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Abstract 

Malaysia, as one of the leading palm oil producers in the world faces problems in disposal of oil palm empty fruit 
bunch (EFB), which can be converted into various value-added products, including adsorbents. This study 
investigated the adsorption of phenol from its solution using biochar produced from EFB through carbonization. 
Response Surface Methodology (RSM) with Box-Behnken design was used to investigate the effects of three 
parameters (temperature, time and heating rate) during carbonization on phenol removal by the biochar produced. 
This was followed by process optimization based on statistical analysis. The results indicated that the optimized 
carbonization conditions were; 500 °C for temperature, 10 °C/min of heating rate and 80 min for reaction tim
which led to 7.57% of phenol removal. SEM revealed coarse and uneven surface of the biochar surface, with 
small degree of pore development. Comparison between FTIR spectrum of EFB and biochar revealed the loss 
water and hydroxyl compounds from EFB during carbonization. The lack of oxygenated groups (especially 
carbonyl groups) on the adsorbent surface as well as limited number of pores were the possible reasons leading 
to low phenol adsorption by biochar, therefore conversion of the biochar to activated carbon was necessary for 
higher adsorption performance. 

Keywords: Biochar, adsorption, empty fruit bunch, phenolic compounds, response surface 
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INTRODUCTION 

Treatment of various contaminants in industrial wastewater has 

been an important research topic, due to the their deterrent and 

irreversible effects to human health (S. Wong et al., 2018). 

Conversion of various biowastes into biochars (Sohaimi et al., 2017), 

activated carbons (AC) (Md Arshad et al., 2016; Yac’cob et al., 

2016), cryogel (Rusli et al., 2016), flocculant (Razak et al., 2016) and 

biosorbent (Ngadi et al., 2015) for wastewater treatment purpose has 

been an innovative way to reduce the amount of waste to be sent to 

landfill or require specialized treatment, as well as the costs of the 

mentioned materials compared to commercial production sources. In 

Malaysia, great attention is given to synthesis adsorbents from 

biowaste generated in palm oil industry, especially empty fruit bunch 

(EFB). As a main global producer of palm oil, Malaysia generates 

16.05 million tonnes of empty fruit bunch (EFB) per annum as agro 

waste (Anis et al., 2010). When it is handled inappropriately, EFB 

waste can cause environmental problems, including pollution of soil 

and water by degradation of chemical compounds contained in EFB 

(mainly via oxidation). Various processes that can convert EFB into 

useful products are studied, including biochar that can be used as 

adsorbent of phenolic compounds in wastewater (Zahangir et al., 

2007). Nevertheless, a meta-analysis performed by Alhashimi et al.

(2017) indicated that application of biochar could be more 

environmental friendly than that of activated carbon, due to lower 

carbon footprint generation during synthesis process . Thus, it is 

worthy to study the possibility on application of biochar in removal of 

phenol from simulated wastewater. 

As the performance of adsorbents is greatly influenced by several 

factors during the synthesis process, it is necessary to determine the 

optimum process conditions in synthesis step of biochar. Such 

objective can be achieved with the use of Response Surface 

Methodology (RSM), which is commonly used to study the effects of 

process variables on the targeted responses in chemical processes 

(Nabgan et al., 2017; S. L. Wong et al., 2016a) RSM enables the use 

of experiment design with minimum number of runs (leading to 

savings in time, materials and hence cost) to obtain reliable statistical 

data on the process (S. L. Wong et al., 2016b) RSM is also an 

effective technique in identification of significant factors in complex 

chemical processes, which enabling in effective optimization of the 

process (Mohamad et al., 2017). The potential of biochar as adsorbent 

was also explored by several research teams. Yavari et al. (2017)

