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Abstract 

A numerical analysis was performed for the mathematical model of boundary layer flow of Casson 
nanofluids. Heat and mass transfer were analyzed for an incompressible electrically conducting fluid 
with viscous dissipations and chemical reaction past a stretching sheet. An appropriate set of 
similarity transformations were used to transform the governing partial differential equations (PDEs) 
into a system of nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is 
solved numerically by using shooting method. A detailed discussion on the effects of various physical 
parameters and heat transfer characteristics was also included.  
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INTRODUCTION 

Nanofluid technology has been receiving a lot of attention as a 

research topic and takes important part for further development of 

higher performance due to effective applications in the field of 

electronics engineering, transportation, and biomedical research. 

Nanofluid refers to the suspension of nano sized particles (1-100 nm 

diameters) in base fluids. It has a higher thermal conductivity that 

shows significant enhancement due to the rate of heat transfer in 

industrial applications. The cooling applications of nanofluids show the 

importance on itself and increased attention worldwide. The 

applications of this technology include electronics device cooling, 

transformer cooling, vehicles cooling, silicon mirror cooling, and 

controlling fusion. There are numerous biomedical applications that 

involve nanofluids such as magnetic cell separation, drug delivery, 

cancer therapeutics, cryopreservation, and nanocryosurgery. Currently, 

it has been an ongoing topic of discussion as coolant for computers, 

safe coolant for nuclear reactors, and in a public health practice.  

Carragher and Crane [1] investigated the heat transfer in the flow 

over a stretching surface, in the case when the temperature difference 

between the surface and the ambient fluid is proportional to a power of 

distance from the fixed point. An unsteady flow past a stretching sheet 

was studied by Na and Pop [2]. The radiation effect is now an attractive 

topic and several researchers have been done on thermal radiation. Pop 

et al. [3] determined the flow over stretching sheet near a stagnation 

point taking the effect of thermal radiation. 

The research on nanofluids is gaining a lot of attention in recent 

few years. The effect of various parameters on nanofluid thermal 

conductivity has been obtained by Jang and Choi [4]. The convective 

heat transfer in a nanofluid past a vertical plate using a model in which 

Brownian motion and thermophoresis are accounted with the simplest 

possible boundary conditions have been discussed by Kuznetsov and 

Nield [5, 6]. They also studied the problem of natural convection past 

a vertical plate analytically in a porous medium saturated by a nanofluid 

[5, 6]. Khan and Pop [7] have investigated the problem of laminar fluid 

flow over the stretching surface in a nanofluid and they investigated it 

numerically. Ibrahim and Shanker [8] analyzed MHD boundary layer 

flow and heat transfer of a nanofluid past a permeable stretching sheet 

with velocity, thermal, and slip boundary conditions. 

In the context of heat transfer process, viscous dissipations mean 

heating up the fluid via different source. In short, in this mechanism the 

viscosity of the fluid will absorb heat from the kinetic energy and 

transform it into internal energy of the system. Moreover, the process 

in which the electric current through a conductor produce heat is known 

as Joule heating. Eldahab et al. [9] studied the viscous dissipation and 

Joule heating effects on MHD-free convection from a vertical plate. 

Viscous dissipations play an important role in the natural convection in 

various devices. Viscous dissipation effects and the effects of Joule 

heating on thermal boundary layer flow are studied in [10, 11]. 

Aminreza et al. [12] examined the effect of partial slip on flow and heat 

transfer of nanofluids past a stretching sheet. 

Hence the objective of this study was to review a study of Wubshet 

Ibrahim et al. [13] and extend the flow analysis by considering the 

additional effects of nanofluid, viscous dissipation, and nonlinear 

thermal radiation with the assumptions of laminar, steady, 

incompressible, two-dimensional, porous stretching sheet, nanofluid 

with elector-hydrodynamic, convective boundary condition, and micro-

slip condition on the wall. The obtained system of PDEs was 

transformed into a system of non-liner and coupled ODEs by using a 

suitable similarity transformation. A numerical solution of the system 

of ODEs was obtained by employing the shooting method and the 

precision of the obtained numerical results was compared by using the 

Matlab bvp4c function. The mathematical inferences were discussed 

for different physical parameters appearing in the solution influencing 

the flow and heat transform. 

MATHEMATICAL MODEL OF THE FLOW 

Consider the numerical investigation of MHD boundary layer flow 

of an incompressible Casson nanofluid, the cartesian coordinates 𝑥, 

measured along the stretching surface and 𝑦 is the coordinate measured 
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normal to the stretching surface. The physical configuration and 

coordinate system are shown in Fig 1. Initially it is assumed that fluid 

and the plate are at rest after that the plate is moved with a constant 

velocity 𝑢 = 𝑢𝑤 = 𝑎𝑥 and 𝑢∞ = 𝑏𝑥, (where 𝑎 and 𝑏 are positive

constants) along x-direction. In addition, fluid is flowing in the 

presence of magnetic field. The magnetic field is supposed to be applied 

along the 𝑦-direction. The slip velocity at the surface is Uslip = (μΒ +
py

√2πc
)
∂u

∂y
. Two equal and opposite forces are applied along the 𝑥-axis, 

so that the sheet is stretched keeping the origin fixed. 

