATION GROUPS AS VALENCES IN 
SPLICING SYSTEMS  
 
A method of regulated rewriting of rules using 

valences has been introduced by Paun [10]. An integer 
(valence) is assigned to the used strings and the integer is 
computed for a derivation of a new value (new valence). 

Extended valence H system over group of integer 
numbers ( , ,0)+Z  and positive rational numbers ( , ,1)+ ⋅Q  
have been introduced in [4] for the study of generative 
power of extended valences H systems.  

For this research, elements of permutation groups 
are used as valences in splicing systems to compute the 
generative power of extended valence H systems over 
permutation groups.   

A definition of extended valence H system over 
permutation group is defined in the following. 
 
Definition 10 Extended Valence H System Over        
                     Permutation Group nS  
Let ( nS , ⋅ , (1)) be a permutation group nS  with operation, 
⋅ , and the identity, (1). An extended valence H system 
over permutation group nS  is a construct of 

= ( , , , )V T A Rγ , where: 
V  is an alphabet,  
T V⊆  is the terminal alphabet,  

A  is a finite subset of nV S∗ × ,  

# $ #R V V V V∗ ∗ ∗ ∗⊆  is the set of splicing rules.  
For 1 2 3( , ), ( , ), ( , )x v y v w v   nV S∗∈ ×  and r R∈ , 

where , ,x y w  ,V ∗∈  1 2 3, ,v v v  ,nS∈  the splicing operation 
is 1 2[( , ), ( , )]x v y v  r�  3( , ),w v  if and only if ( , ) rx y w�  and 

3 1 2=v v v⋅ . Then ( )L γ  = {x T ∗∈  |  ( , )x e  ( )}.Aσ ∗∈  
 
An element of a permutation group is associated to 

each axiom, A , and the value of group operation of new 
strings is computed with each splicing operation. The 
complete strings produced are considered to be valid if the 
computation of the associated elements of the group 
produces the identity element. 

Two examples of computations of splicing systems 
over permutation groups of length two are presented below. 
First, an example of splicing system over permutation 
group of length two involving one initial string is shown in 
the following. 
 
Example 2  Splicing system over permutation group of 

length two involving one initial string. 
Let ( 2S , ⋅ , (1)) be a permutation group of 2 =S  {(1), (12)}  
with the multiplicative operation, ⋅ , and the identity, (1). 
An extended valence H system over 2S  is a construct of 

= ( ,  ,  ,  )V T A Rγ , where:  
= { , , }V a c d ,  
= { , , }T a c d ,  

A  is a finite subset of 2V S∗ ×  = {[ , (12)]}cad ,  
{ #  $ # }R c a a d⊆  is the set of splicing rules.  

 
By applying #  $ #c a a d  to initial strings ,cad  the 

new strings produced are w =[{ , },  (12)(12)]caad cd = 
[{ , },  (1)]caad cd . 

 
The H scheme for this stage is 1( )Aσ = 0 ( ) Aσ ∪  

{[ , (1)],caad  [ , (1)]}.cd  Note that 0 ( )Aσ  = A . Therefore, 
1( )Aσ ={[ , (12)],cad  [ , (1)],caad  [ , (1)]}.cd  

 
The next stage of splicing operation is obtained by 

applying #  $ #c a a d  to strings caad  and ,cad  and the new 
strings produced are w =[{ , }, (1)(12)]caaad cd =

3[{ , }, (12)]ca d cd . 
 
In this stage, the rule #  $ #c a a d  can also be applied 

to strings ,caad  and the new strings produced are w = 
[{ , },  (1)(1)]caaad cd  = 4[{ , },  (1)]ca d cd . 

 
The splicing system for this stage is 2 ( )Aσ = 1( )Aσ
3 {[ , (12)],ca d∪ [ , (12)],cd 4[ , (1)],ca d [ , (1)]}.cd   
 
Thus, 2 ( )Aσ  = {[ , (12)],cad  [ , (1)],caad  [ , (1)],cd  

3[ , (12)],ca d  [ , (12)],cd  4[ , (1)],ca d  [ , (1)]}.cd  
 
Continuing this splicing process, the resulting 

language is only accepted if the value of valences is equal 
to the identity. 

Therefore, the language of this extended valence H 
system is 2( ) = { , 1}nL ca d nγ ≥ . From the Chomsky 
grammar, the grammars that generate this language are 
context-sensitive and context-free grammar but not regular. 
These two grammars are shown in the following. 

The generating grammar (context-sensitive 
grammar) that produced context-sensitive languages:  

 
({ , },{ , , }, , )G S A a c d S P=  with production rules 

S cAd→ , 
| .A aaA aa→  

 
The derivations of the language 2( ) = { ,nL ca dγ

1}n ≥  by using context-sensitive grammar are shown in the 
following. 

