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Abstract 
 
Present study considers the mathematical model of free convection boundary layer flow and heat 
transfer in a nanofluid over a solid sphere with viscous dissipation effect. The transformed partial 
differential equations are solved numerically using the Keller-box method. The numerical values for 
the reduced Nusselt number, reduced Sherwood number and the reduced local skin friction 
coefficient are obtained, as well as concentration profiles, temperature profiles and velocity profiles 
are illustrated graphically. Effects of the pertinent parameters, which are the Prandtl number, 
buoyancy ratio parameter, Brownian motion parameter, thermophoresis parameter, Lewis number 
and Eckert number are analyzed and discussed. It is found that the increase of Brownian motion 
parameter promoted the reduce of concentration boundary layer thickness while thermophoresis 
parameter did oppositely. It is worth mentioning that the results reported here are important for the 
researchers working in this area which can be used as a reference and comparison purposes in the 
future. 
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INTRODUCTION 
 

Nanofluid is a based fluid which contains nanoparticles, for 

example Ti02, Al203 and CuO. Nanofluid is well known and proven in 

enhancing the thermal conductivity, viscosity, thermal diffusivity and 

convective heat transfer compared to its based fluids such as water or 

oil (Wong and De Leon, 2010). Further, the small amount of 

nanoparticles that immersed in a nanofluid can reduce the chances of 

sedimentation and also minimize the rate of erosion onto component 

surface. Therefore, there will be less or no damaging which can prolong 

the life time onto component. Besides, less sedimentation means no 

clogging and this characteristic will specialize nanofluid to be 

employed in microchannel applications, for example in automotive 

turbocharger cooling system (Mohamed, 2017). 

Nanofluid is employed in many applications, for example in 

industries as a coolant medium in tyre production, in automotives as a 

coolant in car radiator, brake fluid and fuel catalyst to improve engine 

combustion, in medicines as a drug vehicle for cancer therapeutics and 

also acts to cool the microchip in electronic devices (Wong and De 

Leon, 2010). The widely contributions have attracted many researchers 

to investigate the convective flow in a nanofluid as done recently by 

Anwar et al. (2016), Khan (2017), Kho et al. (2017), Mohamed et al. 

(2016; 2018), Abro et al. (2018) and Gul et al. (2018).  

The boundary layer flow on a solid sphere is applied in many 

industrial applications, such as the spherical storage tanks, 

turbocharged ball bearing in automotives, the packed beds in a chemical 

reactor or distillation process and in many electronic components that 

nearly spherical. Chiang et al. (1964) are the first who analyzed the free 

convection on a sphere where the laminar flow is considered. Amato 

and Tien (1972) have done the experimental studies on isothermal 

spheres in water. The experimental results showed a very good 

agreement with predictions of Acrivos’ theory. Lien and Chen (1986) 

done the analysis on forced convection flow on a permeable sphere 

while Huang and Chen (1987) investigated this topic with the effects of 

suction and blowing. Next, Jafarpur and Yovanovich (1992) and Jia and 

Gogos (1996) solved the problem of laminar free convective from an 

isothermal sphere by using false transient algorithm and the new 

analytical method, respectively. This problem is then extended to other 

types of fluid like micropolar fluid by Nazar et al. (2002a; 2002b) and 

Alkasasbeh et al. (2014a; 2014b), Bingham plastic by Nalluri et al. 

(2015), while Kasim et al. (2013) and Abdul Gaffar et al. (2015) 

covered the viscoelastic fluid. Next, the mixed convection around a 

heated and cooled sphere is investigated by Gopmandal  and 

Bhattacharyya (2011). It is found that the heated sphere delays the flow 

separation and enhances the drag coefficient as well as the rate of heat 

transfer. Further, the convective flow on a solid sphere with Newtonian 

heating is investigated by Salleh et al. (2010; 2012). 

In all investigations mentioned above, the viscous dissipation 

effects are neglected. The viscous dissipation may be described as the 

induced kinetic energy from body that is converted into thermal energy. 

It is usually presented in free convection with large deccelarations from 

high rotating speeds and also in highly viscous flow with moderate 

velocity (Gebhart, 1962). Recent investigations on viscous dissipation 

effects are including the works by Mabood et al. (2016), Ugur Akbulut 

et al. (2017) and Zokri et al. (2017; 2018). 

Inspired by the given literatures, present study objective is to solve 

the free convective boundary layer flow on a solid sphere in a nanofluid 

with viscous dissipation effects. The effects of nanoparticle random 
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motion in nanofluid, temperature diffusivity and ratio between the 

temperature diffusivity over mass diffusivity are interest phenomenas 

considered. Therefore, the nanofluid Buongiorno-Darcy model is 

suitable to be applied (Buongiorno, 2006). From the best of our 

knowledge, this problem especially related to viscous dissipation effect 

is never been discussed before, hence the reported results are new.   