Figure 1 Geometry for the flow under consideration. 

The rheological equation of state for an isotropic and 

incompressible flow of a Casson fluid can be written as follows: 

𝜏1 2⁄ =  𝜏0
1 2⁄ + 𝜇𝛾1 2⁄   (1) 

𝜏𝑖𝑗 = {
2 (𝜇Β +

𝑝𝑦

√2𝜋
) 𝑒𝑖𝑗, 𝜋 > 𝜋𝑐

2 (𝜇Β +
𝑝𝑦

√2𝜋𝑐
) 𝑒𝑖𝑗, 𝜋𝑐 > 𝜋

  (2) 

where 𝜇Β is the plastic dynamic viscosity of the non- Newtonian fluid,

𝑝𝑦 is the yield stress of fluid, 𝜋 is the product of the component of

deformation rate and itself, namely, 𝜋 = 𝑒𝑖𝑗𝑒𝑖𝑗 ,  𝑒𝑖𝑗 is the (𝑖, 𝑗)

component of the deformation rate, and 𝜋𝑐  is a critical value of 𝜋 based

on non-Newtonian model. The equation of continuity, equation of 

momentum and the energy equation describing the given two 

dimensional flows. 

The Continuity equation 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0   (3) 

The Momentum equation 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑈∞

𝜕𝑈∞

𝜕𝑥
+
𝜎𝐵0

2(𝑥)

𝜌𝑓
(𝑈∞ − 𝑢) + 𝜈 (1 +

1

𝛾
)
𝜕2𝑢

𝜕𝑦2
  (4) 

The Energy equation 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜇

𝐶𝑝
(1 +

1

𝛾
) (

𝜕𝑢

𝜕𝑦
)
2
+ 𝛼

𝜕2𝑇

𝜕𝑦2
+ Γ [𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2
]  (5) 

The Concentration equation 

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑇

𝑇∞

𝜕2𝐶

𝜕𝑦2
− 𝑘0(𝐶 − 𝐶∞)   (6) 

The initial and boundary conditions are: 

𝑢 = 𝑈𝑤(𝑥) + 𝑈𝑠𝑙𝑖𝑝 ⇒ 𝑢 = 𝑎𝑥 + (μΒ +
py

√2πc
)
∂u

∂y
, 𝑣 = 0,

−𝑘
𝜕𝑇

𝜕𝑦
= ℎ(𝑇𝑓 − 𝑇), 𝐶 = 𝐶𝑤 at 𝑦 = 0

𝑢 → 𝑈∞ = 𝑏𝑥, 𝑣 = 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞  as 𝑦 = ∞ }

 

 (7) 

where 𝛾 = μΒ√2πc py⁄  is the Casson parameter, 𝜈 = 𝜇𝐵 𝜌⁄  is the

kinematics viscosity,  𝛼 is the thermal diffusivity, 𝑘 is the thermal 

conductivity, 𝐷𝐵 is the Brownian diffusion coefficient, 𝐷𝑇 is the 

thermophoresis diffusion coefficient, where, 𝑥 is the coordinate 

measured along stretching surface, 𝑈𝑤 is the stretching velocity and  U 

is the uniform velocity. Now we convert the system of Eqs. (3) - (6) 

following the boundary conditions into a unitless form. For this 

purpose, we use the following similarity transformation. 

𝜂 = 𝑦√
𝑎

𝜈
,  𝜓 = √𝑎𝜈𝑥𝑓(𝜂), 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑓−𝑇∞
,𝛽(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
.        (8) 

The continuity Eq. (3) is identically satisfied for the stream function 

𝜓(𝑥, 𝑦) . The velocity components are given by: 

𝑢 =
𝜕𝜓

𝜕𝑦
,   𝑣 = −

𝜕𝜓

𝜕𝑥
  (9) 

Using the similarity transformation from Eq. (8) in momentum Eq. (4), 

energy Eq. (5) and concentration Eq. (6) along the boundary conditions 

(7) we get the following system of ODEs:

(1 +
1

𝛾
)𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 +𝑀(𝐴 − 𝑓′) + 𝐴2 = 0     (10) 

𝜃′′ + 𝑃𝑟𝑓𝜃′ + 𝑃𝑟𝑁𝑏𝜃′𝛽′ + 𝑃𝑟𝑁𝑡(𝜃′)2 + (1 +
1

𝛾
) 𝑃𝑟𝐸𝑐 (𝑓′′)2 = 0          (11) 

𝛽′′ + 𝐿𝑒𝑓𝛽′ +
𝑁𝑡

𝑁𝑏
𝜃′′ − 𝐿𝑒𝜒𝛽 = 0     (12) 

