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ABSTRACT 

One of the classic models of automata is finite automata, which determine whether a string belongs to a particular language or not. The string accepted 
by automata is said to be recognized by that automata.  Another type of automata, so-called Watson-Crick automata, with two reading heads that work 
on double-stranded tapes using the complimentary relation. Finite automata over groups extend the possibilities of finite automata and allow studying 
the properties of groups using finite automata. In this paper, we consider finite automata over some Abelian groups ℤn and ℤn × ℤn.  The relation of 
Cayley table to finite automata diagram is introduced in the paper. Some properties of groups ℤn and ℤn × ℤn in terms of automata are also presented in 
this paper. 

| Finite automata | Watson-Crick automata | Group | ℤn | ℤn × ℤn |  
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1. INTRODUCTION 

The theory of automata is a mathematical theory 
which studies abstract computing devices. The abstract 
computing devices are also called machines, which are used 
to accept an input or string by the transition rules. A symbol 
or string is said to be accepted by an automaton when the 
symbol or string can be scan or read by the automaton with 
certain transition rules.   There are many types of automata 
which have been discovered.  One type of automata is the 
finite automata, which is first studied by Stephen Kleene in 
1950 [1].   The strings accepted by this type of automata 
will be categorized as a regular language [1].  

Furthermore, there is another type of automata that is 
introduced in [2] namely the Watson-Crick automata, the 
automata which are based on the idea of finite automata, 
and are used to scan the complete DNA molecules.   
Watson-Crick automata are automata with two reading 
heads that works on double-stranded tapes using the 
complimentary relation.   One of the main features of these 
automata is that it can scan two strands of the input on 
corresponding positions which relates to a complementarity 
relation similar with the Watson-Crick complementarity of 
DNA nucleotides.  The two strands of the input are then 
separately scanned from the left to the right by reading only 
the heads that are controlled by a common state.  The result 
of the upper strand and the lower strand that scanned by 
Watson-Crick automata is then complementarily related to 
each other [3].   ' 

*Corresponding author at:  
E-mail address: ys_5017@hotmail.com (Gan Yee Siang) 

In group theory, the Cayley table is a square table 
that is constructed with the operation of addition or 
multiplication acting on it. It is used to arrange all the 
possible product of elements of finite groups with 
operations depending on the group given.  In order to study 
automata with groups, one of the ways is by marking each 
of the states of automata with certain element of the groups.  
Thus, the modified automata can now be used to recognize 
the data given by the Cayley table of the groups.  Therefore, 
the accepted data of each Cayley table can be recognized by 
an automaton diagram. 

From the data given in Cayley table of a group, an 
automaton diagram can be constructed.  Thus, a group can 
be said to be recognised by automata if an automaton 
diagram can be constructed from the data given in the 
Cayley table of the group.  Hence, the properties of the 
group can be analysed by using the automata diagram when 
the group is recognized by the automata.   

Therefore in this paper, the recognition of Cayley 
table by an automaton is studied modified finite automata 
are used to recognize the group ℤn by constructing the 
automata diagram from the data given in the Cayley table of 
the group.  Some examples of automaton diagram that 
accept group ℤn are also presented. 

Moreover, the features of these Watson-Crick 
automata of the complimentary relation are then used to 
recognize the group ℤn × ℤn by the automata diagram.  The 
group ℤn × ℤn is recognized by automata when the data 
given from Cayley table are accepted by the automata by 
construction of an automaton diagram.   

Finally, some theorems on the recognition of 
automata over groups ℤn and ℤn × ℤn are presented in this.  

http://www.ibnusina.utm.my/
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Some of the definitions that will be used throughout this 
paper are given in the following section. 
 
 
2. PRELIMINARIES  

 
The basic concepts of automata theory is studied under 

the field of formal language theory.  Below are some 
definitions and terms used in formal language theory.  
 
Definition 1 [4]: Alphabet 
A finite, nonempty set V of symbols is called an alphabet.   
 
Definition 2 [4]: String 
Any finite sequence of symbols from an alphabet is called a 
string. 
 
