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Graphical abstract 

Abstract 

In this study, the influence of carbonization environment on the performance of Tubular 
Carbon Membrane (TCMs) was explored. P84 co-polyimide/Nanocrystalline cellulose-
based TCMs were synthesized by dip-coating technique. The permeation properties of 
TCMs were determined by employing pure gases of CO2 and N2. Heat treatment 
processes were carried out under the different environments (Argon, Nitrogen, and 
Helium) with the flow rate of 200 ml/min to boost the membrane’s performance. The 
carbonization process was performed at a consistent carbonization temperature of 800oC 
under a heating rate of 3oC/min. Carbonization under Argon environment was found to be 
the best condition for PI/NCC-based TCMs preparation with the permeance of 
3.22±3.21and 213.56±2.17 GPU for N2, and CO2 gases, respectively. This membrane 
exhibited the uppermost CO2/N2 selectivity of 66.32±2.18. TCMs prepared under Ar 
environment experienced less weight loss while showing highest CO2/N2 selectivity as 
compared to those prepared under He and N2 environments. 

Keywords: Carbon membrane, carbonization environment, argon, tubular carbon 
membrane, nanocrystalline cellulose. 
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INTRODUCTION 

In recent times, the widely held carbon membrane studies have 

been focusing on managing the incorporation of new carbon membrane 

materials by utilizing new polymeric antecedent materials, new thermal 

treatment systems and adjusting existing antecedents and carbon layers 

(Sreedhar et al., 2017). Unfortunately, researches on the impacts of 

carbonization condition particularly in the blending of carbon 

membrane are yet constrained. The adequacy of carbon membrane 

separation is relied upon the stream rate cleanse of inert gases, for 

example, argon, nitrogen, and helium amid carbonization process. This 

proclamation is bolstered by the outcomes attained in which the carbon 

layers delivered under 200 cm3(STP)/min appeared more than 700 

times higher flux when contrasting with tests created under lower 

inactive stream rate of 20 cm3(STP)/min. Moreover, the inert gas 

stream contains prevalent warmth exchange that may quicken the 

carbonization procedure, resulting in the more open permeable 

structure in comparison to a vacuum condition (Song et al., 2008). 

Unfortunately, the nebulous membranes will begin to shrivel because 

of further response at an elevated temperature (Sun et al., 2016). To 

analyse the membrane separation for O2, N2, H2, CH4, and CO2, these 

gas atoms should be tested in accordance with their sub-atomic sieving 

qualities. Likewise, the impacts of carbonization condition were studied 

in order to deliver high permeation separation by utilizing tubular 

carbon membrane. This research work was focused on PI/NCC carbon 

membrane with the control of carbonization condition. Given past 

examination, the improvement of carbon membrane-based gas 

detachment has generally been explored, contrasting with that 

permeation by polymeric layers (Sazali et al., 2015a). 

Carbon membranes can offer the best platform for the improvement 

of new layer advancements as a result of their dependable qualities and 

sub-atomic sieving abilities. The most remarkable focal points of 

carbon membrane have been surveyed by Ismail and Li in contrast with 

those of polymeric layers (Ismail and Li, 2008). The prior studies 

reported that the polymer solutions containing γ-AlO(OH) and AgNO3

is layered on α-Al2O3 tubes has been carbonized in a single step of 

dipping-drying-carbonization at 550°C (Teixeira et al., 2011). 

Meanwhile, Hosseini also reported the highest gas pair selectivity for 

O2/N2, CO2/CH4 and CO2/N2 can be obtained from PBI–Kapton 

carbonized at 800°C at 10−7 Torr. Thus, it is crucial to highlight the 

factors that rendered the carbon membranes to be very attractive and 

useful as separation tools (Hosseini et al., 2014). In addition, the 

commonly used commercial polymer for fabrication of carbon 

membrane is polyimide (Briceño et al., 2012). Briceno and co-workers 
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have successfully carbonized Matrimid up to 800°C, ensuing in carbon 

membrane that comprised of ultra-micropores (<7 Ǻ) and larger 

micropores. Commonly, P84 co-polyimide-based carbon membranes 

are found to have subdued permeability with selectivity improvement 

in the process of gas separation of CO2/CH4 and CO2/N2 (Tin et al., 

2004; Grosso et al., 2014). 