Here 𝑓(𝜂), 𝜃(𝜂) and 𝛽(𝜂) are function of 𝜂 and prime denotes 

derivative w.r.t 𝜂. The transformed BCs in the modeled problem are: 

𝑓(0) = 0, 𝑓′(0) = 1 + 𝛿 (1 +
1

𝛾
)𝑓′′(0),

 𝜃′(0) = −𝐵𝑖[1 − 𝜃(0)], 𝛽(0) = 1, at  𝜂 = 0,

𝑓′(∞) → 𝐴,   𝜃(∞) → 0,     𝛽(∞) → 0 as   𝜂 → ∞ 

}       (13) 

The associated parameters appearing in the modeled problem are: 

𝑃𝑟 = 𝜈 𝛼⁄ , 𝐿𝑒 = 𝛼 𝐷𝐵⁄ , 𝑀 = 𝜎𝐵0
2 𝜌𝑓𝑎⁄ , 𝑁𝑏 = 𝜌𝑝𝐷𝐵(𝐶𝑤 − 𝐶∞) 𝜌𝑓𝛼⁄ , 

𝑁𝑡 = 𝜌𝑝𝐷𝑇(𝑇𝑤 − 𝑇∞) 𝜌𝑓𝛼𝑇∞⁄ , 𝐴 = 𝑏 𝑎⁄  𝛿 = 𝜇𝛽√𝑎 𝜈⁄ , 𝐵𝑖 =
ℎ𝑓

𝑘
√
𝜈

𝑎
,

𝐸𝑐 = 𝑢𝑤
2 /𝜌𝑓(𝑇𝑤 − 𝑇∞), 𝜒 = 𝒦𝑜 𝑏⁄ . 

𝑃𝑟 denotes the Prandtl number, 𝐿𝑒 is the Lewis number, 𝑀 is a 

magnetic parameter, 𝑁𝑏 is the Browian motion parameter, 𝑁𝑡 the 

thermophoresis parameter, 𝐴 is velocity ratio parameter, 𝛿 is the 

thermal slip parameter, 𝐵𝑖 the Biot member, 𝐸𝑐 is the Eckert number 

and  𝜒 is the chemical reaction parameter. It should be mentioned here 

that (𝜒 ≻ 0) indicates a destructive chemical reaction while (𝜒 ≺ 0) 

corresponds to a generative chemical reaction. 

The quantities of practical interest in this study are the Nusselt 

number 𝑁𝑢𝑥, the skin friction coefficient 𝐶𝑓, and the Sherwood number 

𝑆ℎ𝑥, respectively. 

𝐶𝑓 =
𝜏𝑤

𝜌𝑢𝑤
2 , 𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘((𝑇𝑤−𝑇∞)
, 𝑆ℎ𝑥 =

𝑥ℎ𝑚

𝐷𝐵((𝐶𝑤−𝐶∞)
    (14) 

where 𝜏𝑤 is the shear stress along the stretching surface, 𝑞𝑤 is the heat 

flux from the stretching surface, and ℎ𝑤 is the wall mass flux, which 

are given by 
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𝜏𝑤 = (𝜇Β +
𝑝𝑦

√2𝜋𝑐
) (

𝜕𝑢

𝜕𝑦
)
𝑦=0

, 𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)
𝑦=0

, ℎ𝑚 = −𝐷𝐵 (
𝜕𝐶

𝜕𝑦
)
𝑦=0

   

    (15) 

Using the dimensionless variables, we get 

𝐶𝑓√𝑅𝑥 = 𝛿 (1 +
1

𝛾
) 𝑓′′(0),   

𝑁𝑢𝑥

√𝑅𝑥
= −𝜃′(0),

𝑆ℎ𝑥

√𝑅𝑥
= −𝛽′(0)     (16) 

where 𝑅𝑥 = 𝑈𝑤(𝑥 𝜈⁄ ) is the local Reynolds number based on stretching

velocity 𝑢. 

SOLUTION METHODOLOGY 

The analytical solution of the system of Eqs. (10) – (12) together 

with boundary conditions (13) cannot be found because they are 

coupled and nonlinear in nature. These nonlinear coupled ODEs are 

solved numerically by the shooting technique with Adams – Moultan 

method. To apply this technique, we first convert the system of ODEs 

of higher order into the system of ODEs of first order. Eqs. (10) – (12) 

can be rewritten as follows: 

𝑓′′′ =
−(𝑓𝑓′′−(𝑓′)2+𝑀(𝐴−𝑓′)+𝐴2)

(1+
1

𝛾
)

𝜃′′ = −Pr [𝑓𝜃′ + 𝑁𝑏𝜃′𝛽′ + 𝑁𝑡(𝜃′)2 + (1 +
1

𝛾
)𝐸𝑐 (𝑓′′)2]

𝛽′′ = −𝐿𝑒𝑓𝛽′ −
𝑁𝑡

𝑁𝑏
𝜃′′ + 𝐿𝑒𝜒𝛽 = 0 

By using the following notations, 

𝑓 =  𝑦1, 𝑓
′ = 𝑦2, 𝑓

′′ = 𝑦3, 𝜃 = 𝑦4, 𝜃
′ = 𝑦5, 𝛽 = 𝑦6, 𝛽

′ = 𝑦7

the system of first order ODEs are: 