Definition 3 [4]: Language 
A language is a set of all strings of which are chosen from 
some V*, where V is a set of particular alphabets. 
 
Definition 4 [4]: Regular 
A language is called regular if and only if there exists some 
deterministic finite automaton M such that L = L (M). 
 
 A model can be expressed by or identified with a 
language [4].  The empty string which is a string with no 
symbol is denoted by ε.  If A is an alphabet, the symbol A* 
is used to denote the set of strings obtained by 
concatenating zero or more symbols from A.  Any subset of 
A* is called a language over A. 
 For the finite automata, the formal definitions of 
deterministic and nondeterministic finite automata are 
stated in the following. 
 
Definition 5 [4]: Deterministic finite automaton 
A deterministic finite automaton or DFA is defined by the 
quintuple 

M = (Q, ∑, δ, q0, F), 
where, 
Q is a finite set of internal states, 
∑ is a finite set of symbols called the input alphabet, 
 δ: Q x ∑ is a transition function, 
 q0 ∈ Q is the initial state, and 
 F ⊆ Q is a set of final states. 
 
Definition 6 [5]: Non-deterministic finite automaton 
A nondeterministic finite automaton or NFA is defined 
by the quintuple 

M = (Q, ∑, δ, q0, F), 
where, 
Q is a finite set of internal states, 
∑ is a finite set of symbols called the input alphabet, 
 δ is a transition function where δ ⊆{Q x (∑∪ {𝜆𝜆} x Q)} 
 q0 ∈ Q is the initial state, and 
F  ⊆Q is a set of final states. 
 
 

 For the automata with two reading heads, namely the 
Watson-Crick automata, the formal definition is given in the 
following. 
 
Definition 7 [2] Watson- Crick finite automata 
A Watson-Crick finite automaton is a 6-tuple  

M = (V,  𝜌𝜌 , K, s0, F, 𝛿𝛿  ), 
where,  
V is the alphabet of the automaton,  
K is a set of final states,  
𝜌𝜌 ⊆ V × V is a symmetric relation (the complementarity 
relation),  
s0 ∈ K is the initial state, 
F ⊆ K is the set of final states and  
𝛿𝛿: K × (V∗, V∗) → 2K is a mapping such that (s, (x, y)) ≠ ∅ 
only for finitely many triples (s, x, y) ∈ K × V∗ × V∗. 
 

To relate automata theory to groups, some definitions of 
group theory are given in the following.  
 
Definition 8 [6] Group 
A group G is a nonempty set represented as an ordered pair 
(G, *), where G is a set and * is a binary operation on G 
satisfying the following axioms: 

i. closure, 
ii. associativity, 
iii. identity, 
iv. inverse. 

Definition 9 [6] Monoid 
An algebraic structure (M, *) is said to be a monoid if it 
satisfies the following properties: 

i. closure, 
ii. associative, 
iii. identity. 

 
 In the next section, the relation of Cayley table to an 
automaton is studied. 
 
 
3. RELATION OF THE CAYLEY TABLE TO AN 

AUTOMATON  
 
A Cayley table is constructed by rows and columns 

which are labeled by the representatives.  The entry in row x 
and column y is the unique representative z such that z ≡ xy.  

The concept of constructing a diagram for an 
automaton from the given information in a Cayley table is 
similar to the concept of constructing a transition table from 
an automaton.  This method of constructing a transition 
table from an automaton is introduced in [1].  Now, an 
automaton can be constructed from any given transition 
table.   

With the information given in the transition table, an 
automaton diagram can be constructed.   For example, given 
a transition table of automaton A (table 1). 
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Table 1: Transition table of an automaton A 
 

* 1 2 
1 2 1 
2 2 3 
3 3 3 

 
This table can be accepted by a transition graph as 

shown in figure 1. 
 
 
 
 
 
   

Figure 1: Transition graph of an automaton A 
 
 

With the same concept of constructing the diagram 
for an automaton from a given transition table, the 
information in a Cayley table can be represented by a 
labeled directed graph called the Cayley graph of 
automaton. The Cayley graph of automaton is constructed 
using some vertices and some arrows which are pointed 
from one vertex to another by labeled edge eij.  That is, for 
the representation y ≡ xa, for some vertex x and a ∈ A, then 
some arrows pointing from x into y by labeled edge as a can 
be drawn [1].   