As reported by the previous study, accelerated heat and mass 

transfer due to the inert gas involvement during the heat treatment 

process is thought to produce a more permeable and a less selective 

membrane structure (Geizler et al., 1997). The permeate flux through 

the carbon membranes carbonized at 823 K under argon is helium or 

carbon dioxide that decreased by at least 2 orders of magnitude when 

the purge gas flow rate is increased from 20 to 200 cm3/min, but the 

selectivity is  not affected. Su and Lua (2007) prepared hollow fibre 

CMSMs from 6FDA/BPDA-DAM and Matrimid® 5218 polyimide for 

high pressure CO2/CH4 separation. The carbonization of Matrimid® 

polyimide at 823 K under helium instead of a vacuum resulted in a 

doubling of the CO2 permeance, along with a loss of about 65% in 

CO2/CH4 selectivity. Hayashi et al., (1997) prepared carbon 

membranes from BPDA-pp’ODA polyimide by coating it on a porous 

alumina tube. The membranes carbonized at 973 K under nitrogen have 

micropore volumes of 0.25, 0.30, 0.19 and 0.14 cm3/g while those 

membranes carbonized at 973 K under argon have micropore volumes 

of 0.36, 0.30, 0.19 and 0.14 cm3/g, using CO2, C2H6, n-C4H10, and i-

C4H10 adsorbates, respectively, in both cases. Centeno et al., (2004) 

prepared CMSMs using phenolic resin as the precursor and porous 

ceramic tube as the support. The coated phenolic resin membranes are 

carbonised under both vacuum and nitrogen at 973 K with a heating 

rate of 1 K/min and a soak time of 1 h.  

Carbonization environment is crucial process parameter need to be 

considered to fine tune the final properties of the carbon membrane. 

Therefore, in this study, attempts were made to investigate the effect of 

gas environments during the carbonization process on the 

physiochemical properties and gas permeation performance of the 

prepared coated membrane. By changing the gas environment 

conditions, the production of a higher order degree performance of 

carbon membrane can be achieved. In addition, a significant 

acceleration of the degradation reaction on carbon membranes can be 

obtained which leads to the formation of smaller pore size (Song et al., 

2010). Carbon membranes that are carbonized in inert gasses showed 

superior gas separation performance with more open porous structure 

compared with those membranes carbonized under vacuum 

environment. The ones under vacuum environment posses membranes 

with smaller pores, thus affecting the gas permeation and gas separation 

performance in general. There are different carbonization environments 

that can be applied during carbonization process, either under inert 

environment (He, N2 and Ar), oxidative environment (CO2) or vacuum 

state. Besides that, chemical damage and undesired burn off of the 

polymer membrane precursor during carbonization can be avoided by 

controlling the carbonization environment (Salleh et al., 2011). 

 

EXPERIMENTAL 
 
Materials and methods 

P84 co-polyimide was acquired from Sigma Aldrich as the 

principal precursor while the solvent used was N-methyl-2-pyrrolidone 

(NMP) purchased from Merck (Germany). All chemicals were used 

without further purification. Nanocrystalline cellulose (NCC) was 

synthesized in-house, in accordance with methodologies as reported in 

the precede studies by (Sazali et al., 2018). Porous tubular ceramic 

support (TiO2) with 8 cm in length, 3 mm in thickness and average pore 

size of 0.2µm (porosity of 40-50%) was purchased from Shanghai 

Gongtao Ceramics Co., Ltd and used as supplied. 

 

Carbon membrane preparation  
Polymer solution comprising 15% of P-84 (relative to the total wt.) 

and NMP was prepared and stirred under a constant stirring condition 

at 80 oC. About 7 wt% of NCC was added in stages into the solution 

and was constantly stirred to obtain a homogenous solution. Finally, all 

of the polymer solutions were sonicated for several hours to remove 

bubbles throughout the stirring process. The tubular support was then 

dip-coated into the polymer solution for 45 minutes. This method was 

used to ensure the formation of a thin top layer of the carbon membrane. 

Subsequently, the consequential membranes were immersed in 

methanol for 2 hours and then were placed inside an oven at 100 oC for 

24 hours to completely remove the solvent. The TCMs were prepared 

through carbonization of the supported polymeric membrane. The 

supported polymeric membrane was heated at 800 oC under 3 different 

carbonization environments (Nitrogen, Argon, and Helium) with a gas 

flow rate of 200 ml/min in Carbolite horizontal tubular furnace at 

3oC/min heating rate. The experimental techniques were performed 

according to our previous studies (Sazali et al., 2017). An equavalent 

procedure was also employed to characterize the flat sheet carbon 

membrane (without substrate). The heating cycle was regulated by 

Eurotherm 2500 oC temperature control systems. 
 