𝑦1
′ = 𝑦2, 𝑦1(0) = 0      (17) 

𝑦2
′ = 𝑦3, 𝑦2(0) = 1 + 𝛿 (1 +

1

𝛾
)𝑌3      (18) 

𝑦3
′ =

−(𝑦1𝑦3−(𝑦2)
2+𝑀(𝐴−𝑦2)+𝐴

2)

(1+
1

𝛾
)

𝑦3(0) = 𝑌3      (19) 

𝑦4
′ = 𝑦5 𝑦4(0) = 𝑌4      (20) 

𝑦5
′ = −𝑃𝑟 (𝑦1𝑦5 + 𝑁𝑏𝑦5𝑦7 + 𝑁𝑡𝑦5

2 + (1 +
1

𝛾
)𝐸𝑐𝑦3

2)

𝑦5(0) = 𝐵𝑖(𝑌4 − 1)    (21)

𝑦6
′ = 𝑦7   𝑦6(0) =1     (22) 

𝑦7
′ = −𝐿𝑒𝑦1𝑦7 −

𝑁𝑡

𝑁𝑏
𝑦5
′+𝐿𝑒𝜒𝑦6 𝑦7(0) = 𝑌7     (23) 

To solve the system of equations shown, the unbounded domain 
[0, 𝜂∞] is restricted to a bounded domain [0, 𝜂𝑒], where 𝜂𝑒= 6. This is

due to the fact that increasing the value of 𝜂𝑒 beyond 6 gives negligible 

variation in the numerical results. In the modeled problem, 𝑌3, 𝑌4, and 

𝑌7 are initial guesses which are required to solve the above first order 

system of ordinary differential equations with fourth order Adams-

Moulton method. Newton iterative scheme is used to refine those initial 

guesses. The iterative process is repeated until the following criteria is 

met. 

𝑚𝑎𝑥(|𝑦2(𝜂∞)|, |𝑦4(𝜂∞)|, |𝑦6(𝜂∞)|) < 𝜖, 

where 𝜖 = 10−5 is the tolerance for the modeled problem. 

CODE VALIDATION 

In Table 1, comparison of Skin Friction Coefficient −𝑓′′(0) for 

different values of 𝛿 is displayed. The obtained results were compared

of results with those obtained by Andersson [14], Hayat et al. [15], and 

Ibrahim et al. [8]. The results of this study were in excellent agreement

with the previous works. From Table 1, it is observed that in friction 

coefficient is decreased by increasing the slip parameter. 

Table 2 shows that the skin-friction coefficient −𝑓′′(0) decreases 

by the increase of 𝐴. The effect of 𝛿 on Nusselt number −𝜃′(0)
decreases and Sherwood number −𝛽′(0) is the opposite of the Nusselt 

number. 

Table 3 presents the local Nusselt number and local Sherwood 

number for different values of thermophoresis parameter 𝑁𝑡, Brownian 

motion parameter 𝑁𝑏, and Biot number 𝐵𝑖. It is observed that when 𝑁𝑡
increases, both the local Nusselt number and local Sherwood number 

increases. When 𝑁𝑏 increases, both the values of local Sherwood 

number and the local Nusselt number decreases. When 𝐵𝑖 increases, the 

local Nusselt number increases and local Sherwood number decreases. 

Table 4 shows the numerical values (1 +
1

𝛾
) 𝑓′′(0), 𝜃′(0), and 

𝛽′(0). It is observed that the friction factor and the heat and mass 

transfer rates reduce with an increase in the slip parameter. When 

Casson parameter 𝛾  increases, the magnitude of the friction factor and 

the mass transfer rate diminish. For the case (0.3 ≤ 𝛾 ≤ 4), the heat 

transfer rate is enhanced, whereas the opposite results hold with the 

case (𝛾 → ∞). 

Table 5 shows the numerical values of rate of heat transfer and rate 

of mass transfer due to variation in the below stated parameters.

Table 1. Comparison of Skin Friction Coefficient 𝑓′′(0) for different values of slip parameter δ when M =A = 0, Bi = 10,000, and γ = 1,000. 

δ 
Andersson 

[14] 

Hayat et 

al. [15] 

Ibrahim and 

Shanker [8] 

Wubshet 

Ibrahim and 

Makinde [13] 

Present 

results 

0.0 1.0000 1.000000 1.0000 1.0000 0 .9999855 

0.1 0.8721 0.872082 0.8721 0.8721 0.8720812 

0.2 0.7764 0.776377 0.7764 0.7764 0.7763964 

0.5 0.5912 0.591195 0.5912 0.5912 0 .5912748 

2.0 0.2840 0.283981 0.2840 0.2840 0 .2841796 

5.0 0.1448 0.144841 0.1448 0.1448 0 .1450588 

10.0 0.0812 0.081249 0.0812 0.0812 0 .0814330 

20.0 0.0438 0.043782 0.0438 0.0438 0 .0439329 

50.0 0.0186 0.018634 0.0186 0.0186 0 .0186789 
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Table 2. Comparison of Skin Friction Coefficient−𝑓′′(0), local Nusselt number −𝜃′(0), and local Sherwood number −′(0) for different values of δ, γ,
and A when Nb = Nt = 0.1, Pr = Le = 10, Bi = 0.1, and M = 1. 