By the information given in the Cayley table (Table 
2), a Cayley graph of an automaton can be constructed. 
 
 

Table 2: Cayley table of an automaton B 
 

 ε a b 
ε ε a b 
a a a a 
b b b b 

 
Figure 2 shows an example of Cayley graph of an 

automaton using the information given in Table 2. 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

Figure 2: Cayley graph of an automaton B 
 

 Next, the recognition of the automaton for groups ℤn 
and ℤn× ℤn are discussed in the following section.   
 

 
4. AUTOMATA DIAGRAM FOR SOME ABELIAN 

GROUPS  ℤn AND  ℤn x ℤn 

 In the study of automata over groups, one can 
determine whether the groups can be recognized by some 
automata.  Now, consider the group (ℤn, +, 0).  It can be 
concluded that (ℤn, +, 0) is an abelian group where 0 is the 
identity element of the group.  Thus, a Cayley table for the 
group (ℤn, +, 0) can be obtained.  From the table, one can 
determine whether the group can be accepted by finite 
automaton.  A group can be accepted by an automaton if a 
Cayley graph can be drawn from the Cayley table of the 
group.  Therefore, an automaton diagram can be constructed 
from the given Cayley table. 
 To recognize the data given in the Cayley table of 
groups (ℤn, +, 0), modified deterministic finite automata is 
used, as mentioned in Definition 10.  The definition of the 
Modified finite automata is given in Definition 10. 
 
Definition 10: Modified deterministic finite automaton 
For a group K of (ℤn, 0, +).  A modified deterministic finite 
automaton is defined as  

M = (Q, ∑, K, δ, q0, F), 
where,  
Q is a finite set of internal states, 
∑ is a finite set of symbols called the input alphabet, 
q0 ∈ Q is the initial state, 
F ⊆ Q is a set of final states. 
such that Q, ∑ ⊆ K, with transition function,  

δ: Q ∗ ∑                Q, 
and binary operation ∗ defined as q ∗ b = (q + b) mod n  for 
q ∈ Q , b∈ ∑. 
 
 The groups (ℤ2, +, 0), (ℤ3, +, 0) and (ℤ4, +, 0) that 
are recognized by an automaton are shown in Example 1, 2 
and 3 respectively. 
 
Example 1:  
 
For the group ℤ2 = {0, 1}, the Cayley table for ℤ2 is shown 
in Table 3. 
 
  Table 3: Cayley table for ℤ2 
 

+ 0 1 
0 0 1 

1 1 2 
 
Then from the data that given in the Cayley table (Table 3), 
the group  ℤ 2 can be recognized by an automaton diagram 
as shown in Figure 3. 
 
 

ε 

a 

b 

a 

b 

ε, a, b 

ε,a,b 

ε 

1 

1 1, 2 2 

1 2 3 
2 
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Figure 3: Automaton diagram for ℤ2 
 
Example 2:  
 
For the group ℤ3 = {0, 1, 2}, the Cayley table for ℤ3 is 
shown in Table 4. 
 

Table 4: Cayley table for ℤ3 

 
+ 0 1 2 
0 0 1 2 
1 1 2 0 
2 2 0 1 

 
Then the group ℤ 3 can be recognized by an automaton 
diagram as shown in Figure 4. 
 
 

 
 
 

   
 

 
 
 
 

 
 
 

Figure 4: Automaton diagram for ℤ3 
 
 Next is the example for the group  ℤ4. 
 
Example 3:  
 
For the group ℤ4 = {0, 1, 2, 3}, the Cayley table for ℤ4 is 
shown in Table 5. 
 
 

Table 5:  Cayley table for ℤ4 
+ 0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2 

 
Then the group  ℤ 4 can be recognized by an automaton 
diagram as shown in Figure 5. 
 