 
For n = 1, 

.S cAd caad⇒ ⇒  
 

For n = 2, 
.S cAd caaAd caaaad⇒ ⇒ ⇒  
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For n = 3, 

.S cAd caaAd caaaaAd caaaaaad⇒ ⇒ ⇒ ⇒  
 
For n a finite number, it is clear that context-

sensitive grammars generate 2( ) = { , 1}.nL ca d nγ ≥  
The generating grammar (context-free grammar) that 

produced context-free languages:  
 

 ({ , },{ , , }, , )G S A a c d S P=  with production rules 
S cAd→ , 

| .A aaA λ→  
 

The derivations of the language 2( ) = { ,nL ca dγ
1}n ≥  by using context-sensitive grammar are shown in the 

following. 
 

For n = 1, 
.S cAd caaAd caa d caadλ⇒ ⇒ ⇒ ⇒  

 
For n = 2, 

.S cAd caaAd caaaaAd caaaa d caaaadλ⇒ ⇒ ⇒ ⇒ ⇒  
 
For n = 3, 

S cAd caaAd caaaaAd caaaaaaAd⇒ ⇒ ⇒ ⇒ ⇒
.caaaaaa d caaaaaadλ ⇒  

 
For n a finite number, it is clear that context-free 

grammars generate 2( ) = { , 1}.nL ca d nγ ≥  
The two grammars above are not characterized as 

regular grammars because the production rules of any 
regular grammar must have either a rightmost variable or a 
leftmost variable. 

Since regular grammar is not characterized in both 
context-sensitive grammar and context-free grammar, the 
language ( )L γ  will not produce a regular language. From 
the Chomsky hierarchy, ( ) = .L CS REGγ −  

Next, an example of splicing system over 
permutation group of length two involving two different 
initial strings is presented. 

  
Example 3  Splicing system over permutation group of 

length two involving two different initial 
strings. 

Let ( 2S , ⋅ , (1)) be a permutation group of 2 =S  {(1), (12)}  
with the multiplicative operation, ⋅ , and the identity, (1). 
An extended valence H system over 2S  is a construct of 

= ( , , , )V T A Rγ , where:  
 V  = { , , , }a b c d ,  

= { , , }T a b c ,  

A  is a finite subset of 2V S∗ ×  = {[ , (12)],cad  [ , (21]}dbc ,  

R ⊆  1{ = #  $ # ,r a d d b  2 = #  $ # ,r a d c a  3 = #  $ # }r b c d b  is 
the set of splicing rules.  

 
By applying 1 = #  $ #r a d d b  to initial strings cad  

and dbc , the resulting new strings are w = 
[{ , },  (12)(21)]cabc dd  = [{ , },  (1)]cabc dd . 

 
Next, by applying 2 = # $ #r a d c a  to initial strings 

,cad  the resulting new strings are w = 
[{ , },  (12)(12)]caad cd  = [{ , },  (1)]caad cd . 

 
Then, by applying 3 = # $ #r b c d b  to initial strings 

,dbc  the resulting new strings are w = 
[{ , },  (21)(21)]dbbc dc  = [{ , },  (1)]dbbc dc . 

 
The H scheme for this stage is 1( )Aσ  = 0 ( )Aσ  

 {[ , (1)],cabc∪  [ , (1)],dd  [ , (1)],caad  [ , (1)],cd  

[ , (1)],dbbc  [ , (1)]}.dc  Note that 0 ( )Aσ  = A . Therefore, 
1( )Aσ  = {[ , (12)],cad  [ , (21],dbc  [ , (1)],cabc  [ , (1)],dd  

[ , (1)],caad  [ , (1)],cd  [ , (1)],dbbc  [ , (1)]}.dc  
 
Continuing the splicing process to the next stage, 

and by applying 1 = #  $ #r a d d b  to strings: 
1. caad  and dbbc : the resulting new strings are w = 

[{ , }, (1)(1)]caabbc dd  = 2 2[{ , }, (1)]ca b c dd .   
2. caad  and dbc : the resulting new strings are w = 

[{ , }, (1)(21)]caabc dd  = 2[{ , }, (21)]ca bc dd .   
3. cad  and dbbc : the resulting new strings are w = 

[{ , }, (12)(1)]cabbc dd  = 2[{ , }, (12)]cab c dd .   
 
Then, by applying 2 = #  $ #r a d c a  to strings:     

1. caad  and cad : the resulting new strings are w = 
[{ , }, (1)(12)]caaad cd  = 3[{ , }, (12)]ca d cd .   

2. caad : the resulting new strings are w = 
[{ , }, (12)(12)]caaaad cd  = 4[{ , }, (1)]ca d cd .   
 
Next, by applying 3 = # $ #r b c d b  to strings:      

1. dbbc  and dbc : the resulting new strings are w = 
[{ , }, (1)(21)]dbbbc dc  = 3[{ , }, (21)]db c dc .   

2. dbbc : the resulting new strings are w = 
[{ , }, (21)(21)]dbbbbc dc  = 4[{ , }, (1)]db c dc .   
 