successfully optimized the biochar production from EFB and rice 

husk for herbicides removal using Response Surface Methodology 

(RSM). The factors studied were included temperature (300-700 °C), 

heating rate (3-10 °C/min) and retention time (60-180 min). Another 

research group investigated the influence of temperature (400-700 

°C), heating rate (5-15 °C/min) and residence time (30-180 min) on 

biochar formation from EFB for removal of Zn from aqueous solution 

(Zamani et al., 2017). Experiment design and data analysis using 

RSM has been applied in many studies. However, optimization in 

production of biochar from EFB for phenol adsorption is still lacking 

in the literatures. This study was aimed to investigate the synthesis of 

biochar from EFB through carbonization in order to remove phenol 

from simulated wastewater. The effects of several reaction parameters 

in carbonization, namely temperature, heating rate and time on phenol 

adsorption by biochar from EFB were studied and optimized. The  
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textural properties and surface functional groups of the biochar were 

also investigated. 

MATERIAL AND METHODOLOGY 

Preparation of biochar from empty fruit bunch (EFB) for 
phenol removal 

The EFB sample was acquired from Malaysia Palm Oil Board 

(MPOB), while phenol of reagent grade was purchased from Sigma 

Aldrich. The EFB sample was washed and dried in open air, then 

crushed and sieved to obtain fibre particles with size greater than 2 

mm. For each experiment, the EFB sample was placed in a ceramic 

tube inside a horizontal tube furnace (CARBOLITE, UK). Purified 

nitrogen gas (99.995%) was flown into the ceramic tube at 1.5 L/min 

for 15 minutes to create an inert environment for carbonization. 

Thereafter, the EFB sample was carbonized according to the reaction 

parameters obtained from RSM. Prior to the analysis of phenol 

removal, the biochar samples were heated overnight at 105 °C for 

moisture removal. Each biochar sample, with the mass of 0.05g, was 

then mixed with 250 ml of synthetic phenol solution (0.5mM). Series 

of conical flasks were then sealed with parafilm and agitated for 6 

hours at 41°C and 165 revolutions per minute (rpm) to achieve 

adsorption equilibrium. The final concentration of phenol in each 

solution was then measured using UV spectrophotometer at 269.0 nm 

with the use of standard calibration curve. The percentage of phenol 

removal in each solution was then calculated according to Equation 1. 

Conversion = (C0- Ct)/C0 × 100%                      (1) 

Where  

C0  =  initial phenol concentration, 

Ct  = final phenol concentration.   

Design of experiment (DOE) 
According to literature, temperature, heating rate, and time are 

identified to be the significant factors in carbonization. Thus, RSM 

was used to determine the significance of these reaction parameters on 

the response, which was adsorption of phenol from water by the 

biochar. Optimization of phenol removal was also performed using 

RSM. Statistica 7 was used to generate Box-Behnken design that 

contained 17 experiments, each with different levels of reaction 

parameters. The parameters were coded as X1 (for temperature), X2

(for heating rate) and X3 (for time), and their levels were coded as (-1, 

0, +1). The ranges for each factor, as shown in Table I, were 

determined based on the previous studies (Acikgoz et al., 2009; Chen

et al., 2009; Razuan et al., 2010; Yavari et al., 2017; Zamani et al., 

2017), as well as the operational limits of the available equipment in 

the laboratory.  The reaction runs were randomized to minimize the 

effects of uncontrolled variables (variates). 

Table 1  Experimental range and levels coded of independent 
variables. 

Factors Symbol 

Range and level 

-1 0 +1 

Temperature 
(°C) 

X1 500 650 800 

Heating Rate 
(°C/min) 

X2 6.0 8.0 10.0 

Time (min) X3 40 80 120 

The phenol removals were fitted in a second order polynomial 

function to correlate the response with independent variables, as 

shown in Equation 2 (Zainudin et al., 2005). The application of this 

function helped to evaluate the linear, quadratic and interactive effects  

of the independent variables on the dependent variables. One-way 

ANOVA was used to investigate the significance of different 

parameters among different sets of biochars. Student's t-test was 

performed with p<0.05 probability levels. 

