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ABSTRACT 

In statistics, the proportional hazards model (PHM) is one of a class of survival models. This model estimates the effects of different covariates 
influencing the time-to-event data in which the hazard function has been assumed to be the product of the baseline hazard function and a non-negative 
function of covariates. In this study, we investigate the hazard function, also known as the risk function or intensity function, which is employed in 
modelling the survival data and waiting times. The model parameters can be estimated via frequentist or Bayesian approach. However, the Bayesian 
approach is well known to have the advantages over frequentist methods when the data are small in size and involve censored individuals. In this paper, 
the PHM for right-censored data from Bayesian perspective will be discussed and the Markov Chain Monte Carlo (MCMC) method will be used to 
estimate the posterior distributions of the model parameters using Leukemia data.  
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1. INTRODUCTION 

Modelling and survival data analysis is one of the 
oldest fields in statistics. Generally, survival data deals with 
lifetimes from some initial event at time zero to some 
terminal event of interest and basically the data would be an 
independent non-negative random variable, say T. A major 
advancement in survival analysis took place in the era of 
1950's where Kaplan and Meier (1958) proposed their 
famous estimator of the survival curve [1]. Later in 1972, 
David Cox [2] introduced the proportional hazards model 
which incorporates covariates. 

An important issue that always arises when studying 
time to event data is that some individuals are still alive or 
survive at the end of the study. This implies that the event 
of interest has not occurred and therefore results in the 
emergence of right censored data. The censoring process is 
called non-informative if the risk set at any time point for 
those who are still alive and uncensored, should be 
representative of the entire population within the same 
cohort. Non-informative censoring automatically occurs if 
the censoring process is independent of the survival time.  

General classes of semi-parametric hazards 
regression model for survival data which include Cox 
proportional hazards model, the accelerated failure time 
model and the accelerated hazards model have been 
proposed by Chen and Jewell [3]. Their new models are 
flexible and may yield more accurate prediction of an 
individual’s survival process and a covariate’s effect can 
beidentified by separating two components namely a time 
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scale change on hazard progression and a relative hazards 
ratio.   

Bayesian approach might be a convenient 
approximation and simplification to bypass the prior 
distribution of the nuisance parameters since the maximum 
likelihood method as a general technique might fail when 
there is a presence of many nuisance parameters.  

Recently, semi-parametric Bayesian analyses of 
proportional hazards model has become computationally 
feasible due to modern technology and advancement in 
computing techniques such as the Gibbs sampler and other 
MCMC methods. Arjas and Gasbarra [4] considered simple 
right censored data with a common unknown hazard rate in 
which the hazard rate is modelled nonparametrically. In 
their study, the sample paths of the hazard rate were 
generated from the posterior distribution using Gibbs 
Sampler.  

Sinha and Dey [5] provided an overview of Bayesian 
semiparametric methods for the Cox model. One of the 
advantages of using Bayesian method is that we can join the 
baseline hazard and the regression coefficients that can be 
used accurately to compute the target posterior quantities 
using MCMC simulation techniques. They investigated the 
potential of Bayes methods for the analysis of survival data 
using semiparametric models based on either the hazard or 
the intensity function. The nonparametric part of every 
model is assumed to be a realization of a stochastic process. 
The parametric part, which may include a regression 
parameter or a parameter quantifying the heterogeneity of a 
population, is assumed to have a prior distribution with 
possibly unknown hyperparameters. 

http://www.ibnusina.utm.my/
http://en.wikipedia.org/wiki/Survival_analysis
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Ibrahim and Sinha [6] developed a class of semi-
parametric informative prior distributions for the Cox 
model. They specified a non-parametric prior for the 
baseline hazard rate and a parametric prior for the 
regression coefficients via the development of novel 
Markov chain Monte Carlo (MCMC) techniques for 
sampling from the posterior distribution of the parameters. 
Their approach seems to be a useful approach for this 
problem since it is difficult to specify meaningful prior 
distributions for the parameters in each model task and 
requiring contextual interpretations of a large number of 
parameters. 

In this article, we have used the proportional hazards 
model that has been used extensively since 1972. In a fully 
parametric model, the lifetime distribution has been 
assumed to belong to a family of parametric distributions 
and reducing the regression problem to estimating the 
parameters from the data.  

Proportional hazards model can be modelled from 
classical perspective by obtaining the partial likelihood 
approach in estimating the unknown parameters. Recently, 
the model has been the most common from a Bayesian 
perspective. It has been widely used in survival analysis for 
such realistic models. Fully Bayesian computations of 
multi-level or hierarchical model are now possible using 
simulation techniques. Gibbs Sampling is one of the new 
numerical algorithms which allow obtaining samples from 
posterior of interest and this new development has 
motivated the use of Bayesian methods in survival analysis. 
Gibbs Sampler is one of the best known Markov Chain 
Monte Carlo (MCMC) sampling in computational literature. 
Many authors appeared explaining in their papers the 
MCMC-based Bayesian analysis as this task would 
typically require significantly scientific programming 
ability and facility with such random number generators. 
Specialized software packages called BUGS [7] are created 
for implementing MCMC-based analyses of full probability 
models. These packages will treat all unknowns as random 
variables. This paper describes the use of freely available 
software for the analysis of complex statistical models using 
MCMC techniques, called WinBUGS [8] and R 
programming, in the context of PHM.  

