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Abstract 

 
Research on spoiler available to date was mainly done to optimize the performance of spoiler in non-
zero yaw condition. However, the effect of spoiler is most needed during cornering to ensure the 
stability of the vehicle. Therefore, this study aims to inspect the effect of yaw angles change on the 
aerodynamic performance of the NACA 0018 wing spoiler and the subsequent influence on the flow 
characteristics of the hatchback vehicle. Computational Fluid Dynamics (CFD) has been applied to 
model the flow. Comparison between numerically obtained results and experimental data was done 
to validate the CFD method. The findings show that both the drag coefficient, Cd, and lift coefficient, 
Cl have increased with increasing yaw angle. However, the spoiler has performed in favor of 
reducing the Cd and Cl even with increasing yaw angle. The averaged proportion contributions from 
the spoiler to the overall Cd and Cl are 2.7% and 4.1%, respectively. The other body parts that have 
contributed to the Cd and Cl reductions were the base and slant, and the roof.  
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INTRODUCTION 

 

During cornering, a vehicle needs sufficient frictional forces in 

between its tires and the road surface to develop sufficient centripetal 

force to pass the curve without slip. The frictional forces are directly 

proportional to the downward forces exerted on the vehicle. In principle, 

the downward forces depend on the weight of the vehicle and the 

downward component of the aerodynamic force. Although, it may seem 

intuitive to increase the weight of the vehicle to enhance the frictional 

force, but this will not improve the performance of the vehicle during 

cornering due to the fact that the additional weight will produce 

additional inertia for which the vehicle will need to overcome. Besides, 

a heavier vehicle will result in higher fuel consumption rate, which is a 

disadvantage for both economic and environmental considerations. 

Therefore, the only viable solution would be to rely on aerodynamic 

effects.  

The aerodynamic effects can be obtained by properly installing the 

aerodynamic devices on the vehicle. One of the common aerodynamic 

devices is known as spoiler. In general, there are two types of spoilers, 

front and rear spoilers. A front spoiler is attached to the bumper while 

a rear spoiler is usually attached to the trailing edge of the roof for 

hatchback vehicles. The function of a rear spoiler is, as the name 

implies, to ‘spoil’ the smooth airflow passing over a vehicle in order to 

alter its aerodynamic characteristics, such as to reduce drag and 

increase downforce.  

Spoilers of various kinds had been widely researched (S. Cheng & 

S. Mansor, 2017), S. Y. Cheng and S. Mansor (2017), Hu and Wong 

(2011), Mitra (2010), and Kieffer, Moujaes, and Armbya (2006). To 

date, numerous studies concerning the optimization of the performance 

of wing spoilers have been reported in the literature. For example,  Tsai, 

Fu, Tai, Huang, and Leong (2009) have studied the effect of various 

rear spoiler designs which were of aerofoil profiles on the aerodynamic 

characteristics of a simplified car model. It shows a reduction in lift. 

Besides, the study of Kim, Chen, and Shulze (2006) shows that by using 

a spoiler on a minivan, the lift force can be reduced by 100% when the 

minivan is driving at a speed of 108km/h. Moreover, the studies 

conducted by Daryakenari, Abdullah, Zulkifli, Sundararajan, and Sood 

(2013) and Kodali and Bezavada (2012) have also shown the similar 

lift reduction tendency produced by the spoilers. Although the studies 

on optimizing the performance of wing-type spoilers are not 

uncommon, but most of them are limited to zero degree yaw condition 

(i.e. simulating a vehicle driving in a straight path). However, during 

cornering, the effect of spoilers in enhancing the downforce is most 

needed to ensure drive stability and safety through the curve. Therefore, 

to address the issue, the main objective of the present study is to 

investigate the aerodynamic performance of the wing spoiler in yawing 

conditions. 

The paper is organized as follows: the chosen hatchback vehicle 

model is first introduced together with the features of the spoiler. In 

addition, the convention of yaw condition is briefly explained. Section 

II documents the CFD settings and validation of the numerical method. 

In Section III, the results obtained are being reported and discussed. 

The paper ends with the conclusion in Section IV. 

 

METHODOLOGY 
 

Hatchback model and spoiler configuration 
In this study, the Ahmed body, a reference road vehicle model 

introduced by Ahmed, Ramm, and Faltin (1984) is adopted for 

simulating the hatchback-type vehicle. The 35° slant angle of the upper 

rear section of the model is chosen which is typical for most hatchback 

vehicles.   

The Ahmed body fitted with a rear-roof NACA 0018 wing spoiler 

with 5° angle of attack is shown in Fig. 1. The chord length of the wing 
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is 69 mm. The chord length was decided based on the measurements 

done on the wing spoiler of real cars and scaled down based on the 

dimensions of the Ahmed model. 

Meanwhile, in order to avoid highly skewed cells during meshing, 

the sharp end of the wing has been filleted (2 mm radius). For the same 

reason, all the sharp edges of the two endplates supporting the wing 

spoiler were filleted (2 mm radius). For the details of the Ahmed model 

dimensions, the reader is referred to Ahmed et al. (1984). 

 

 
 

Fig. 1 Ahmed model fitted with a NACA 0018 wing spoiler. 
 

Fig. 2 shows the convention of yaw angles adopted in this study. 