MATHEMATICAL FORMULATIONS 

The solid sphere with radius ,a which is heated to a constant 

temperature wT embedded in a nanofluid with ambient temperature T

is considered. The physical model is shown in Fig 1. The orthogonal 

coordinates of x are measured along the sphere surface, starting from 

the lower stagnation point 0,x  and y measures the distance normal 

from the surface.   sin
x

r x a
a

 
  

 
is the radial distance from the 

symmetrical axis to the sphere surface. The suggested dimensional 

governing equations according to Nazar et al. (2002a) and Salleh et al. 

(2010) are: 
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subject to the boundary conditions  

( ,0) ( ,0) 0, ( ,0) , ( ,0) ,w wu x v x T x T C x C   

( , ) 0, ( , ) , ( , )u x T x T C x C      

                 (5) 

where u and v are the velocity components along the 

x and y axes, 

respectively,  is the dynamic viscosity,  is the kinematic viscosity, 

g is the gravity acceleration,  and c are the thermal and 

concentration expansion coefficients, T is the local temperature,

 is 

the fluid density and pC is the specific heat capacity at a constant 

pressure. Furthermore, C is the nanoparticle volume fraction, 

wC and 

C are the surface and ambient nanoparticle volume fraction 

,C

respectively. 

The Eqs. (1)-(4) are in dimensional form and will transform to non-

dimensional. Then, the following non-dimensional variables are 

introduced:  
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, ( ) , ( ) .
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w w
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r T T C C
r

a T T C C

 

   

 

 

 

   
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 

(6) 

where  and  are the rescaled dimensionless temperature and 

nanoparticle volume fraction of the fluid and
3

2

( )w
x

g T T a
Gr








is 

the Grashof number. Using Eq. (6), Eqs. (1)-(4) become 
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where Pr



 is the Prandtl number, 

( )B w
b

D C C
N






 is the 

Brownian motion parameter, 
( )T w
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 is the thermophoresis 

parameter and 
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a C T T
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

is the Eckert number. Notice that 

,  the boundary conditions (5) become 

( ,0) 0, ( ,0) 0, ( ,0) 1, ( ,0) 1,

( , ) 0, ( , ) 0, ( , ) 0

u x v x x x

u x x x

 

 

   

     
             (11) 

In order to solve the partial differential Eqs. (7)-(10), the following 

functions are introduced:  

( ) ( , ), ( , ), ( , ),xr x f x y x y x y      
    

(12) 

where  is the stream function defined as 
1

u
r y





and 

1
v

r x


 



which identically satisfies Eq. (7). Substituting Eq. (12) into Eqs. (7)-

(10), the following partial differential equations are obtained: 
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B

Le
D


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x
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  are the Lewis number and the buoyancy 

ratio parameter, respectively. Notice that 
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The skin friction coefficient ,fC the local Nusselt number xNu

and the local Sherwood number xSh are given by 

2
, , .

( ) ( )

w w w
f x x

w B w

aq aj
C Nu Sh

U k T T D C C



   
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 

       (17) 

and the surface shear stress ,w the surface heat flux wq and the 

surface mass flux wj are given by  

0 0 0

, , ,w w w B

y y y

u T C
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y y y
  
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(18) 

with k  being the thermal conductivity, respectively. Substituting Eq. 

(6), (12) and (18) into Eq. (17) gives 

2
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00
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,

and .
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y

f
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(19) 

Table 1 Comparison values of 1/4

x xNu Gr
 with previous published results for various values of x when Pr 0.7, 0.b tN N Ec Le     

x Huang and Chen (1987) Nazar et al. (2002a) Salleh et al. (2010) Present 

0 0.4574 0.4576 0.4576 0.4576 

0.4563 0.4565 0.4565 0.4565 

0.4532 0.4533 0.4533 0.4533 

0.4480 0.4480 0.4481 0.4480 

0.4407 0.4405 0.4406 0.4406 

0.4312 0.4308 0.4310 0.4310 

0.4194 0.4198 0.4195 0.4195 

0.4053 0.4046 0.4053 0.4053 

0.3886 0.3879 0.3886 0.3886 

0.3694 0.3684 0.3692 0.3692 

0.3470 0.3469 

0.3216 0.3215 

0.2925 0.2925 

0.2594 

0.2216 

0.1795 

0.1265 

0.0712 

NUMERICAL METHOD 

The partial differential equations (13) to (15) subjected to 

boundary conditions (16) were solved numerically using the Keller-box 

method, which is an implicit finite difference method in conjunction 

with Newton’s method for linearization, making it suitable to solve 

parabolic partial differential equations at any order. As described in the 

books by Na (1979) and Mohamed (2018), this method started by 

transforming the system of Eqs. (13) to (15) to a first order system. The 

finite difference method was taken part and linearized by using 

Newtons method. The resulting algebraic equations were written in 

matrix vector form and finally solved the linear system by the block 

tridiagonal elimination technique. 