The proposed baseline hazards function in Cox 
model is slightly different compared to the original Cox 
model which has been proposed by Kalbfleisch [9]. He 
proposed gamma process prior as the baseline hazard 
function in Cox model and he fixed the value of c (a 
specification of the weight attached to the guess) and r 
(guess at the failure rate per unit time). In this paper, we 
proposed both c and r to have their own distributions and to 
make the proposed model more flexible, we assume c and r 
to have gamma and uniform distributions, respectively. 

  
 

2. PROPORTIONAL HAZARDS MODEL 
 
2.1  The Weibull Proportional Hazards Model 

   

A parametric survival model is one in which the 
survival time is assumed to follow a known distribution. 
Examples of distributions that are commonly used for 
survival time are the Weibull distribution, the Exponential 
distribution, the Log-logistic distribution, the Lognormal 
distribution and the generalized gamma distribution. 

In parametric survival analysis, all parts of the model 
are specified for both the hazard function and the effect of 
any covariates. The estimation is easier and estimated 
survival curves are smoother as they draw information from 
the whole data. In addition, it is possible to do more 
sophisticated analyses with parametric models, such as 
introducing random effects or using Bayesian methodology 
to pool sources of information.  

In parametric survival model, time T is assumed to 
follow some distribution whose probability density 
function, 𝑓𝑓(𝑡𝑡) can be expressed in terms of unknown 
parameters. The corresponding survival and hazard function 
can be determined once a probability density function is 
specified for survival time. 

The Weibull model is the most widely used 
parametric survival model. Survival time T has a Weibull 
distribution of  𝑊𝑊(𝑡𝑡|𝜆𝜆,𝛼𝛼), with its survival function is 
given by  

𝑆𝑆(𝑡𝑡|𝜆𝜆,𝛼𝛼) = exp⁡(−𝜆𝜆𝜆𝜆𝛼𝛼)                                      (2.1) 
and the probability density function is 

𝑓𝑓(𝑡𝑡|𝜆𝜆,𝛼𝛼) = 𝜆𝜆𝜆𝜆𝑡𝑡𝛼𝛼−1exp⁡(−𝜆𝜆𝜆𝜆𝛼𝛼)                          (2.2) 
where 𝜆𝜆 is the scale parameter, 𝛼𝛼 is the shape parameter, 
and both 𝜆𝜆 and 𝛼𝛼 are positive (𝜆𝜆 > 0,𝛼𝛼 > 0). The 
important feature of Weibull distribution is the failure rate. 
The failure rate of a subject is decreasing when 𝛼𝛼 < 1, it is 
increasing when 𝛼𝛼 > 1 and it is constant when 𝛼𝛼 = 1, 
which indicates an exponential distribution. Therefore the 
hazard rate is defined as 

ℎ(𝑡𝑡|𝜆𝜆,𝛼𝛼) = 𝜆𝜆𝜆𝜆𝑡𝑡𝛼𝛼−1                                             (2.3) 
The cumulative distribution is 

𝐹𝐹(𝑡𝑡|𝜆𝜆,𝛼𝛼) = 1 − exp⁡(−𝜆𝜆𝜆𝜆𝛼𝛼)                               (2.4) 
The likelihood function in survival analysis is more 

complicated. The likelihood function is only related to the 
density function if there is no censored data; else the 
likelihood depends on the density function and the survival 
function. The likelihood function for Weibull distributed 
data, 𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑛𝑛 with random censoring 𝛿𝛿𝑖𝑖 , 𝑖𝑖 =
1,2, … ,𝑛𝑛 is 

𝐿𝐿(𝑡𝑡|𝜆𝜆,𝛼𝛼) = �[𝜆𝜆𝜆𝜆𝑡𝑡𝛼𝛼−1exp(−𝜆𝜆𝜆𝜆𝛼𝛼)]𝛿𝛿𝑖𝑖
𝑛𝑛

𝑖𝑖=1

[exp(−𝜆𝜆𝜆𝜆𝛼𝛼)]1−𝛿𝛿𝑖𝑖  

(2.5) 
and the log-likehood function is 

𝑙𝑙(𝑡𝑡|𝜆𝜆,𝛼𝛼) = ��𝛿𝛿𝑖𝑖log�𝜆𝜆𝜆𝜆𝑡𝑡𝛼𝛼−1exp(−𝜆𝜆𝜆𝜆𝛼𝛼)�
𝑛𝑛

𝑖𝑖=1
+ (1 − 𝛿𝛿𝑖𝑖)log�exp(−𝜆𝜆𝜆𝜆𝛼𝛼)�� 

(2.6) 
 The Weibull hazard function is defined as 

ℎ(𝑡𝑡|𝜆𝜆,𝛼𝛼) = 𝜆𝜆𝜆𝜆𝑡𝑡𝛼𝛼−1  while a Weibull PH model is then be 
defined by reparameterizing 𝜆𝜆 as 
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exp��𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖

𝑝𝑝

𝑖𝑖=1

� = exp�𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝� 

 
2.2 The Cox Proportional Hazards Model 

 
The Cox proportional hazards (PH) model is known 

as a semi-parametric model because the form of the baseline 
hazard is not specified, only the form of the effect of 
covariates. The Cox proportional hazards (PH) model can 
be written in terms of the hazard model formula shown 
below: 

ℎ(𝑡𝑡,𝐗𝐗) = ℎ0(𝑡𝑡)exp(𝜷𝜷𝑇𝑇𝐗𝐗)                (2.7) 
This model gives an expression for the hazard at time t for 
an individual with a given specification of a set of 
explanatory variables denoted by X where 𝐗𝐗 =
�𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝�. 