 Now, we consider for the case of ℤn× ℤn.  This group 
cannot be recognized by modified deterministic finite 
automata.  Therefore, in order for the group ℤn× ℤn to be 

recognized by automata, the concept of Watson-Crick finite 
automata is used to relate the group ℤn× ℤn to automata 
theory.  The complimentarily relation in Watson-Crick finite 
automata plays an important role in order to recognize the 
direct product of the abelian group ℤn. ie, ℤn× ℤn.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: Automaton diagram for ℤ4 

 
   
 Similarly, in order to recognize the group ℤn× ℤn, an 
automaton diagram must be constructed from the data given 
in the Cayley table of group ℤn× ℤn.  To recognize the data 
from Cayley table of group (ℤn× ℤn, 1, 0), the automata that 
used are called modified Watson-Crick finite automata. 
Following is the definition of modified Watson-Crick finite 
automata which is used to recognize the group ℤn× ℤn. 
 
Definition 11: Modified Watson-Crick finite automata 
For a group K of (ℤn× ℤn, (0, 0), +).  A modified Watson-
Crick finite automaton is defined as 7-tuple  

     M = (∑,  𝜌𝜌, Q, K, s0, F, 𝛿𝛿  ), 
where,  
∑ is the alphabet of the automaton,  
Q is a set of final states,  
𝜌𝜌 ⊆ ∑ × ∑ is a symmetric relation (the complementarity 
relation),  
s0 ∈ Q is the initial state, 
F ⊆ Q is the set of final states,  
such that 𝜌𝜌, Q ⊆ K, with transition function 

𝛿𝛿: Q ∗ (∑∗, ∑∗) → Q  
is a mapping such that (s, (x, y)) ≠ ∅ only for finitely many 
triples (s, x, y) ∈ Q ∗ (∑∗ × ∑∗).  The binary operation “∗” 
defined as A ∗ B = ((a1 + b1) mod n, (a2 + b2) mod n) for 
(a1, a2) ∈ A, (b1, b2) ∈ B, A ∈ Q, and B ∈ 𝜌𝜌. 
 
 Hence, the data given in the Cayley table for group 
(ℤn× ℤn, (0, 0), +) can be recognized by an automaton 
diagram by using the modified Watson-Crick automata.  
The example for group ((ℤ2 × ℤ2), (0, 0), +) recognized by 
the modified Watson-Crick automata can represented as an 
automation diagram as shown in Example 4. 
 
Example 4:  

0 

0 

0 1 

3 2 

0 

0 

1 

3 

3 

3 

3 1 

1 

1 

2 

2 

2 

2 

0 

2 

1 2 
0 

1 

0 

0 

2 

1 

1 

2 

1 
0 0 0 1 

1 
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Given a group ((ℤ2 × ℤ2), (0, 0), +) where ℤ2 × ℤ2 = {0, 1} x 
{0, 1}.  Then, (ℤ2 × ℤ2) = {(0, 0), (0, 1), (1, 0), (1, 1)}.  
Hence, the Cayley table for ℤ2 × ℤ2 is shown in Table 6. 
 

Table 6: Cayley table for ℤ 2 ×  ℤ 2 

 
+ (0,0) (1,0) (0,1) (1,1) 

(0,0) (0,0) (1,0) (0,1) (1,1) 
(1,0) (1,0) (0,0) (1,1) (0,1) 
(0,1) (0,1) (1,1) (0,0) (1,0) 
(1,1) (1,1) (0,1) (1,0) (0,0) 

 
Thus, an automaton diagram can be drawn from Table 6 as 
shown in Figure 6. 
 
 
 
 
 
 
 

 
 
 

 
 
 

Figure 6: Automaton diagram for ℤ2 x ℤ2 

 

 
6. SOME PROPERTIES OF ABELIAN GROUPS  

ℤn AND ℤn x ℤn IN TERMS OF AUTOMATA 

 After analyzing on the automaton diagram that 
recognize groups ℤn and ℤn x ℤn in Section 5, some theorems 
for the properties of groups in terms of automata are 
obtained.  Lemma 1, Theorem 2 and 3 are obtained from 
analyzing the automaton diagram recognized by the group 
ℤn, while Lemma 2, Theorem 3 and 4 are obtained from 
analyzing the automaton diagram recognized by the group 
ℤn x ℤn. 
 