RESULTS AND DISCUSSION 

The Keller-box algorithms were coded in MATLAB software and 

computed numerically, with variation values of six parameters, namely 

the Prandtl number Pr, the buoyancy ratio parameter , the Brownian 

motion parameter ,bN the thermophoresis parameter ,tN the Lewis 

number Le and the Eckert number .Ec The boundary layer thickness 

8y  and step size 0.02, 0.005y x    were used in obtaining the 

numerical results. From numerical calculation, it is understood that the 

numerical results obtained are rarely to be laminar until the end of 

sphere. The boundary layer flow will has separation usually after

2 / 3x  as reported previously by Huang and Chen (1987), Nazar et 

al. (2002a) and Salleh et al. (2010). For comparison purposes, Table 1 

shows the comparison values with previous published results. The 

numerical results are updated to the end of sphere  .x  It is found 

that the results are in a good agreement and it is believed that Keller-

box method is very efficient in solving the convective boundary layer 

problems involving the reduced partial differential equations.  

Table 2 Values of 1/4

x xNu Gr
 for various values of Ec and x when 

Pr 1, 0.1b tN N     and 10.Le 

/x Ec 0 0.1 0.2 1 

0 0.5310 0.5310 0.5310 0.5310 

0.5297 0.5285 0.5274 0.5182 

0.5261 0.5215 0.5169 0.4799 

0.5202 0.5100 0.4998 0.4171 

0.5118 0.4942 0.4766 0.3316 

0.5009 0.4744 0.4478 0.2249 

0.4874 0.4510 0.4151 0.1038 

0.4723 0.4406 0.3774 

0.4531 0.3954 0.3364 

0.4313 0.3632 0.2931 

0.4064 0.3287 0.2484 

0.3780 0.2922 0.2032 

0.3457 0.2539 0.1582 

0.3090 0.2243 0.1144 

0.2668 0.1722 0.0728 

0.2180 0.1290 0.0352 

0.1605 0.0848 0.0047 

0.0928 0.0419 

/18

/ 9

/ 6

2 / 9

5 /18

/ 3

7 /18

4 / 9

/ 2

5 / 9

11 /18

2 / 3

13 /18

7 / 9

5 / 6

8 / 9

17 /18

/18

/ 9

/ 6

2 / 9

5 /18

/ 3

7 /18

4 / 9

/ 2

5 / 9

11 /18

2 / 3

13 /18

7 / 9

5 / 6

8 / 9

17 /18
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Table 3 Values of 1/4