An important feature of this formula is that the 
baseline hazard is a function of t, which concerns the 
proportional hazards (PH) assumption and does not involve 
the 𝑋𝑋′𝑠𝑠. It is shown that the exponential expression in 
contrast involves the 𝑋𝑋′𝑠𝑠 but does not involve t. The 𝑋𝑋′𝑠𝑠 
here are called time-independent variables and are defined 
to be any variable whose value for a given individual does 
not change over time. 

The Cox PH model has the property that if all of the 
𝑋𝑋′𝑠𝑠 are zero then the formula will reduce to the baseline 
hazard function. This property of the Cox PH model is the 
reason why ℎ0(𝑡𝑡) is called the baseline function. In other 
words, the Cox PH model will reduce to the baseline hazard 
function when there are no 𝑋𝑋′𝑠𝑠 in the model.  

The survival function, the likelihood function and the 
log likelihood function for the Cox PH model are as 
follows: 

𝑆𝑆(𝑡𝑡,𝐗𝐗) = 𝑆𝑆0(𝑡𝑡,𝐗𝐗)exp�𝜷𝜷𝑇𝑇𝑿𝑿�      (2.8) 

𝐿𝐿(𝑡𝑡|𝜷𝜷,𝐗𝐗) = �ℎ0(𝑡𝑡𝑖𝑖)𝛿𝛿𝑖𝑖exp(𝜷𝜷𝑇𝑇𝑿𝑿)δi𝑆𝑆0(𝑡𝑡𝑖𝑖)exp�𝜷𝜷𝑇𝑇𝑿𝑿�
𝑛𝑛

𝑖𝑖=1

 

(2.9) 

𝑙𝑙(𝑡𝑡|𝜷𝜷,𝐗𝐗) = �(𝛿𝛿𝑖𝑖 log{ℎ0(𝑡𝑡𝑖𝑖)} + 𝛿𝛿𝑖𝑖(𝜷𝜷𝑇𝑇𝑿𝑿)
𝑛𝑛

𝑖𝑖=1
+ exp(𝜷𝜷𝑇𝑇𝑿𝑿)log{𝑆𝑆0(𝑡𝑡𝑖𝑖)}) 

(2.10) 
  
 
3. ESTIMATING THE PARAMETERS  

 
3.1 Maximum Likelihood Estimation (MLE) 
 

The idea behind maximum likelihood parameter 
estimation is to determine the parameters that maximize the 
probability (likelihood) of the sample data. From a 
statistical point of view, the method of maximum likelihood 
is considered to be more robust (with some exceptions) and 
yields estimators with good statistical properties. In other 
words, MLE methods are more versatile and can be applied 
to most models and to different types of data. In addition, 
they provide efficient methods for quantifying uncertainty 

through confidence bounds. Although the methodology for 
maximum likelihood estimation is simple, the 
implementation is mathematically intense. Using today's 
computer power, however, mathematical complexity is not 
a big obstacle. The MLE methodology is presented next.  

The maximum likelihood estimator (MLE) for the 
proportional hazards model with partly interval-censored 
data was proposed by Kim [11]. The MLEs of the 
regression parameter and the cumulative hazard function 
shows consistency and asymptotically normal under an 
appropriate regularity conditions.  

The Newton Raphson method is one of the popular 
methods in maximizing the likelihood function and 
estimating the unknown parameters. The Newton-Raphson 
method is deterministic because there is no element of 
randomness in optimisation. It is also an iterative procedure 
because it consists of a series of iterations, with an 
improved estimation in each of the iteration. 

Generally, if we have a parameter vector 𝜷𝜷 of 
dimension p and wish to estimate 𝜷𝜷� which maximize the 
likelihood function 𝑙𝑙(𝜷𝜷), the algorithm is as follows: 

a)  Let 𝑘𝑘 = 0 
b)  Arbitrarily choose 𝜷𝜷(𝑘𝑘) 
c)  Solve 

𝐼𝐼�𝜷𝜷(𝑘𝑘)��𝜷𝜷(𝑘𝑘+1) − 𝜷𝜷(𝑘𝑘)� = 𝑈𝑈�𝜷𝜷(𝑘𝑘)� 
 for 𝜷𝜷(𝑘𝑘+1) 

d)  Increment k by 1 
e)  Go back to step (c) and repeat until converge. 

Some notations have been used are: 
• 𝜷𝜷(𝑘𝑘) is the value of the parameters at the kth iteration of 

the routine 
• the score function is 

𝑈𝑈(𝜷𝜷) = �
𝜕𝜕𝜕𝜕(𝜷𝜷)
𝜕𝜕𝛽𝛽1

, ⋯ ,
𝜕𝜕𝜕𝜕(𝜷𝜷)
𝜕𝜕𝛽𝛽𝑝𝑝

� 

• the information matrix is 

𝐼𝐼(𝜷𝜷) = −

⎝

⎜⎜
⎛

𝜕𝜕2𝑙𝑙(𝜷𝜷)
𝜕𝜕𝛽𝛽1

2 ⋯
𝜕𝜕2𝑙𝑙(𝜷𝜷)
𝜕𝜕𝛽𝛽1𝜕𝜕𝛽𝛽𝑝𝑝

⋮ ⋱ ⋮
𝜕𝜕2𝑙𝑙(𝜷𝜷)
𝜕𝜕𝛽𝛽𝑝𝑝𝜕𝜕𝛽𝛽1

…
𝜕𝜕2𝑙𝑙(𝜷𝜷)
𝜕𝜕𝛽𝛽𝑝𝑝2 ⎠

⎟⎟
⎞

 

• and 𝛽𝛽𝑞𝑞  is the qth element of 𝜷𝜷 
 
The partial likelihood is useful especially when it is 

appreciable simpler than the full likelihood, for example 
when it involves only the parameter of interest and not 
nuisance parameters [10]. Later, Cox (1972) [2] gave the 
equation below 

�
exp�𝛽𝛽𝑇𝑇𝑋𝑋𝑗𝑗 �

∑ exp(𝛽𝛽𝑇𝑇𝑋𝑋𝑘𝑘)𝑘𝑘𝜖𝜖𝑅𝑅𝑗𝑗𝑗𝑗

 

as a likelihood for inference about 𝜷𝜷.  
 