A δ γ 

−𝒇′′(𝟎) −𝜽′(𝟎) −′(𝟎)

[13] 
Present 

results 
 [13] 

Present 

results 
 [13] 

Present 

results 

0.0 0.1 10 1.1451 1.1414830 0.0922 0.0921669 2.0435 2.0434700 

0.1 1.0653 1.0653210 0.0923 0.0923036 2.0849 2.0848620 

0.2 0.9792 0.9791939 0.0924 0.0924430 2.1283 2.1282550 

0.3 0.8838 0.88382410 0.0926 0.0925826 2.1730 2.1730430 

0.9 0.1467 0.1466890 0.0934 0.0933622 2.4534 2.4533620 

1.5 -0.8188 -0.8188152 0.0940 0.0940005 2.7333 2.7333010 

2.0 -1.7623 -1.7622860 0.0944 0.0944359 2.9597 2.9597170 

2.4 -2.5944 -2.5944010 0.0947 0.0947337 3.1356 3.1356140 

0.4 0.2 0.6758 0.6757960 0.0925 0.0924937 2.1478 2.1477870 

0.4 0.5357 0.5356795 0.0921 0.0921433 2.0464 2.0464120 

0.6 0.4449 0.4449050 0.0919 0.0918827 1.9768 1.9767530 

0.8 0.3810 0.0934260 0.0917 0.0916797 1.9256 1.9255770 

0.4 0.1 0.0908 0.0907876 0.0916 0.0915679 1.9015 1.9014960 

0.5 0.2563 0.2563434 0.0920 0.0919709 2.0018 2.0018460 

1 0.3477 0.3477455 0.0921 0.0920584 2.0246 2.0245580 

10 0.5357 0.5356796 0.0921 0.0921433 2.0464 2.0464120 

100 0.5688 0.5688785 0.0921 0.0921503 2.0482 2.0481280 

Table 3. Comparison of local Nusselt number −𝜃′(0) and local Sherwood number −′(0)for different values of 𝑁𝑡,𝑁𝑏, and 𝐵𝑖  when 𝑃𝑟 = 7, 𝛾 =
100, 𝛿 = 𝐴 = 0.4 𝑎𝑛𝑑 𝐿𝑒 = 2. 

Table 4: Computed values of (1 +
1

𝛾
)𝑓′′(0), 𝜃′(0), and 𝛽′(0) with 𝛿,𝐵𝑖, 𝐴, 𝛾 for 𝑁𝑏 = 𝑁𝑡 = 0.1, 𝐸𝑐 = 𝜒 = 0.2, 𝑃𝑟 = 4.0 and  𝐿𝑒 = 5.0. 

Nt Nb Bi 

−𝛉′(𝟎) −′(𝟎)

[13] 
Present 

results 
[13] 

Present 

results 

0.1 0.1 0.5 0.3621 0 .3620915 0.6508 0 .6508213 

0.5 0.3383 0 .3382888 -0.0498 -0 .0497656

1.0 0.2856 0.2855649 -0.1853 -0.1852617

0.1 0.2 0.3349 0.3349248 0.7849 0.7849264

0.5 0.2212 0.2212252 0.8732 0.8731724

1.0 0.0467 0.0466859 0.8950 0.8949944

0.1 0.1 0.0931 0.0931472 0.8156 0 .8155568

0.5 0.3621 0.3620915 0.6508 0.6508211

1 0.5609 0.5608643 0.5328 0.5328193

5 0.9680 0.9679839 0.3031 0.3030508

10 1.0576 1.0575730 0.2550 0.2550032

20 1.1076 1.1076510 0.2286 0.228595

𝜹 𝑩𝒊 𝑨 𝜸 (𝟏 +
𝟏

𝜸
)𝒇′′(𝟎) −𝜽′(𝟎) −𝜷′(𝟎)