x xSh Gr
 for various values of Ec and x when 

Pr 1, 0.1b tN N     and 10.Le 

/x Ec 0 0.1 0.2 1 

0 1.2198 1.2198 1.2198 1.2198 

1.2170 1.2181 1.2192 1.2275 

1.2087 1.2130 1.2172 1.2512 

1.1950 1.2043 1.2136 1.2895 

1.1756 1.1917 1.2079 1.3406 

1.1505 1.1748 1.1992 1.4027 

1.1196 1.1530 1.1872 1.4708 

1.0848 1.1427 1.1701 

1.0404 1.0931 1.1468 

0.9903 1.0525 1.1162 

0.9330 1.0037 1.0764 

0.8676 0.9454 1.0259 

0.7933 0.8761 0.9623 

0.7086 0.8165 0.8830 

0.6117 0.6960 0.7844 

0.4996 0.5783 0.6610 

0.3677 0.4340 0.5039 

0.2124 0.2564 

Table 4 Values of 1/4

f xC Gr for various values of Ec and x when 

Pr 1, 0.1b tN N     and 10.Le 

/x Ec 0 0.1 0.2 1 

0 0.0000 0.0000 0.0000 0.0000 

0.1068 0.1068 0.1068 0.1068 

0.2116 0.2117 0.2118 0.2124 

0.3127 0.3129 0.3132 0.3154 

0.4081 0.4087 0.4093 0.4143 

0.4962 0.4973 0.4985 0.5079 

0.5753 0.5771 0.5768 
0.5922 

0.6420 0.6462 0.6475 

0.6990 0.7027 0.7066 

0.7427 0.7476 0.7526 

0.7720 0.7780 0.7842 

0.7855 0.7927 0.8000 

0.7819 0.7900 0.7982 

0.7593 0.7756 0.7769 

0.7147 0.7236 0.7327 

0.6426 0.6511 0.6599 

0.5317 0.5390 0.5465 

0.3068 0.3656 

Tables 2 to 4 present the values of 
1/4 1/4

,x x x xNu Gr Sh Gr
  and 

1/4

f xC Gr against  with various values of From Tables 2 and 3, it 

is found that the values of 1/4

x xNu Gr
 and 1/4

x xSh Gr
 decreased as

increased. This is physically the sign of reduction in convective heat 

and mass transfer capability which promotes the conduction of heat 

transfer. Further, the decreases in both quantities are small at the 

beginning, this situation turns more significantly as  increases to the 

end of the sphere. This may be explained as follow; at high value of  

especially as  increases to the end of sphere, the influence of gravity 

acceleration onto the nanofluid comes in contact with sphere surface 

has promoted the conduction of heat and mass transfer to be dominant 

than the convection. This situation is contradicted at the beginning of 

the sphere where the gravity acceleration role on nanofluid and surface 

engagement is negligible, hence enhancing the convection heat and 

mass transfer process rather than conduction. 

Meanwhile, the increase at the beginning of sphere gives rise on 

the value of 1/4 .f xC Gr This situation becomes contrast at the middle of 

the sphere where 1/4

f xC Gr decreases marginally and turns drastically at 

the end of sphere.  Further, by considering the effects of viscous 

dissipation effects on the quantities of interest, it is found that the 

increase of results in the increase of 1/4

f xC Gr and 1/4

x xSh Gr
 while 

1/4

x xNu Gr
 decreases. In addition, it is noticed that the increase of Ec

promotes the flow separation.  

Figs. 2 and 4 show the temperature profile ( )  at a stagnation 

region  0x  for various values of Pr, , ,b tN N Le and ,

respectively. It was found that the increase of Pr  in Figure 2 resulted in 

the decrease of thermal boundary layer thickness while Le did

oppositely. It is due to a decrease in thermal diffusivity which leads to 

the reduction in energy ability that reduces the thermal boundary layer 

thickness as Pr increases. In Figs. 3 and 4, the changes in parameters 

,b tN N and  did not give much effect on the thermal boundary layer 

thickness. The temperature gradient was slightly increased as  was 

increased, while was decreased as bN and tN were increased.  

The velocity profiles ( )f  at a stagnation region  0x  for 

various values of Pr, ,b tN N and Le are illustrated in Figs. 5 and 6. It 

is suggested that the increase of Le and Pr results in a decrease of ( )f 

and the velocity gradient. The increase of Pr physically increases the 

fluid viscosity and becomes sticky between fluid molecules which 

results in the decreasing in velocity. The trends were contradicted in 

Fig. 6 where the increase of bN and tN raised the ( )f  and the 

velocity gradient. 

Fig. 2 Temperature profiles y ( ) against y for various values of Pr and 

Le when 0.1.b tN N Ec   

Fig. 3 Temperature profiles  y ( ) against y   for various values of 

values of bN and tN when Pr 7, 10Le  and 0.1.Ec  
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Fig. 4 Temperature profiles y ( ) against y for various values of 


when Pr 7, 10Le  and 0.1.b tN N Ec  

Fig. 5 Velocity profiles f y( ) against y   for various values of Pr and 

Le

when 0.1.b tN N Ec   

Fig. 6 Velocity profiles f y( ) against y for various values of values of 

bN and  tN when Pr 7, 10Le  and 0.1.Ec  

Fig. 7 Concentration profiles y( ) against y   for various values of Pr 

and Le when 0.1.b tN N Ec   

Next, in discussing the concentration profiles ( ),  Fig. 7 shows 

concentration profile ( )  at a stagnation region  0x  for various 

values of Le and Pr. It was observed that the increase of Le  induced a 

reduction in ( ).  The increase in Pr gave a small increment in 

concentration and Pr effect was more pronounced with smaller value of 

Le. Further, the increase of bN promoted the reduction of 

concentration boundary layer thickness while tN did oppositely. 

According to Zaimi et al. (2014), the Brownian motion causes the 

nanoparticle deposition away from the fluid regime to the sphere 

surface which results in a decrease of the nanoparticle concentration 

boundary layer thickness. Meanwhile, tN warms the fluid in the 

boundary layer and hence transmits energy onto nanoparticle which 

results the nanoparticle spreading away from the sphere surface. The 

concentration profiles ( )  for various values of bN and tN are 

shown in Fig. 8. 