Lemma 1: 
If there exist a self-loop transition for each of the states, 
then there is an identity element of the abelian group of (ℤn, 
0, +) in the edge of the self-loop transition.  i.e., eij is the 
identity if i = j for i, j ∈ ℤ. 
 
Proof: 
Let eij = b such that b = {bk | δ (ai, bk ) = aj, for all ai, aj ∈ Q 
and bl ∈ ∑}.  The transition function δ (ai, bk ) = aj is defined 
as δ (ai, bk ) = ai ∗ bk  and the binary operation ‘∗’ is defined 
as ai ∗ bk  = (ai + bk ) mod n.  Thus, (ai + bk) mod n = aj.   

Suppose that i = j.  So, ai = aj.  Therefore, (ai + b) 
mod n = ai.  Hence, ai ∗ b = ai.  Since ai and b are element 

of abelian group, then ai ∗ b = b ∗ ai.  So, ai ∗ b = b ∗ ai = ai.  
Thus, b = eij is the identity element if i = j. 
 
Theorem 1: 
If a group (ℤn, 0, +) can be recognized by a modified 
deterministic finite automata, there exist a complete graph 
with a self-loop transition for each state and n states of (n – 
1) transition function with δ (ai, bk ) = aj such that ai ≠ aj for 
ai, aj ∈ Q,  bk ∈ ∑ for n  ≥ 1 and i, j, k ∈ ℤ. 
 
Proof: 
By induction, for n = 1, we have a group of (ℤ1, 0, +).  
Thus, ℤ1 has only one element.  ℤ1 = {0}, where 0 is the 
identity element of group ℤ1.  Then from Lemma 1, it has a 
transition function, δ such that δ (0, b) = 0, where b is the 
element on the edge of self-loop transition.  Therefore, there 
exist a self-loop transition for the only state and there also 
exist (1 – 1) number of transition function δ (ai, bl) = aj such 
that ai ≠ aj for ai, aj ∈ Q and bl ∈ ∑.  Hence, the statement is 
true for the case when n = 1. 

Next, by assuming n = k is true. Thus, the group of 
ℤk has k number of elements and k number of states with (k 
– 1) number of transition function δ (ai, bl) = aj such that ai 
≠ aj for ai, aj ∈ Q and bl ∈ ∑.  Hence, ℤk will have a total 
number of (k2 – k) transition function, δ, with δ (ai, bl) = aj 
such that ai ≠ aj for ai, aj ∈ Q and bl ∈ ∑. 

Now, let n = k + 1.  Then ℤk + 1 should have a total 
number of (k + 1)2 – (k + 1) transition function δ (ai, bl) = aj 
such that ai ≠ aj for ai, aj ∈ Q, bl ∈ ∑.  That means it will 
have (k2 + k) number of transition function δ (ai, bl) = aj 
such that ai ≠ aj for ai, aj ∈ Q and bl ∈ ∑.   

So, for the case n = k + 1, ℤk + 1 has k number of state 
and one additional state of (k + 1).  Thus, ℤk + 1 has 
additional of one self-loop transition function at the state of 
(k + 1) and k numbers of transition from each of k number 
of states to state of (k + 1).  Hence, for case n = k + 1, ℤk + 1 
has (k2 – k) + (k – 1) + (k + 1) number of transition δ (ai, bl) 
= aj such that ai ≠ aj for ai, aj ∈ Q and bl ∈ ∑.  That is, ℤk + 1 
has (k2 + k) number of transition function δ (ai, bl) = aj such 
that ai ≠ aj for ai, aj ∈ Q, bl ∈ ∑. 

Therefore, it is also true for the case n = k + 1.  
Therefore, the statement is true for all n ≥ 1. 
 
Lemma 2: 
If there exist a self-loop transition for each of the states, 
then there is an identity element of the abelian group of (ℤn 
x ℤn), (0, 0), +) in the edge of the self-loop transition.  i.e., 
eIJ is the identity if I = J for I, J ∈ ℤ. 
 