0 0.2 0.2 0.5 -2.1068 0.1083879 2.0288250 

1 0.2 0.2 0.5 -0.5570 0.1504452 1.4497390 

3 0.2 0.2 0.5 -0.2316 0.1501755 1.3227600 

0.2 0 0.2 0.5 -1.3252 0.0000000 1.7820560 

0.2 1 0.2 0.5 -1.3252 0.3868136 1.6708380 

0.2 3 0.2 0.5 -1.3252 0.5495870 1.6313440 

0.2 0.2 0 0.5 -1.554648 0.1150509 1.7133470 

0.2 0.2 1 0.5 0.000001 0.1722542 1.9661090 

0.2 0.2 3 0.5 4.881635 0.0558054 3.3755600 

0.2 0.2 0.2 0.3 -1.487385 0.1355280 1.7266590 

0.2 0.2 0.2 4 -0.980994 0.1360230 1.7457790 

0.2 0.2 0.2 ∞ -0.903319 0.1362902 1.7404570 
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Table 5: Numerical solution of −𝜃′(0), and −𝛽′(0) with 𝑁𝑏,𝑁𝑡, 𝜒 and 𝐸𝑐 for 𝛿 = 𝐵𝑖 = 𝐴 = 0.2, 𝛾 = 0.2,  𝑃𝑟 = 4.0,𝑀 = 1.0and 𝐿𝑒 = 5.0. 

𝐍𝐭 𝐍𝐛 𝛘 𝐄𝐜 −𝛉′(𝟎) −𝛃′(𝟎) 

0.1 0.1 0.2 0.2 0.1355178 1.7405510 

0.3 0.1 0.2 0.2 0.1310324 1.8341440 

0.5 0.1 0.2 0.2 0.1255335 1.9767680 

0.1 0.2 0.2 0.2 0.1245157 1.7400480 

0.1 0.4 0.2 0.2 0.0963147 1.7426440 

0.1 0.6 0.2 0.2 0.0614046 1.7447390 

0.1 0.1 -0.2 0.2 0.1365149 1.0101670 

0.1 0.1 0.0 0.2 0.1359263 1.4140470 

0.1 0.1 0.4 0.2 0.1352170 2.0185960 

0.1 0.1 0.2 0.0 0.1654778 1.6562840 

0.1 0.1 0.2 1.0 0.0086006 2.0899780 

0.1 0.1 0.2 1.3 -0.0422648 2.2265390 

RESULTS AND DISCUSSION 

The objective of this section was to analyze the numerical results 

displayed in the tabular and graphical form. The numerical influence of 

different parameters. For instance Prandtl number (𝑃𝑟), magnetic 

parameter (𝑀), Brownian motion parameter (𝑁𝑏), thermophoresis 

parameter (𝑁𝑡), Lewis number (𝐿𝑒), Slip parameter (𝛿), Biot mumber 
(𝐵𝑖), Eckert number (𝐸𝑐), chemical reaction parameter (𝜒) on the 

velocity profile, temperature profile, and concentration profile are 

displayed graphically.  

Impact of velocity ratio parameter 
Figure 2 designates that by enlarging 𝐴 (𝐴 >  1), the width of the 

hydrodynamic boundary layer increases, and vice versa. Physically, the 

ratio between free stream velocity and the stretching velocity is greater 

than 1 if stretching velocity becomes less than the free stream velocity. 

Consequently, flow velocity is increased when retarding force is 

decreased. 

Figure. 2. Velocity profile 𝑣𝑠 𝐴 when 𝑁𝑏 =  𝑁𝑡 = 0.5, 𝐿𝑒 = 2, 𝑃𝑟 = 𝑀 =
1, 𝐵𝑖 = 0.5, 𝛾 = 0.1, 𝛿 =  0.2, 𝐸𝑐 = 0.2 𝑎𝑛𝑑 𝜒 =  0.2. 

The effect of velocity ratio parameter 𝐴 on the temperature profile 

𝜃(𝜂) is presented in Figure 3. As we increase the value of velocity ratio 

parameter 𝐴, the temperature at the surface declines, and as a result, it 

also declines the thickness of the thermal boundary layer. 

Figure 4 demonstrates the concentration vs velocity ratio. As the 

concentration distribution decreases by increasing the velocity ratio 

parameter 𝐴. 

Figure. 3. Temperature profile 𝑣𝑠 𝐴 when 𝑁𝑏 =  𝑁𝑡 = 0.5, 𝐿𝑒 = 2, 𝑃𝑟 =
𝑀 = 1, 𝐵𝑖 = 0.5, 𝛾 = 0.1, 𝛿 =  0.2, 𝐸𝑐 = 0.2 𝑎𝑛𝑑 𝜒 =  0.2 

Figure. 4. Concentration profile 𝑣𝑠 𝐴 when 𝑁𝑏 =  𝑁𝑡 = 0.5, 𝐿𝑒 = 2, 𝑃𝑟 =
𝑀 = 1, 𝐵𝑖 = 0.5, 𝛾 = 0.1, 𝛿 =  0.2, 𝐸𝑐 = 0.2 𝑎𝑛𝑑 𝜒 =  0.2. 

Impact of Eckert number 
Figure 5 displays the influence of Eckert number 𝐸𝑐 on 

concentration profile. It is observed that the concentration of the fluid 

increase near the plate. However, it diminishes away from the surface 

as the value of Eckert number is enhanced. Figure 6 shows the effect of 

A = 0.2

A = 0.6

A = 1.0

A = 2.0

http://www.foxitsoftware.com/shopping
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Eckert number 𝐸𝑐 on the energy profile. Energy profile increases when 

increase Eckert number 𝐸𝑐. 