Fig. 8 Concentration profiles y( ) against y   for various values of bN

and tN when Pr 7, 10Le  and 0.1.Ec  

In order to understand the fluid flow behavior and the parameter 
characteristic across the cylinder, Figs. 9-15 are illustrated. From the 

numerical computation, it is found that the fluid flow faces a separation 

boundary layer after 2 / 3,x  therefore the discussion is limited 

until 2 / 3x  only. Figs. 9 and 10 show the variation of the reduced 
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Nusselt number 1/4

x xNu Gr
 for various values of , ,b tN N Ec and Le, 

respectively. Both figures show a decreasing manner where 1/4

x xNu Gr


decreased across the cylinder. Further, the increase of , ,b tN N Ec and 

Le resulted in the decrease of 1/4

x xNu Gr
 . This is due to higher values 

of bN and tN that subsequently result into higher volume of 

nanoparticles migrating away from the vicinity of the wall, and thus, 

reducing the value of 1/4

x xNu Gr
 . Furthermore, from Fig. 9, the effect 

of Ec on 1/4

x xNu Gr
 was dominant as  increased. Meanwhile, from 

Fig. 10, it was suggested that the influence of bN was more 

pronounced at the stagnation region  0 .x 

Fig. 9 Variation of 1/4

x xNu Gr
 against x for various values of andLe Ec

when 0.1b tN N    and Pr 7.

Fig. 10 Variation of 1/4

x xNu Gr
 against x for various values of values of 

bN and tN when Pr 7, 10Le  and 0.1.Ec  

Next, Figs. 11-13 present the variation of the reduced Sherwood 

number 1/4

x xSh Gr
 for various values of , , ,b tEc N N Le and ,

respectively. It was found that the increase of parameters 

, , ,b tEc N N Le and  resulted in the increase of 1/4.x xSh Gr
 Similar 

with Fig. 9, the changes in Ec have large effects on 1/4

x xSh Gr
 as  

increased. The variation of 1/4

x xSh Gr
 across the cylinder in Figs. 12 

and 13 was a decreasing function. This physically means that the mass 

transfer capability decreases as flow passes through sphere.  

Fig. 11 Variation of 1/4

x xSh Gr
 against x for various values of values of  

Ec and tN when Pr 7, 10Le  and 0.1.bN  

Fig. 12 Variation of 1/4

x xSh Gr
 against x for various values of values of  

Le and bN when 0.1tEc N    and Pr 7.

Fig. 13 Variation of 
1/4

x xSh Gr


against x for various values of  when 

Pr 7, 10Le  and 0.1.b tN N Ec  
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Lastly, Figs. 14 and 15 present the variation of the reduced skin 

friction coefficient 1/4

f xC Gr for various values of Ec, Le
  
and . It was 

is suggested that the effects of parameter discussed were unique at the 

stagnation region and became pronouncedly as increased to the 

middle of the sphere. The increase of Ec and Le gave a small increment 

on 1/4 .f xC Gr

Fig. 14 Variation of 1/4

f xC Gr against x for various values of andLe Ec

when 0.1b tN N    and Pr 7.

Fig. 15 Variation of 1/4

f xC Gr against x for various values of  when 

Pr 7, 10Le  and 0.1.b tN N Ec  

CONCLUSION 

The problem of free convection boundary layer flow on a solid 

sphere immersed in a nanofluid in the presence of viscous dissipation 

effect has been solved numerically. The numerical results are obtained 

up to the end of the sphere.  

As a conclusion, the increase of Prandtl number Pr results in the 

decrease of thermal boundary layer thickness and its velocity profile at 

the stagnation region. This is realistic since the increase of Pr  indicates 

the reduction in the fluid ability to transmit heat and therefore, 

shortening its boundary layer thicknesses.  

It is found that the reduced Nusselt number is a decreasing 

function accross the sphere body and the increase of Brownian motion 

parameter ,bN thermophoresis parameter ,tN Lewis number Le and 

the Eckert number Ec give a reduction on this physical quantity. In 

contrary with reduced Sherwood number, the quantities increase with 

the increase of  , , ,b tEc N N Le and .

Furthermore, the effects of parameter discussed on reduced skin 

friction coefficient are unique at the stagnation region and become

pronouncedly as flow passes through the middle of the sphere. From 

the numerical computation, it is found that the fluid flow faces 

separation boundary layer after 2 / 3x  , which agrees with similar 

cases reported previously. 
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