  
−

= +== =

+







++=

1

1 11

2

1

n

i

n

ij
jiij

n

i

n

i
iiiiio XXbXbXbbY                  (2) 

where  

Y = predicted response variable,  

bo = constant coefficient,  

bi = linear coefficient,  

bij = interaction coefficients,  

bii = quadratic coefficient,  

Xi and Xj are the independent process variables.  

The fitted model was  shown in Equation 3. 

Y = b0 + b1X1 + b2X2 + b3X3 + b11(X1)2 + b22(X2)2 + b33(X3)2 + 

b12X1X2 + b13X1X3 + b23X2X3                                            (3) 

Products characterizations 
The biochar obtained at optimized conditions was characterized. 

Micromeritics (ASAP 2020) was used for analysis of surface area and 

pore volume of the biochar. Nitrogen adsorption isotherms with 40-

point adsorption and desorption at 77 K was developed on the biochar 

for further analysis. Brunauer-Emmert-Teller (BET) equation gave the 

value of specific surface area while t-plot gave the value of micropore 

volume. Barret-Joyner-Halenda (BJH) model from this analysis gave 

the understanding on the pore size distribution. The surface 

morphology of the biochar was examined using a scanning electron 

microscope (SEM) (Hitachi, S-3400N). Fourier transform infrared 

analysis (FTIR) was performed using FTIR spectroscope (Perkin 

Elmer) from wavelengths 650 cm-1 to 4000 cm-1. 

RESULTS AND DISCUSSION 

Analysis of adsorption data 
The design matrix for the experiment, together with the predicted 

and actual response of the study, i.e. phenol removal, weretabulated in 

Table 2. A Parito plot was constructed to compare the observed values 

with predicted values for phenol removal, as shown in Fig. 1. The 

coefficient of determination (R2) from the plot was 0.9616, indicating 

that 96.16% of the data variation was accounted by the model. Thus, 

the model fulfilled the requirement as stated by Haaland (1989) where 

at least 75% of the data variability has to be explained by the model. 

The coefficients of the phenol removal model as proposed in Equation 

4 were estimated using multiple regression analysis, and 

theirvalidities were confirmed using analysis of variance (ANOVA). 

The analysis, as shown in Table 3, indicated that the F-value of phenol 

removal was 19.48, which was higher than the tabulated F-value 

(F0.05,9,7 = 3.68) at significant level of 0.05. Therefore, the proposed 

model gave good prediction at high confidence level (95%). It was 

noted that the coefficients for quadratic term of temperature, as well 

as interaction term between temperature and heating time (namely X1
2

and X1X3 respectively) were  0.00004 and - 0.00005, which were too 

small to be included in Equation 4.  

Y = 32.986 - 0.05X1 - 2.016X2 - 0.071X3 + 0.170(X2)2 - 0.002X1X2 + 

0.011X2X3                                                                                 (4)  
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Table 2  Design matrix for Box-Behnken design of three independent 
variables with the predicted and observed response values. 

Run 
No. 

Level 

Manipulated Variables Phenol Removal 

Temperature 
Heating 

rate 
Time Predicted Actual 

1 1 1 0 800 6 80 0.96 1.17 

2 1 -1 0 500 6 80 4.60 5.07 

3 0 1 -1 650 8 80 2.12 2.21 

4 0 0 0 500 10 80 7.58 7.37 

5 0 -1 -1 650 8 80 2.12 2.67 

6 1 0 1 800 8 120 0.97 1.12 

7 -1 0 1 650 6 120 1.47 1.11 

8 0 0 0 650 8 80 2.12 2.62 

9 0 0 0 800 8 40 0.97 1.08 

10 0 0 0 650 10 40 2.80 3.16 

11 1 0 -1 650 6 40 2.64 2.32 

12 -1 1 0 650 8 80 2.12 1.2 

13 0 0 0 500 8 40 5.01 4.86 

14 -1 -1 0 650 10 120 5.21 5.53 

15 0 0 0 650 8 80 2.12 1.89 

16 0 1 1 800 10 80 1.88 1.41 

17 -1 0 -1 500 8 120 6.27 6.16 

Fig. 1  Parito plot for phenol removal. 