 
Figure. 5 Concentration profile vs  𝐸𝑐 when 𝑁𝑏 = 𝑁𝑡 = 0.1, 𝐿𝑒 = 2.0, 𝐴 =
0.4, 𝑃𝑟 = 5,𝑀 = 1,𝐵𝑖 = 0, 𝛾 = 0.1, 𝛿 = 0.2 and 𝜒 = 0.2. 

 

 
 

Figure. 6. Temperature profile vs  𝐸𝑐 when 𝑁𝑏 = 𝑁𝑡 = 0.1, 𝐿𝑒 = 2.0, 𝐴 =
0.4, 𝑃𝑟 = 5,𝑀 = 1,𝐵𝑖 = 0, 𝛾 = 0.1, 𝛿 = 0.2 and 𝜒 = 0.2. 

 
Impact of Lewis number 

Figure 7 shows the influences of Lewis number 𝐿e on the 

concentration profile 𝛽(𝜂). The concentration profile falls when we 

increase the values of Lewis number 𝐿𝑒. 

 
Figure. 7 Concentration profile vs 𝐿𝑒 when 𝑁𝑏 = 𝑁𝑡 = 0.1, 𝐴 = 0.4, 𝑃𝑟 =
5,𝑀 = 1, 𝐵𝑖 = 𝛾 = 0.1, 𝛿 = 0.2, 𝐸𝑐 = 0.2 and 𝜒 = 0.2 

 
Impact of Biot number 

Figure 8 demonstrates the impact of the Biot number on the 

temperature 𝜃(𝜂). We notice that the enhanced values of Biot number 

cause a higher energy and increasing the thermal boundary layer 

thickness. Physically, convective heating Bi can be calculated by 

dividing the convaction at the surface to the conduction on the surface 

of a body. The Biot number causes a decrease in the concentration 

profile as reflected in Figure 9. 

 
 
Figure. 8. Temperature profile vs Bi when Nb = Nt = 0.5, Le = 2, Pr = M 
= 1,γ = 0.1, δ = 0.2, A = 0.4, Ec = 0.2 and χ = 0.2. 
 

 
 

Figure. 9.Concentration profile vs  𝐵𝑖 when 𝑁𝑏 = 𝑁𝑡 = 0.1, 𝑃𝑟 = 5,𝑀 =
1, 𝐴 = 0.4, 𝛿 = 0.1,𝛾 = 𝐸𝑐 = 0.2  and 𝜒 = 0.2. 

 

Brownian motion parameter 
It is noticed from Figure 10 that as the value of 𝑁𝑏 increases, the 

thermal boundary layer thickens. The impact of Brownian motion 

parameter is witness in Figure 11 that the concentration profile 

increases by increasing the 𝑁𝑏. Consequently, the Brownian force 

increases the nanoparticle concentration at the surface. Thus, the 

concentration profile increases on the surface but it is found to decrease 

a bit away from the surface. 

 

 
Figure. 10. Temperature profile vs  𝑁𝑏 when 𝐵𝑖 = 0.5, 𝑁𝑡 = 0.5, 𝐿𝑒 =
2, 𝑃𝑟 = 𝑀 = 1, 𝛾 = 0.1, 𝛿 = 0.2, 𝐴 = 0.4, 𝐸𝑐 = 0.2, 𝜒 =  0.2  
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Figure. 11.  Concentration profile vs  𝑁𝑏 when 𝐵𝑖 = 0.5, 𝑁𝑡 = 0.5, 𝐿𝑒 =
2, 𝑃𝑟 = 𝑀 = 1, 𝛾 = 0.1, 𝛿 = 0.2, 𝐴 = 0.4, 𝐸𝑐 = 0.2, 𝜒 =  0.2  

 
Thermophoresis parameter 

Figure 12 includes the graphs of the temperature distribution in 

thermal boundary layer for various value of the 𝑁𝑡. It is noticed that if 

the thermophoresis increases, this causing an increase in 𝑁𝑡. Figure 13 

describes the influence of the 𝑁𝑡 on the concentration profile. 

Therefore, when the influence of the thermophoretic force is enlarged, 

the concentration profile on the surface declines, which is the opposite 

in nature to that of the case of the Brownian motion but it starts 

increasing when it is away from the wall. 

 

 
 
Figure. 12.Temperature profile vs  𝑁𝑡 when𝑁𝑏 = 0.5, 𝐿𝑒 = 2, 𝑃𝑟 = 𝑀 =
1, 𝐵𝑖 = 0.5, 𝛿 = 0.1, 𝐴 = 0.4, 𝐸𝑐 = 0.2 and 𝜒 = 0.2. 
 

 
 
Figure. 13.Concentration profile vs  𝑁𝑡 when𝑁𝑏 = 0.5, 𝐿𝑒 = 2, 𝑃𝑟 = 𝑀 =
1, 𝐵𝑖 = 0.5, 𝛿 = 0.1, 𝐴 = 0.4, 𝐸𝑐 = 0.2 and 𝜒 = 0.2. 