Pure gas permeation measurements  
As explained in our prior studies, the gas permeation system was 

utilized to test the carbon tubular membranes (Sazali et al., 2015a; 

Sazali et al., 2015b). In the study, a 14 cm tubular stainless-steel 

module was utilized and the carbon tubular membrane was assembled 

into the module. The membrane was fitted with O-rings to prevent 

exudation in the module. 8 bars of trans-membrane pressure was 

employed while pure nitrogen (N2) gas (0.364 nm) and carbon dioxide 

(CO2) (0.330 nm) were introduced one at a time into the module. The 

permeance was calculated according to the equation denoted in our 

previous study (Sazali et al., 2017), at which P/I (GPU) and selectivity, 

α of the membranes were measured. 

 
RESULTS AND DISCUSSION 
 
Morphological structure analysis 

The scanning electron microscopes (SEM, JEOL JSM-5610LV) 

was used to observe the cross-section morphology of polymeric and 

carbon-based PI/NCC membranes prepared under different 

carbonization environments. Figure 1 shows the cross-section 

microphotographs of carbon membranes prepared at various 

carbonization environments (He, Ar, and N2). It can be clearly seen that 

all carbon membranes have a dense structure. Micrograph showed in 

Figure 1(a) indicated that polymeric membranes possessed lateral 

growth of the finger-like structures (Rhim et al., 2010). 

 

 

Figure 1 Cross-section microphotographs of (a) PI/NCC polymeric 

membrane and carbon membranes prepared under (b) He, (c) Ar and 

(d) N2 environment. 

The resultant pores begin to shrink as temperature increases which 

leads to the formation of a dense structure (Kiyono et al., 2010). 

Comparing experimental results from different studies is difficult due 

to slight variation in operational parameters (e.g., heating rates, 

polymer composition, coating cycles, and reaction times), as it can 

significantly influence the carbonization process. It is reported that a 

smooth and dense morphological structure can be detected when 

carbonizing the cellulose which indicated the formation of amorphous 

carbon (Chu and Li, 2006). He et al. analyzed the structure of 

carbonized cellulose and showed that the thickness of the cellulose-

based carbon membranes is reduced and shrunk from 50 to 30 µm (He 
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et al., 2011). On the other hand, Kiyono et al. suggested that 

carbonization under an inert environment showed insignificant effects 

on micrograph structure (Kiyono et al., 2010). These significant effects 

are due to complex morphology of asymmetric of the carbon 

membranes when comparing to a flat sheet or tubular membranes. In 

this study, the morphological structure of the carbon membrane  is not 

significantly affected by the carbonization environments used. They re-

ported that the carbonization environment under He and Ar gases will 

achieve a good and clear C distribution compared to the N2 environment 

(Ismail et al., 2018). The inert gases (Ar and He) have a lighter 

molecular weight which helped them to have better C distribution on 

the carbon membrane. 

The effect of different inert gases on the in-plane size of the 

graphitic clusters is not too obvious at a lower temperature of 600°C 

because the carbon structure is just started to form as the 

amorphousness is high at this temperature. When the carbonization 

temperature is increased to 800°C, the carbon pore structure is shrank, 

and the effect of the three inert atmospheres becomes significant. 

Carbonization at the higher temperature for the inert gas environment 

resulted in a higher degree of graphitization, and therefore the largest 

graphitic clusters. The smallest graphitic clusters resulted from vacuum 

carbonization is another indication of a lower reaction rate under a 

vacuum environment. 

Gas permeation measurements 
The conducted experiments showed that the carbonization environment 

has a significant correlation with transport properties. During the heat 

treatment process, the formation of amorphous carbon consisting of 

irregularly packed sheets of sp2 hybridized carbon is believed to 

generate slit-like pore structures. Large pores provide adsorption sites 

and ultramicropores act as molecular sieve sites, are both believed to 

co-exist. The ultramicropores are speculated to be created at “kinks” in 

the carbon sheet or from the edge of a carbon sheet. These sites have 

more reactive unpaired sigma electrons prone to oxidation than other 

sites in the membrane. While carbonization process during the 

formation of carbon membranes is complex, the results presented here 

indicate that performance of carbon membrane can be controlled by 

carefully tuning the carbonization environment. There are several inert 

gases such as helium, argon, nitrogen, neon, xenon, krypton, and radon. 