Table 3. ANOVA of quadratic model for phenol removal. 

Sources Sum of 

Squares 

(SS) 

Degree 

of 

Freedom 

(d.f) 

Mean 

Squares 

(MS) 

F-

value 

F0.05 

Regression 

(SSR) 
63.21 9 7.02 19.48 >3.68 

Residual 2.52 7 0.36 

Total 

(SST) 
65.74 16 

In order to visualize the contribution of each factor, as well as 

their interactions, on phenol removal, a Pareto chart was produced 

together with the student’s t-distribution values and p-values of each 

term in Equation 4. A smaller p-value (below 0.05) and greater t-value  

indicated that the term was more significant in the model. According 

to Fig. 2, linear term associated with reaction temperature (X1) exerted 

the greatest effect on phenol removal, with the t-value of -10.999 and 

p-value of 0.000. This was followed by linear term of heating rate 

(X2), quadratic term of reaction temperature (X1
2), interaction between 

the linear terms of heating rate and reaction time (X2 X3) and 

quadratic term of heating rate (X2
2). All the values were taken at 97% 

significant level. 

Fig. 2  Pareto chart for phenol removal. 

Effect of Different Factors on the Phenol Removal 
Three-dimensional surfaces were plotted within the experimental 

range to show the effect of each factor, together with interaction 

effects between different factors, as shown in Fig. 3. In general, the 

phenol removal was increased when the carbonization temperature 

was lowered, as the EFB was transformed into non-graphitizable 

carbon during the process. Thus, low heat treatment was necessary in 

order to produce biochar with porous structure (Marsh et al., 2006). It 

was also found that phenol removal was increased along with the 

increasing of heating rate. However, the value was considered low 

compared to the range under study. In this range, volatile materials 

that contained heavy compounds with high C/H ratio have more time 

to repolymerize inside the activated carbon, thus leading to formation 

of tailored mesopores in the activated carbon (Asadullah et al., 2010). 

Greater amount of carbon with better pore-structure had tendency to 

adsorb more adsorbate, thus enhanced the phenol removal. On the 

other hand, reaction time has little effect on phenol removal. The 

interaction between different factors can be determined by observing 

their corresponding contour plots under the response surfaces. The 

elliptical nature of contour plot shown in Fig. 3(a) indicated that 

interaction between time and heating rate produced significant effect 

on phenol removal. On the other hand, the circular nature of contour 

plots as shown in Fig. 3(b) and 3(c) indicated that the interaction 

between time and temperature, as well as that between temperature 

and heating rate did not produce significant effect on phenol removal. 

The critical point found from the result of this study was a 

minimum point. However, it was desired to obtain reaction conditions 

within the ranges that could produce biochar with maximum phenol 

removal. Therefore, the reaction condition that could produce such 

result in the runs was used. Additional run on carbonization of EFB 

was performed with the reaction conditions as stated in Table 4, and 

the comparison was made between predicted and observed phenol 

removal. The deviation between the former and latter was - 2.51%, 

thus the optimum condition to produce highest phenol removal was at 

temperature of 500°C, heating rate of 10°C/min and heating time of 

80.27 min. However, the phenol adsorption capacity was still low 

compared to most adsorbents reported in literature, thus it was 
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necessary to investigate the adsorption performance of EFB-AC 

produced from activation of the biochar. 

Fig. 3  Surface plots of the combined (a) time and heating rate, (b) time 
and temperature, and (c) heating rate and temperature on the phenol 
removal. 

Table 4  Comparison between predicted and observed response at the 
optimum condition obtained from RSM. 

Temperature 
Heating 

rate 
Reaction 

time 
Predicted 

Observed 
phenol 
removal 

500°C 10°C/min 80.27 min 7.57 % 7.38% 

Characterization of biochar 
The surface morphology of the optimized biochar was shown in 

Fig. 4. The biochar surface was coarse, uneven, and swelling. Pore 

development was also observed on the biochar, but only to a small 

extent. The morphology of the biochar obtained in this study was 

similar to the biochar synthesized from EFB by Samsuri et al. (2013). 