Proof: 
From modified Watson-crick automata, the transition 
function is defined as δ: Q ∗ 𝜌𝜌 → Q.   Suppose that there 
exist a self-loop transition for each of states, such that δ (AI, 
eIJ) = AJ for I = J.  Thus, we have δ (AI, eII) = AI.  Therefore, 
δ (AI, eII) = AI ∗ eII = ((a1 + b1) mod n, (a2 + b2) mod n) for 
(a1, a2) ∈ AI , (b1, b2) ∈ eII,  AI ∈ Q, eII ∈ 𝜌𝜌. 
Hence, 
((a1 + b1) mod n, (a2 + b2) mod n) = (a1 mod n, a2 mod n) 

(0,0) 

(1,1) 

(0,0) 

(0,0) 

(0,0) 

(1,0) 

(1,1) 

(1,0) 

(1,0) 

(0,1) 

(1,1) 

(0,1) 

(1,1) 

(0,1) (0,1) 

 
(1,0) 

   (0,0) (1,0) (0,1) (1,1) 
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So,  
 a1 mod n = (a1 + b1) mod n                      (1) 
 a2 mod n = (a2 + b2) mod n                      (2) 
 

From (1) and by properties of modulo arithmetic, we get  
a1 mod n = (a1 + b1) mod n 
   = a1 mod n + b1 mod n. 

Thus,  
b1 mod n = a1 mod n – a1 mod n 
   = (a1– a1) mod n 
   = 0. 

Similarly for (2), we have   
a2 mod n = (a2 + b2) mod n 
   = a2 mod n + b2 mod n 

 
Thus,  

b2 mod n = a2 mod n – a2 mod n 
   = (a2 – a2) mod n 
   = 0. 

For δ (AI, eIJ) = AJ, AJ ∗ eIJ  = AJ for AI ∈ Q, eIJ ∈ 𝜌𝜌.  Thus, 
eIJ  = (b1mod n, b2 mod n)  
     = (0, 0) 

Hence,  
((a1 + 0) mod n, (a2 + 0) mod n) = (a3 mod n, a4 mod n) for 
(a1, a2) ∈ AI , (a3, a4) ∈ AJ , (b1, b2) ∈ eII,  AI, AJ ∈ Q, eIJ ∈ 𝜌𝜌. 
Then,(a1 mod n, a2 mod n) = (a3 mod n, a4 mod n), implies 
that, AI = AJ.  Also, the AI and eIJ are the element of abelian 
group (ℤn x ℤn).  Therefore, 

AI ∗ eII = eII ∗ AI = AI. 
Hence, eIJ = (b1, b2) is the identity element of (ℤn x ℤn) if I = 
J. 
 
Theorem 2: 
If a group of ((ℤnx ℤn), (0, 0), +) can be recognized by 
modified Waston-Crick finite automata, there exist a 
complete graph of one self-loop transition for each state and 
n2 number of state of (n2 – 1) transition function with δ (ai, 
bk ) = aj such that ai ≠ aj for ai, aj ∈ Q,  bk ∈ 𝜌𝜌  for n  ≥ 1  and 
and i, j, k ∈ ℤ. 
 
Proof: 
By induction, for n = 1, group (( ℤ1 x ℤ1), (0, 0), +) = {(0, 
0)}.  Hence by Lemma 2, there exist a self-loop transition 
such as δ ((0, 0), (0, 0)) = (0, 0) and (1 – 1) number of 
transition with δ (ai, bk ) = aj such that ai ≠ aj for ai, aj ∈ Q,  
bk ∈ 𝜌𝜌.  Therefore, the statement is true for n = 1. 
 By assuming that n = k is true.  Thus (( ℤk x ℤk), (0, 
0), +) = {(0, 0), (0, 1), … , (0, k), (1, 0), …, (k, k)}.  So, (ℤk 
x ℤk) has a total number of k × k states.  From the states, the 
following transition can be obtained: 
 
       (0, 0) → (0, 0) 
   → (0, 1) 
         . 
         . 
         . 
   → (k, k) 
       (1, 0) → (0, 0) 

   → (0, 1) 
         . 
         . 
         . 
   → (k, k) 
        (k, k) → (0, 0) 
   → (0, 1) 
         . 
         . 
         . 
   → (k, k). 
 