3.2 A Bayesian MCMC Approach 

 
The analysis of counting process in survival data is 

usually based on the modelling of the intensity function. 
The random variable T denote the survival time of an 
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individual and hence, the survival curve is given by 
𝑆𝑆(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 > 𝑡𝑡).  

The baseline hazard rate 𝜆𝜆0(𝑡𝑡) is defined as the 
following limit, common to all subjects, 

𝜆𝜆0(𝑡𝑡) = limd𝑡𝑡→0
𝑃𝑃(𝑡𝑡≤𝑇𝑇<𝑡𝑡+d𝑡𝑡)

d𝑡𝑡
      (3.1) 

by assuming that T is continuous and considering the 
calculation of the probability of an event happening over 
some finite time interval [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑑𝑑). The baseline 
cumulative hazard rate can be defined as 
 

Λ0(𝑡𝑡) = �𝜆𝜆0(𝑢𝑢)𝑑𝑑𝑑𝑑
𝑡𝑡

0

 

 
Cox model can describe the hazard function (also 

known as the risk function or intensity function) for subject 
i with covariates 𝐗𝐗𝑖𝑖 = �𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, … ,𝑋𝑋𝑖𝑖𝑖𝑖 � defined as 
  𝜆𝜆(𝑡𝑡|𝑋𝑋) = 𝜆𝜆(𝑡𝑡|𝑋𝑋 = 0)exp(𝛽𝛽𝑇𝑇𝐗𝐗) = 𝜆𝜆0(𝑡𝑡)exp(𝛽𝛽𝑇𝑇𝐗𝐗)     (3.2) 

The above equation shows the product of the 
unknown baseline hazard rate, 𝜆𝜆0(𝑡𝑡) and the exponential 
function of the unknown regression coefficient, 𝛽𝛽𝑇𝑇𝐗𝐗 =
∑ 𝛽𝛽𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑗𝑗 .  

The processes 𝑁𝑁𝑖𝑖(𝑡𝑡) can be observed for subjects 
𝑖𝑖 = 1,2, … ,𝑛𝑛, that count the number of failures which have 
occurred up to time t. The counting process is constant and 
takes the value zero between failures and jumps one unit at 
each failure time. The new failure rate is then seen to be 
𝐼𝐼𝑖𝑖(𝑡𝑡) = 𝑌𝑌𝑖𝑖(𝑡𝑡)𝜆𝜆(𝑡𝑡|𝑋𝑋𝑖𝑖). The intensity function is characterized 
as the probability of an event of interest occurs in the small 
time interval, given that it has not happened before.  

The corresponding intensity process 𝐼𝐼𝑖𝑖(𝑡𝑡) is 
formulated as follows:  
𝐼𝐼𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝑃𝑃(𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡) = 1 |Ft−) 

  = 𝑃𝑃([𝑁𝑁𝑖𝑖(𝑡𝑡 + 𝑑𝑑𝑑𝑑) −𝑁𝑁𝑖𝑖(𝑡𝑡)] = 1|Ft−)                  (3.3) 
where 𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡) is the increment of 𝑁𝑁𝑖𝑖  over the small time 
interval[𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑑𝑑), and Ft− represents the available data just 
before time t. Thus, the above equation can be written as 

𝐼𝐼𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝐸𝐸(𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡) |Ft−)       (3.4) 
If subject i is observed to fail during this time interval, 
𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡) will take the value 1, otherwise 𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡) is equal to 
zero. Hence 𝐸𝐸(𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡) |Ft−) corresponds to the probability 
of subject i failing in the time interval [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑑𝑑). As 𝑑𝑑𝑑𝑑  
approaches to zero (assume that time is continuous) this 
probability becomes the instantaneous hazard at time t for 
subject i. This is assumed to have the proportional hazards 
form as follows: 

 𝐼𝐼𝑖𝑖(𝑡𝑡) = 𝑌𝑌𝑖𝑖(𝑡𝑡)𝜆𝜆0(𝑡𝑡)exp(𝛽𝛽𝑋𝑋𝑖𝑖)  (3.5) 
where 𝑌𝑌𝑖𝑖(𝑡𝑡) is an observed process and take the value 1 or 0 
according to whether or not subject i is observed at time t. 
As we can see that 𝜆𝜆0(𝑡𝑡)exp(𝛽𝛽𝑋𝑋𝑖𝑖) is the familiar Cox 
regression model. Thus we have observed data 𝐷𝐷 = 𝑁𝑁𝑖𝑖(𝑡𝑡), 
𝑌𝑌𝑖𝑖(𝑡𝑡), 𝑋𝑋𝑖𝑖 ;  𝑖𝑖 = 1,2, … ,𝑛𝑛 and unknown parameters 𝛽𝛽 and 
Λ0(𝑡𝑡) = ∫ 𝜆𝜆0(𝑢𝑢)𝑑𝑑𝑑𝑑𝑡𝑡