The BET surface area and average pore diameter of the optimized 

biochar were 21.9 m2/g and 24.2 Å respectively. Such values indicat 

the limited pore development during carbonization stage. The result 

was in agreement with the work done by Chen et al. (2009), which 

revealed that the orange peels based biochar carbonized at different 

temperatures (i.e 150 °C to 500 °C) for 6 hours possessed BET 

surface area in the range of 7.75 - 42.40 m2/g. Meanwhile, the 

optimized biochar produced in this study had total pore volume of 

0.013 cm3/g and average pore width of 2.4 nm. Thus, filling of 

biochar pores by phenol was feasible, as the molecules could 

penetrate pores that bigger than 1 nm. Nevertheless, the low phenol 

adsorption by biochar suggested that pore filling was less significant 

in the process, most probably due to the limited number of pores as 

indicated by small pore volume. 

Chemical interaction between phenol molecules and biochar 

surface functional groups is another important factor in adsorption. 

The FTIR spectra for EFB and the optimized biochar were shown in 

Fig. 5, and the major bands identified for these two compounds were 

listed in Table V. All functional groups including O-H/N-H, C-H, 

C=O, C=C, C-H, C-O, C=N and C-H could be observed in raw EFB. 

However, disappearance of some functional groups after 

carbonization, including O-H/N-H, C-O and C=O groups could be  

observed from the figure. A band number between 1675 and 1575 cm-

1 as well as between 1460 and 1350 cm-1 which were assigned to C=C 

and C-H stretchings, respectively, were detected in both raw EFB and 

optimized biochar. The low band between 900 and 650 cm-1 were 

detected in both samples which were assigned to C-H bending in 

aromatic compounds. The lack of oxygenated groups in biochar was 

disadvantageous to phenol adsorption, which was believed to take 

place via donor-acceptor complex mechanism between the carbonyl 

groups and phenol’s aromatic ring (Mattson et al., 1969). In short, the 

textural properties and surface chemistry of the biochar was less 

favourable for phenol adsorption, hence it was necessary to convert 

the biochar to activated carbon for higher adsorption performance. 

Fig. 4  SEM micrograph of biochar (500°C, 10 °C/min, 0.3 min) (500x). 

Fig. 5  FTIR spectrum of EFB and biochar. 

http://www.foxitsoftware.com/shopping


Arshad et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 15, No. 1 (2019) 1-5 

5 

Table 5  Functional groups of EFB and biochar according to FTIR 
Spectrum 

FTIR spectra                     Corresponding functional groups 

EFB 

3355 O-H stretching, N-H stretching 

2920 C-H stretching 

1733 C=O stretching 

1606 C=C stretching, C=N stretching 

1423-1378 C-H stretching 

1235-1034 C-O stretching 

899-665 C-H bending 

Biochar 

1575 C=C stretching 

1376 C-H stretching 

874 C-H bending 

811 C-H bending 

754 C-H bending 

CONCLUSION 

The effects of carbonization process parameters of temperature, 

heating rate and carbonization time on removal of phenol were studied 

by application of Box-Behnken design. Temperature was found to 

exhibit the most significant effect on phenol removal. The best phenol 

removal was obtained at 500 °C, 10 °C/min and 80 min resulting in 

7.57 % removal. This experimental value was in agreement of 

predicted value by the model with deviation errors of 3.59 %. The 

BET surface area of biochar produced at optimum conditions was 

21.9 m2, total pore volume of 0.013 cm3/g and average pore width of 

2.4 nm. The morphology of biochar was consisted of irregular pore 

size distribution and pore arrangement. FTIR spectrum illustrated 

deduction in a few functional groups in biochar after EFB was 

carbonized at optimum conditions. The characterization results 

indicated less favourable conditions for adsorption of phenol onto the 

biochar, thus it was necessary to determine the performance of AC 

produced by activation of the biochar. 
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