 Therefore, (ℤk x ℤk) has a total number of k4 
transition functions.   
 By Lemma 2, there exists a self-loop transition for 
each of the states.  Thus, each states have (k2 – 1) transition 
function with δ (ai, bk ) = aj such that ai ≠ aj for ai, aj ∈ Q,  bk 
∈ 𝜌𝜌.  Therefore, there is a total number of (k4 – k2) transition 
function with δ (ai, bk ) = aj such that ai ≠ aj for ai, aj ∈ Q,  bk 
∈ 𝜌𝜌. 
 Suppose for the case n = k + 1,  (ℤk + 1 x ℤk + 1) 
should have a total number of (k + 1)2 – (k + 1) transition 
function with δ (ai, bk ) = aj such that ai ≠ aj for ai, aj ∈ Q,  bk 
∈ 𝜌𝜌.  That is, 
  (k + 1)4 – (k + 1)2 

= ((k + 1)(k + 1))2 – (k + 1)2 
= (k2 + 2k + 1) (k2 + 2k + 1) – (k2 + 2k + 1) 
= k4 + 4k3 + 5k2 + 2k. 

Hence it should have k4 + 4k3 + 5k2 + 2k number of 
transition function with δ (ai, bk ) = aj such that ai ≠ aj for ai, 
aj ∈ Q,  bk ∈ 𝜌𝜌.  
 Now, for the case n = k + 1, (ℤk + 1 x ℤk + 1) has k2 
numbers of states and an addition of (((k + 1) (k + 1)) – k2) 
number of states.  Since there is an addition of (k2)((k + 1) 
(k + 1) – k2) number of transition function in k2 numbers of 
states and there is ((k + 1) (k + 1))((k + 1) (k + 1) – k2)) 
number of transition function for (((k + 1) (k + 1)) – k2) 
number of states.  Therefore, it has a total number of k4 + k2 

(k + 1)2 – k2 + ((k + 1) (k + 1)) ((k + 1) (k + 1) – k2)). That 
is, 
k4 + k2(k2 + 2k + 1 – k2) + (k2 + 2k + 1) (k2 + 2k + 1 – k2) 
= k4 + (k2)(2k + 1) + ((k + 1)(k + 1))(2k + 1) 
= k4 + (2k3 + k2) + (k2 + 2k +1)( 2k + 1) 
= k4 + 4(k3) + 6k2 + 4k + 1. 
 

By Lemma 2, each of the states has a self-loop 
transition function.  Hence, there exists (k2 + 2k + 1) number 
of self-loop transition for case of (( ℤk + 1 x ℤk + 1), +).  Thus, 

     k4 + 4(k3) + 6k2 + 4k + 1 – (k2 + 2k + 1) 
     = k4 + 4(k3) + 6k2 + 4k + 1 – k2 – 2k – 1) 
     = k4 + 4k3 + 5k2 + 2k. 

Therefore, there is a total number of k4 + 4k3 + 5k2 + 
2k transition function with δ (ai, bk ) = aj such that ai ≠ aj for 
ai, aj ∈ Q,  bk ∈ 𝜌𝜌 for the case when n = k + 1.  That is same 
as predicted.   

Hence, the statement is true for n ≥ 1 and i, j, k ∈ ℤ.  
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7.  CONCLUSION  
 
 In this paper, the concept of relation of Cayley table 
to automata is studied. Groups are said to be accepted by an 
automata if an automaton diagram can be constructed by the 
data given in the Cayley table of groups.  Here, the groups 
ℤn and  ℤn x ℤn are accepted by the modified deterministic 
finite automata and modified Watson-Crick finite automata 
respectively.  Furthermore, some examples on the finite 
automaton diagram which can be used to recognize groups 
ℤ2, ℤ3, ℤ4 and ℤ2 x ℤ2 are presented.  Some theorems for 
some properties of groups ℤn and  ℤn x ℤn in terms of 
automata are also given in this paper together with their 
proofs. 
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