0 , the latter to be estimated non-
parametrically.  The joint posterior distribution for the 
above model can be defined as 

𝑃𝑃(𝛽𝛽,Λ0( )|𝐷𝐷)~𝑃𝑃(𝐷𝐷|𝛽𝛽,Λ0( ))𝑃𝑃(𝛽𝛽)𝑃𝑃(Λ0( ))        (3.6) 

Here, we need to specify for BUGS, the form of the 
likelihood 𝑃𝑃(𝐷𝐷|𝛽𝛽,Λ0( )) and prior distributions for 𝛽𝛽 and 
Λ0( ). Under non-informative censoring, the likelihood of 
the data is proportional to  

���𝐼𝐼𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡)

𝑡𝑡≥0

�
𝑛𝑛

𝑖𝑖=1

exp(−𝐼𝐼𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑) 

(3.7) 
 

The counting process increments 𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡) in the time interval 
[𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑑𝑑) are assumed to be independent Poisson random 
variables with means, 𝐼𝐼𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑, where  

𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡) ~ Poisson(𝐼𝐼𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑) 
𝐼𝐼𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑 can be written as,  

𝐼𝐼𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝑌𝑌𝑖𝑖(𝑡𝑡)exp(𝛽𝛽𝑋𝑋𝑖𝑖)𝑑𝑑Λ0(𝑡𝑡)   (3.8) 
where 𝑑𝑑Λ0(𝑡𝑡) = Λ0(𝑡𝑡)𝑑𝑑𝑑𝑑 is the increment or jump in the 
integrated baseline hazard function occurring during the 
time interval [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑑𝑑).  

Kalbfleisch [9] proposed gamma process prior for the 
baseline hazard function by assuming 𝑑𝑑Λ0(𝑡𝑡) to have 
gamma distribution with mean 𝑑𝑑Λ0

∗ (𝑡𝑡) and variance 
𝑑𝑑Λ0

∗ (𝑡𝑡)/𝑐𝑐, which can be written as 
𝑑𝑑Λ0(𝑡𝑡) ~ Gamma(𝑐𝑐𝑐𝑐Λ0

∗ (𝑡𝑡) , 𝑐𝑐) 
Later, Ayman and Anis [12] proposed the baseline hazard 
function as the non-parametric part of the model to be a 
non-negative polygonal function with the vertices located at 
times 𝑎𝑎0 = 0 < 𝑎𝑎1 < ⋯ < 𝑎𝑎𝑇𝑇 < 𝑎𝑎𝑇𝑇max+1, where the 
polygonal take the values 𝜏𝜏0 = 0 < 𝜏𝜏1 < ⋯ < 𝜏𝜏𝑇𝑇 <
𝜏𝜏𝑇𝑇max+1, respectively and becomes constant after time 𝑎𝑎𝑇𝑇max. 

 In this paper, the proposed baseline hazards 
function for Cox model is slightly different compared to the 
original Cox model which used gamma process prior as the 
baseline hazards function with both c and r are fixed values. 
Since the conjugate prior for the Poisson mean is the 
gamma distribution, it would be convenient if Λ0( ) were a 
process in which the increments 𝑑𝑑Λ0(𝑡𝑡) are assumed to be 
the conjugate independent increments prior.   

In this paper, we modified the increments to be the 
product of 𝑑𝑑Λ01

∗ (𝑡𝑡) and 𝑑𝑑Λ02
∗ (𝑡𝑡) in which we proposed the 

increments as 
𝑑𝑑Λ0(𝑡𝑡) = 𝑑𝑑Λ01

∗ (𝑡𝑡)𝑑𝑑Λ02
∗ (𝑡𝑡) 

where the increments 𝑑𝑑Λ0(𝑡𝑡) is a product between 𝑑𝑑Λ01
∗ (𝑡𝑡) 

and 𝑑𝑑Λ02
∗ (𝑡𝑡). 𝑑𝑑Λ01

∗ (𝑡𝑡) is assume to have gamma distribution 
with hyperparameters mu and c as the shape and scale 
parameters, respectively and can be written as  

𝑑𝑑Λ01
∗ (𝑡𝑡) ~ Gamma(𝑚𝑚𝑚𝑚, 𝑐𝑐) 

Here we suggested that shape, mu and scale, c to have its 
own distribution in which mu has gamma distribution with 
mean 10 and variance 0.1 while c also has gamma 
distribution with mean 1 and variance 10. We set 
𝑑𝑑Λ02

∗ (𝑡𝑡) = 𝑟𝑟𝑟𝑟𝑟𝑟 where r is a guess at the failure rate per unit 
time and has a uniform distribution, while dt is the size of 
the time interval.  

 This paper also proposed both c and r to have its 
own distributions rather than assuming the values to be 
arbitrary constant values. In order to make the proposed 
model more flexible, we assume c and r to have gamma and 
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uniform distributions, respectively. The proposed full 
BUGS model is attached in the appendix. 

  
 

4. RESULTS & DISCUSSION 
 

We consider leukemia data where the effect of 6-MP 
(6-Mercaptopurine) therapy on the duration of remissions 
induced by adrenal corticosteroids has been studied as a 
model for testing of new agents [13]. Randomly, patients in 
remission were assigned to maintenance therapy with either 
6-MP or placebo. The median duration of 6-MP-maintained 
complete remissions was 33 weeks and for placebo, 9 
weeks. While the study was in progress, a sequential 
experimental design was used in analyzing remission times. 
This resulted in the study being stopped after analysis of the 
remission times of 21 pairs of patients (42 patients).  