Therefore, 2 ( )Aσ  = 1( ) Aσ ∪  2 2{[ , (1)]ca b c , 

[ , (1)],dd  2[ , (21)]ca bc , [ , (21)],dd  2[ , (12)],cab c  

[ , (12)],dd  3[ , (12)],ca d  [ , (12)],cd  4[ , (1)],ca d  [ , (1)],cd  
3[ , (21)],db c  [ , (21)],dc  4[ , (1)],db c  [ , (1)]}.dc  
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Thus, 2 ( )Aσ  = {[ , (12)]cad , [ , (21],dbc  [ , (1)],cabc  

[ , (1)],dd  2[ , (1)],ca d  [ , (1)],cd  2[ , (1)],db c  [ , (1)],dc  
2 2[ , (1)]ca b c , [ , (1)],dd  2[ , (21)],ca bc  [ , (21)],dd  

2[ , (12)],cab c  [ , (12)],dd  3[ , (12)],ca d  [ , (12)],cd  
4[ , (1)],ca d  [ , (1)],cd  3[ , (21)],db c  [ , (21)],dc  4[ , (1)],db c  

[ , (1)]}.dc  
 
Continuing this splicing process, the resulting 

language is only accepted if the value of valences is equal 
to identity. 

The language for this extended valence H system is 
( ) = { ,  = 2 ,  where , , 1}.m nL ca b c m n k m n kγ + ≥  From the 

Chomsky grammar, the grammars that generate this 
language are context-sensitive and context-free grammar 
but not regular. These two grammars are shown in the 
following. 

The generating grammar (context-sensitive 
grammar) that produced context-sensitive languages:  

 
({ , , },{ , , }, , )G S A B a b c S P=  with production rules 

S cABc→ ,  
| ,A aaA abB→   

.B bbB→  
 

The derivations of the language 
( ) = { ,  m nL ca b c mγ +  = 2  where ,  ,  1}n k m n k ≥ by using 

context-sensitive grammar are shown in the following. 
 

Case 1: For k = 1, when m, n = 1:  
.S cAc cabc⇒ ⇒  

 
Case 2: For k = 2, when m = 1 and n = 3:  

.S cAc cabBc cabbbc⇒ ⇒ ⇒  
 

Case 3: For k = 3, when m = 2 and n = 4:  
.S cAc caaBc caabbBc caabbbbc⇒ ⇒ ⇒ ⇒  

 
Case 4: For k = 4, when m = 6 and n = 2: 

.S cAc caaAc caaaaAc caaaaaaBc caaaaaabbc⇒ ⇒ ⇒ ⇒ ⇒
 

For m, n, and k  finite numbers, it is clear that 
context-sensitive grammars generate ( ) = { ,m nL ca b cγ
m n+  

2k= where  m, n, 1}k ≥ . 
The generating grammar (context-free grammar) that 

produced context-free languages:  
 

 ({ , , },{ , , }, , )G S A B a b c S P=  with production rules 
 S cABc→ ,  

| ,A aaA abB→   
| .B bbB λ→  

 

The derivations of the language ( ) = { ,m nL ca b c mγ +  
= 2  where , , 1}n k m n k ≥ by using context-sensitive 

grammar are shown in the following. 
 

Case 1: For k = 1, when m, n = 1:  
.S cAc cabBc cab c cabcλ⇒ ⇒ ⇒ ⇒  

 
Case 2: For k = 2, when m = 1 and n = 3:  

.S cAc cabBc cabbbBc cabbb c cabbbcλ⇒ ⇒ ⇒ ⇒ ⇒
 

Case 3: For k = 3, when m = 2 and n = 4:  
.S cAc caaBc caabbBc caabb c caabbbbcλ⇒ ⇒ ⇒ ⇒ ⇒  

 
Case 4: For k = 4, when m = 6 and n = 2: 

S cAc caaAc caaaaAc caaaaaaBc⇒ ⇒ ⇒ ⇒ ⇒  
.caaaaaabbBc caaaaaabb c caaaaaabbcλ⇒ ⇒  

 
For m, n, and k  finite numbers, it is clear that 

context-free grammars generate ( ) = { ,  m nL ca b c m nγ + = 2k 
where  m, n, 1}k ≥ . 

The two grammars above are not characterized as 
regular grammars because the production rules of any 
regular grammar must have either a rightmost variable or a 
leftmost variable. 

Since regular grammar is not characterized in both 
context-sensitive grammar and context-free grammar, the 
language ( )L γ  will not produce a regular language. From 
the Chomsky hierarchy, ( ) = .L CS REGγ −   

From the two examples, some splicing systems over 
permutation groups of length two involving one initial 
string and two different initial strings have increased the 
generative power of splicing systems since they do not only 
generate the regular languages. Therefore, the results of this 
research show that splicing systems over some permutation 
groups have increased the generative power of splicing 
systems. 

 
 

4 CONCLUSION 
 
This paper initiates the study of permutation groups 

in splicing systems. Since splicing systems only generate 
regular languages, the use of valences increases the 
generative power of splicing systems up to context-
sensitive languages. The results of this paper show that 
splicing systems over some permutation groups have 
increased the generative power of extended splicing 
systems. 
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