 
 

Chemical Reaction Parameter 
Figure 14 illustrates the impact of the chemical reaction on the 

temperature profile for different values. It increases by increasing the 

value of the chemical reaction parameter. Effect of 𝜒 on the 

concentration is shown in Figure 15. The concentration distribution 

increases with the increasing values of 𝜒 but a bit away from the surface 

it starts decreasing. 

 

 
 
Figure. 14.Temperature profile vs  𝜒 when 𝑁𝑏 = 𝑁𝑡 = 0.1, 𝐴 = 0.4, 𝑃𝑟 =
5,𝑀 = 1,,𝐿𝑒 = 2.0, 𝐵𝑖 = 0.1, 𝛾 = 0.1, 𝛿 = 0.2 and 𝐸𝑐 = 0.2. 
 

 
Figure. 15. Concentration profile vs 𝜒 when 𝑁𝑏 = 𝑁𝑡 = 0.1, 𝐴 = 0.4, 𝑃𝑟 =
5,𝑀 = 1,,𝐿𝑒 = 2.0, 𝐵𝑖 = 0.1, 𝛾 = 0.1, 𝛿 = 0.2 and 𝐸𝑐 = 0.2. 

 
 

Impact of slip parameter 
 

The effect of slip parameter 𝛿 on the dimensionless velocity 

profile 𝑓′(𝜂)is presented in Figure 16. Increasing the values of the slip 

parameter 𝛿 reduces the velocity field and particular boundary 

thickness as depicted in Figure 16. Figure 17 illustrates the variations 

of slip parameter 𝛿 on the dimensionless energy profile 𝜃(𝜂). It is noted 

that 𝜃(𝜂) has direct relation with 𝛿. Apparently, as 𝛿 mounts the lateral 

surface starts moving in y-direction, the energy profile 𝜃(𝜂) is 

increased. 

 
 

Figure 16. Velocity profile vs  𝛿 = 0.5,2,4,6,10 when 𝑁𝑡 = 𝑁𝑏 = 0.5, 𝐿𝑒 =
2, 𝑃𝑟 = 𝑀 = 1,𝐵𝑖 = 0.5, 𝛾 = 0.1, 𝐴 = 0.4, 𝐸𝑐 = 0.2  𝜒 = 0.2. 
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Figure 17. Temperature profile vs  𝛿 when 𝑁𝑡 = 𝑁𝑏 = 0.5, 𝐿𝑒 =
2, 𝑃𝑟 = 𝑀 = 1,𝐵𝑖 = 0.5, 𝛾 = 0.1, 𝐴 = 0.4, 𝐸𝑐 = 0.2  𝜒 = 0.2. 
 

 

Impact of Eckert number on Nusselt number and Sherwood 
number   

Figures 18 and 19 demonstrate the effect of Eckert number on 

local Nusselt number−𝜃′(0) and the local Sherwood number −𝛽′(0). 
From these figures, we observed that as the value of 𝐸𝑐 increases, the 

local Nusselt number −𝜃′(0) at the surface decreases. However, it 

decreases as the value of 𝐸𝑐 increases. Whereas the local Sherwood 

number −𝛽′(0) increases as the value of 𝐸𝑐 increases. 

 

 
Figure. 18.Graph of local Nusselt number vs (0) for different values of 

𝐸𝑐 when 𝑁𝑏 = 0.5, 𝐴 = 0.4, 𝑃𝑟 = 1, 𝛿 = 0.1,𝑀 = 1, 𝛾 = 01, 
𝐿𝑒 = 2 and 𝜒 = 0.2. 

 

 
Figure. 19. Graph of local Sherwood number −𝛽′(0)for different values 

of 𝐸𝑐 when 𝑁𝑏 = 0.5, 𝐴 = 0.4, 𝑃𝑟 = 1, 𝛿 = 0.1,𝑀 = 1, 𝛾 = 01, 𝐿𝑒 =
2 and𝜒 = 0.2. 

 

CONCLUSION 

 

On the basis of the analysis of solution, the following conclusions 

have been drawn. 

 

 Temperature and concentration are increased by enlarging 

thermophoresis parameter 𝑁𝑡. 
 For larger values of Lewis number 𝐿𝑒, Brownian motion 

Parameter 𝑁𝑏, and chemical reaction parameter 𝜒 , 

concentration field 𝛽(𝜂) shows decreasing behavior. 

 The increase in thermal and concentration Biot number 

results in the increase of temperature and concentration 

profile. 

 By increasing the thermophoresis parameter, this increases 

the concentration profile. 

 The velocity profile increases by increasing the velocity ratio 

parameter 𝐴 but the temperature and concentration profiles 

are decreased by increasing 𝐴. 

 Energy profile 𝜃(𝜂) increases by enlarging 𝐸𝑐. 

 Increasing the values of the slip parameter 𝛿 reduces the 

velocity field.  
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