 
4.1 An analysis of Maximum Likelihood Estimation  

 
We use the leukemia data to estimate the unknown 

parameters in Weibull proportional hazards model using 
maximum likelihood estimation approach. Table 1 shows 
the MLE estimates of the hazard function, cumulative 
hazard function, density function and survivor function for 
Weibull proportional hazards model.  

Newton Raphson method is the popular method in 
maximizing the likelihood function and estimating the 
unknown parameters.  It takes six iterations to converge in 
the analysis and the results are tabulated in Table 1. The 
unknown parameter beta of Weibull proportional hazard 
model is 1.731 and the standard error is 0.413. The 
likelihood ratio test is 19.6, while the log likelihood is -
106.58. Scale and shape parameters for Weibull 

proportional hazards model are 17.850 and 1.366, 
respectively. As can be seen, the p-value is very small and 
we can conclude that this is a significant value.  

With the same data, we proceed to estimate the 
parameter for Cox regression model. The analysis involved 
the use of maximum likelihood estimation and maximum 
penalized partial likelihood estimation. Using Newton 
Raphson method as the maximum likelihood estimation, we 
obtain the estimated parameters and were tabulated in Table 
2. The Newton Raphson iteration converges in four 
iterations and gives the estimated beta 1.659 with standard 
error 0.423 and log likelihood -93.599. With the same 
number of iterations using maximum penalized partial 
likelihood estimation, we obtained the estimated beta 1.650 
with standard error 0.422 and log likelihood -86.869 and the 
results are also tabulated in Table 2. 

As can be seen, the larger value of the log likelihood 
of maximum penalized likelihood estimation indicate better 
fitting models compared to the value of the log likelihood of 
maximum likelihood estimation using Newton Raphson 
method. This is because the partial likelihood is simpler 
than the full likelihood and it involves only the parameters 
of interest and not nuisance parameters. 
 
4.2 An analysis of Bayesian modelling process 
 

Using the same data, we continue our analysis with 
Bayesian approach using statistical packages WinBUGS 
and R. The choice of hyperparameters and initial values are 
not sensitive to the estimation of the parameters. Five 
chains with the same starting values were carried out 
simultaneously. 10,000 iterations is performed for each 
chain after 1000 iterations for burn-in, and one out of every 
100th values is used. 

 
 
Table 1 Summaries of parameter estimations for Weibull Proportional hazards model using Maximum Likelihood Estimation 
(Newton Raphson Method)  
 

Parameter  Estimate Std Error t-value 𝐏𝐏𝐏𝐏(> 𝑡𝑡) Gradient  
Alpha 1.36576 0.20100   6.7949 1.084e-11 4.547474e-07 
Beta0 -3.93614     0.60165  -6.5422 6.061e-11 5.258016e-07 
Beta1 1.73087     0.41331   4.1878 2.817e-05 -4.263256e-08 

 
 
 
Table2 Summaries of parameter estimation for Cox Regression parameter estimation using maximum likelihood estimation 
(Newton Raphson Method) & Maximum Penalized Partial Likelihood 
 

Methods Log likelihood beta Rel Risk Std Error Hessian 
LR Tset 

Stats 
Maximum Likelihood Estimation  
(Newton Raphson) 

-93.599  1.659    5.252 0.423 5.5997 17.7 

Maximum Penalized Partial 
Likelihood Estimation 

-86.869 1.650 5.206 0.422 5.6121 17.5 
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Table 3 Posterior statistics mean for Weibull Proportional Hazards Regression Model with different number of chain (10,000 
from each of generated samples). 

(a) Summaries of posterior statistics 

 

No. of 
chain 

node mean sd MC error 2.5% median 97.5% start sample 

 b -4.044 0.6512 0.05761 -5.3 -4.043 -2.831 1001 10000 

1 beta 1.772 0.4412 0.01967 0.9208 1.757 2.703 1001 10000 
 shape 1.385 0.2134 0.01819 0.9862 1.384 1.803 1001 10000 
 b -3.969 0.6088 0.03671 -5.252 -3.925 -2.935 1001 20000 

2 beta 1.745 0.4194 0.01253 0.9444 1.732 2.62 1001 20000 
 shape 1.361 0.2026 0.0117 1.011 1.344 1.787 1001 20000 

 b -4.149 0.6182 0.03154 -5.474 -4.082 -3.099 1001 30000 

3 beta 1.813 0.4212 0.01019 1.008 1.801 2.651 1001 30000 
 shape 1.416 0.2058 0.01003 1.053 1.4 1.854 1001 30000 

 b -3.873 0.5722 0.02411 -5.051 -3.859 -2.821 1001 40000 

4 beta 1.733 0.4106 0.008096 0.9384 1.728 2.557 1001 40000 
 shape 1.331 0.1921 0.007686 0.9697 1.328 1.716 1001 40000 

 b -3.952 0.5664 0.0226 -5.041 -3.952 -2.888 1001 50000 

5 beta 1.747 0.4214 0.0076 0.9439 1.736 2.601 1001 50000 
 shape 1.356 0.1877 0.007578 1.004 1.351 1.725 1001 50000 

 
 

(b) Summaries of DIC and log likelihood 

No. of chain 𝑫𝑫�  𝑫𝑫�  DIC 𝒑𝒑𝑫𝑫 - Log likelihood 

1 216.4 213.2 219.5 3.135 108.2 
2 216.2 213.2 219.2 2.970 108.1 
3 216.3 213.3 219.2 2.925 108.15 
4 216.1 213.2 219.1 2.919 108.05 
5 217.2 213.2 221.1 3.949 108.6 