However, three different gases which are Ar, He and N2 have been 

chosen rather than other inert gases in order to investigate the control 

separation performance of carbon membranes based on fundamental 

principles. In comparison to the membranes carbonized under other 

inert gases, it proves that the ultra-micropores predominantly control 

the transport properties of the membranes, owing to the effects from 

Ar, He and N2 gases (Su and Lua, 2007).  

The high selectivity of TCMs can be obtained by manipulating the 

carbonization environment. The gas permeability of two pure gases 

through the resultant TCMs from different carbonization conditions 

was analyzed regarding their structures as well as the performance of 

gas separation as shown in Table 1. The gas permeation rate and 

molecular sieving properties are possibly due to the changes in porous 

membrane structure variation due to the employment of unique inert 

environment amid carbonization. This variation is owing to the pores 

which created by the evolution of gaseous products generated during 

the decomposition stage. For example, CO2 gas shows higher 

permeance in contrast to He gas even though He is much smaller in 

molecular size which denoted that there is a different transport 

mechanism for CO2 in the process. The CO2 gas has the possibility to 

be adsorbed onto the pore surface, and subsequently, the adsorbed CO2

molecules will diffuse on the surface and across the pore. Carbonization 

under an inert condition such as He gas flow has the probability to result 

in the acceleration of the decomposition which caused in higher gas 

permeation rate in contrast to membranes synthesized under Ar and N2. 

The mass and heat transfer during the carbonization will add on to the 

occurrence of the more porous structure. The transport properties of 

TCMs are interrelated with the environment of carbonization. All 

through the carbonization, the reaction between inert gases and the 

TCM reactive site will occur which leads to the binding of the gases, 

hence creating the ultra-micropores. The slit-like pore structures are the 

results from the formation of amorphous carbon consisting of 

irregularly packed sheets of sp2 hybridized carbon produced. The gas 

permeance of the prepared TCMs follows the order of CO2 > N2, which 

in agreement with the molecular sieving mechanism (Shao and Huang, 

2007, Mahdyarfar et al., 2013). In this mechanism, ultra-micropores 

and large pores that providing adsorption sites are co-existing, denoting 

that as the selectivity increases, the permeability reduces. 

Table 1 The comparison of gas separation performance of TCMs with 

different carbonization environments 

Previous research conducted by Favvas et al. demonstrated that the 

pore volume of the TCMs prepared under He environment is more 

porous than those made under Ar or N2 at a similar temperature (Favvas 

et al., 2015). The TCMs attained from N2, and Ar gas environment only 

vary in terms of gas permeance results due to the inconsequential 

difference between both molecular sizes; Ar: 3.40Å, N2 3. 64Å. It is 

also found that carbonization under He gas environment displayed the 

highest permeance owing to the lesser shrinkage of the membrane pore 

and smallest kinetic diameter (2.60Å). In addition, by monitoring the 

molecular sieving capacity, the increase of the gas molecular size, will 

ensue in the gas permeance reduction. CM-Ar exhibited higher gas 

selectivity as compared to CM-He and CM-N2. This is due to the 

carbonization under Ar environment showed lesser weight loss while 

carbonization under N2 environment has the tendency to speed up 

carbonization in increased temperature. The membranes carbonized 

under Ar environment showed the highest selectivity of 66.32±2.18 for 

CO2/N2 at 800°C. Taking the gas separation performance and its 

physicochemical properties into consideration, the carbonization 

process under Ar environment will bring about better gas separation 

separation in contrast to others. 

CONCLUSION 

Argon environment was found to be the most preferred carbonization 

condition for preparation of PI/NCC-based tubular TCMs at which the 

TCMs prepared under Argon environment underwent less weight loss 

although it exhibited highest CO2/N2 selectivity in comparison to those 

fabricated under He and N2 environment.  A highly permeable 

membrane was obtained from the carbonization under He environment 

in which it has slightly lower selectivity than TCMs fabricated under 

Ar due to high weight loss. Membrane fabricated under N2 environment 

exhibited the least anticipated separation performance amongst the 

TCMs fabricated in this study. 
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Sample Gas permeance (GPU) Selectivity 

 N2 CO2 CO2/ N2 

TCMs -Ar 3.22±3.21 213.56 ±2.17 66.32±2.18 

TCMs -He 2.99±1.76 177.16 ±3.62 59.25 ±1.83 

TCMs -N2 2.59 ±2.59 143.14 ±1.85 55.27 ±3.42 
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