 
 
 
different number of chains. All the value shows the 
estimation of the parameters with the credible intervals. 𝑫𝑫�  is 
the posterior mean of the deviance and is defined as 
𝑫𝑫� = −2 × log likelihood. 𝑫𝑫�  is a plug-in estimate of the 
latter based on the posterior mean of the parameters. The 
deviance information criterion, DIC is defined and computed 
as  

DIC = 𝑫𝑫� + 𝒑𝒑𝑫𝑫 =  𝑫𝑫� +  𝟐𝟐𝒑𝒑𝑫𝑫 
 

and the lower values of the criterion indicate better fitting 
models. Table 3 shows different values of posterior means 
for parameter estimation and different DIC depends on the 
number of chain. We know that 𝑫𝑫� = −2 ×
log likelihood thus the log likelihood = 𝑫𝑫�

−2
. Log likelihood 

for each chain has also tabulated in the same table. As we 
can see that the standard deviation and MCMC error reduced 
as we increased the number of chain. The smaller the 
standard deviation and MCMC error, the best results we get 
for the parameter estimation. The posterior distribution of 
the final sample after generating MCMC and an acceptable 
convergence to the stationary distribution for all 
hyperparameters of the model is shown in Figure 1. The 
generated observations of the trace plots are more 
convincing in terms of convergence, with all generated 
values within a parallel zone and no obvious tendencies or 
periodicities. The densities provide a graphical 
representation of the posterior densities estimate for each 
node. Figure 1 shows trace plots and posterior densities for 
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50,000 from each of five generated samples (10,000 for each 
chain). 

 

 
 

iteration
1000 2500 5000 7500 10000

 

iteration
1000 2500 5000 7500 10000

 

iteration
1000 2500 5000 7500 10000

 
 

(a) Trace plots for b, beta and shape parameter 
 

b sample: 50000

b
-6.0 -4.0 -2.0 0.0

 
beta sample: 50000

beta
0.0 1.0 2.0 3.0 4.0

 

shape sample: 50000

shape
0.5 1.0 1.5 2.0 2.5

 
 
(b) Posterior densities for b, beta and shape 

parameter 

 
Fig. 1 MCMC diagnostic plots for Weibull Proportional Hazards Regression model using Gibbs Sampling when generating 
five chains with 10,000 iterations in each chain. 
 
 
 

 We analyze the data using WinBUGS and R 
programming to Cox regression model with gamma process 
prior as the baseline hazards function. Five chains with the 
same starting values were carried out simultaneously. After 
1000 iterations for burn-in, 10,000 iterations is performed 
for each chain and one out of every 100th values is used. 
The choice of hyperparameters and initial values are not 
sensitive to the estimation of the parameters.  

The posterior mean, standard deviation, MCMC error, 
and median with a 95% posterior credible interval and the 
deviance information criterion, DIC for original Cox 
regression model (Gamma process is used as a prior belief 
for the baseline hazard) and proposed baseline hazards 
function for Cox regression model for different number of 
chain are shown in Table 4. As can be seen in the Table 4, 
the proposed baseline hazards function for Cox regression 
model gives better fit compared to the original baseline 

hazard function using gamma process prior of Cox 
regression model. The deviance information criterions, DIC 
for original gamma process prior of Cox regression model in 
each chain are higher compared to the proposed baseline 
hazards function of Cox regression model. The lower values 
of the criterion indicate better fitting models and this value 
shows that the proposed baseline hazards function of Cox 
regression model gives better fit compared to the original 
gamma process prior of Cox regression model. We also 
compare the log likelihood for both Cox regression models 
and found that the log likelihood for original Cox regression 
model is higher compared to log likelihood for proposed 
Cox regression model in each chain. Figure 2 shows trace 
plots and posterior densities for 50,000 from each of five 
generated samples (10,000 for each chain). The densities 
provide a graphical representation of the posterior densities 
estimate for each node.  

 
 
 



Ismail et al / Malaysian Journal of Fundamental & Applied Sciences Vol.8, No.2 (2012) 73-82. 
 

| 80 | 
 

 
 
 
Table 4 Posterior statistics mean with different number of chain (10,000 from each of generated samples).   

(a) Summaries of posterior statistic 

 No. of chain node mean sd MC error 2.5% median 97.5% start sample 

Cox 

Model 

3 

Beta 

1.538 0.4175 0.003017 0.7507 1.53 2.38 1001 30000 

4 1.541 0.4205 0.002701 0.7485 1.53 2.392 1001 40000 

5 1.541 0.4164 0.00224 0.7545 1.531 2.391 1001 50000 

Proposed 

Cox 

Model 

3 

Beta 

1.532 0.4072 0.003623 0.7629 1.519 2.367 1001 30000 

4 1.542 0.4123 0.003378 0.7655 1.531 2.386 1001 40000 

5 1.539 0.4115 0.002845 0.7595 1.528 2.38 1001 50000 

 
(b) Summaries of DIC and log likelihood 

 No. of chain 𝑫𝑫�  𝑫𝑫�  𝒑𝒑𝑫𝑫 DIC -Log Likelihood 

Cox Model 
3 212.677 192.907 19.771 232.448 106.3385 
4 212.736 192.908 19.828 232.564 106.368 
5 212.719 192.907 19.811 232.530 106.3595 

Proposed 
Cox Model 

3 204.734 200.336 4.397 209.131 102.367 
4 204.789 200.366 4.423 209.211 102.3945 

5 204.791 200.375 4.416 209.208 102.397 
 

  
(a) Trace plots and posterior densities of the 

parameters in the gamma process prior as the 
baseline hazard function in Cox Regression 
model. 

(b) Trace plots and posterior densities of the 
parameters for proposed Cox Regression model. 

 

  

2000 6000 10000

0
1

2
3

Iterations

Trace of beta

0 1 2 3

0.
0

0.
4

0.
8

N = 10000   Bandwidth  

Density of beta

2000 6000 10000

20
0

22
0

24
0

Iterations

Trace of deviance

200 220 240

0.
00

0.
02

0.
04

0.
06

N = 10000   Bandwidth  

Density of devianc

2000 6000 10000

0.
0

1.
0

2.
0

3.
0

Iterations

Trace of beta

0 1 2 3

0.
0

0.
4

0.
8

N = 10000   Bandwidth  

Density of beta

2000 6000 10000

20
0

21
0

22
0

Iterations

Trace of deviance

195 205 215 225

0.
00

0.
05

0.
10

0.
15

N = 10000   Bandwidth  

Density of devianc



Ismail et al / Malaysian Journal of Fundamental & Applied Sciences Vol.8, No.2 (2012) 73-82. 
 

| 81 | 
 

Fig. 2 MCMC diagnostic plots for Cox Regression model (gamma process prior baseline hazard function and proposed 
baseline hazard function) using Gibbs Sampling when generating five chains with 10,000 iterations for each chain. 
                  
       

5. CONCLUSION  
 

We proposed a Bayesian method to fit more flexible 
survival models for non-informative censored data. Using 
WinBUGS and R software, we proved that by using the 
proposed Cox regression model the DIC value is smaller 
than the Gamma process prior for the nonparametric part in 
the original Cox regression model. This proposed model is 
simple and alternative to the maximum likelihood method 
or the Gamma process prior.  

WinBUGS is a tool for analyzing survival data in a 
Bayesian framework using Markov Chain Monte Carlo 
(MCMC). While in R, we use R2WinBUGS package to 
make it possible to call a BUGS model, summarize 
inferences and convergence in a table and graph, and save 
the simulations in arrays for easy access in R.  

The results of the statistical analysis in the example 
are consistent with those obtained from previous analysis. 
Bayesian models can be compared using the deviance 
information criterion (DIC), which its posterior distributions 
have been obtained using MCMC. DIC has been 
implemented as a tool in the BUGS software package. 
Bayesian inference has several advantages particularly in 
the flexibility of model-building for complex data over the 
frequentist approaches. Bayesian approach enables us to 
make exact inference for any sample size based on the 
posterior distribution.  
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Appendix 1 
 
 

 
# Model in WinBUGS 
Model{ 
# Start model 
# Set up data 
 for(i in 1:N) { 
 # Begin loop over observations within subjects T = 17, which indicates the number of unique failure times  
 # Assume that obs.t[i] is the follow up time for patient i (i = 1,2,…,42) with fail [i]  indicating whether this  

# corresponds to failure or a censored observation. 
  for(j in 1:T) { 
  # Y[i,j] = Y[i](t[j]) is at risk set, Y[N,T] = 1 if observed time is at risk;  i.e., obs.t >= t and zero otherwise. 
   Y[i,j] <- step(obs.t[i] - t[j] + eps) 
.  # eps = 0.000001 is used to guard against numerical imprecision in step function 
  # counting process jump = 1 to indicates event time,  
   dN[i, j] <- Y[i, j] * step(t[j + 1] - obs.t[i] - eps) * fail[i] 
  # obs.t in interval [ t[j], t[j+1]); i.e. if t[j] <= obs.t < t[j+1] 
  # N[i,j] = Ni(tj) 
  # fail[i] is an indicator to be failure = 1; censored = 0 
   } # End loop over observations within subjects  
  } # End loop over subjects  
 # Model 
  for(j in 1:T) {  
  # Begin loop over subjects  
   for(i in 1:N) { 
   # Begin loop over observations within subjects  
    dN[i, j] ~ dpois(Idt[i, j])   
   # Likelihood dL0[T], increment in unknown hazard function 
   # Intensity  

Idt[i, j] <- Y[i, j] * exp(beta * Z[i]) * dL0[j]     
    } # End loop over subjects  
  } # End loop over observations within subjects 
  for (j in 1 : T) {  
  # Begin loop over observations within subjects using proposed baseline hazard function 
    dL0[j] <- dL01.star[j] * dL02.star[j] 
    dL01.star[j] ~ dgamma(mu[j], c) 
  # prior mean hazard 
    mu[j] ~ dgamma(1.0E3,1.0E2)  
    dL02.star[j] <- (1/r) * (t[j + 1] - t[j])       
  }# End loop over observations within subjects  
  # Priors for beta 
  # The prior for beta parameter is mutually independent normal with mean 0 and variance 100000 (recall  

# that WinBUGS 1.4 specifies the precision is 0.000001 instead of the variance = 100000). 
   beta ~ dnorm(0.0,1.0E-6)  

# Flexibility for the proposed baseline hazard function for Cox model by assuming both c and r to have  
# gamma distribution and uniform distribution, respectively. 

   c ~ dgamma(1.0E-1, 1.0E-1)  
   r ~ dunif(1.0E4, 1.0E5)    
}   # End model  
 
 


	382f Noraslinda Mohamed Ismail
	382b Noraslinda Mohamed Ismail