In the present study, the yaw angles investigated were from 0° to 12°, 

at 4° increment. According to vehicles in real life, the yaw angle will 

not go beyond of 12° during cornering. Thus we limit the investigation 

to 12° maximum yaw angle.   

 

 
 

Fig. 2 Convention of yaw angle. 

 

Computational fluid dynamics (CFD) settings 
A numerical simulation method is used in this study to investigate 

the influence of varying the yaw angle on the aerodynamics of a 

hatchback model mounted with a NACA 0018 wing spoiler. The 

commercial CFD software was utilized in the present study. It is a 

pressure-based solver based on the finite-volume method known as 

ANSYS Fluent. In fact, ANSYS’s CFD solver had been widely used 

and validated in various applications. For instances, in fields like sports 

(Jahi, Zawawi, & Rahman, 2015), medical(Missel, Horner, & 

Muralikrishnan, 2010), combustion (Torabmostaedi, Zhang, Foot, 

Dembele, & Fernandez, 2013), heat transfer (Alawi, Sidik, & Tey, 2015; 

Munir, Mohd Azmi, Razali, & Tokit, 2012), urban aerodynamics (e.g. 

Cheng, 2007), and automotive (Shafie, Kamar, & Kamsah, 2015a, 

2015b). In the CFD modelling, the time-averaged, incompressible, 

continuity and momentum equations are solved as follow: 

 
∂ui

∂xi

= 0                                                                                  (1) 

 

ρuj

∂ui

∂xi

=  
∂

∂xi

 [−pδij + 2μSij −  ρu′
iu

′
j]                                                   (2) 

 

where,  ρ = fluid density 

 u = time-averaged velocity 

 p = time-averaged static pressure 

 μ = viscosity of fluid 

 Sij = mean strain tensor rate 

ρu′
iu

′
j  = Reynolds stresses representing the effects of 

turbulence.  

 

The Reynolds stresses term resulted from performing Reynolds 

averaging was modelled by the k-epsilon realizable model, which is a 

two-equation turbulence model. Moreover, the enhanced wall treatment 

(EWT) has been employed. The EWT models the boundary layer 

profile in the vicinity of the wall by the wall function when the first grid 

point is within the log-layer range. As for spatial discretization, second-

order upwind difference scheme has been employed.  

At domain’s inlet, a uniform velocity U = 40 m/s has been 

imposed. Its turbulence intensity was at 0.2%. The corresponding 

Reynolds number (Re) was 768,000 based on the model height.  

A rectangular flow domain has been adopted. The domain has a 

cross-sectional area of 1450 mm x 3890 mm (height x width). Hence, 

there was only less than 2% of blockage ratio obtained, which is far 

lower compared to the typical accepted 5% blockage ratio (Hucho & 

Sovran, 1993). The inlet and outlet boundaries were respectively 

located at 1.4l upstream and 11.5l downstream of the model (l is the 

model length). Meanwhile, the outlet was set as pressure outlet 

boundary condition with zero gauge pressure. The surfaces of the model 

and the floor were defined as no-slip wall while the remaining walls 

were set as symmetry boundary condition. 

 

Meshing 
As shown in Fig. 3, the domain mainly comprises tetrahedral cells 

in combination with prismatic cells on the no-slip walls. The purpose 

of the prismatic cells is to improve the resolution of the boundary layer 

around the model and the ground. The outcome of grid independence 

test reveals that the mesh with cell number of around 1530368 is 

sufficiently refined. With the prismatic cells, the thickness of the first 

node from the model’s surface was at 0.5 mm, this corresponds to y+ 

values ranging from 2 to 53. 

 

 
 
Fig. 3 Mesh density distribution around the Ahmed model with a closed-
up of prismatic cells around the wing spoiler. 
 

Validation 
In order to validate the numerical method, the present study 

attempted to reproduce the experimental results by Bello-Millán, 

Mäkelä, Parras, del Pino, and Ferrera (2016). Fig. 4 compares the drag 

coefficient Cd of the Ahmed model at increasing yaw angle obtained by 

the present CFD method and the experimental work by Bello-Millán et 

al. (2016). As may be seen, the two curves are in very good agreement 

(with the maximum difference of 5.2% at 20° yaw angle).   

 

 
 
Fig 4  Effect of yaw angle on the Cd of Ahmed model obtained by the 
present CFD and the experimental work by (Bello-Millán et al. (2016)). 
The Cd values by each method are normalized by their respective Cd 

values at 0° yaw. 
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As mentioned earlier, this study only covers the yaw angle range 

up to 12 ° . Thus, by interpolation, the corresponding percentage 

difference between the CFD and experimental results at 12° yaw angle 

is only 0.6%. Therefore, we can deduce that the present CFD method is 

suitable for the investigation.    

RESULTS AND FINDINGS 

Effect of yaw angle on Cd and Cl 
Fig. 5 shows the effect of yaw angle on the total Cd and Cl of the 

model. As may be seen, the two aerodynamic force coefficients have 

risen with increasing yaw angle (Note that the Cd is defined as the 

aerodynamic force component parallel to the longitudinal axis of the 

model). Thus, the results suggest when the vehicle is no longer 

travelling in a straight path, its aerodynamic performances will 

deteriorate.  

Fig. 6 shows the effect of yaw angles on the Cd and Cl of the spoiler. 

A decreasing trend is observed in the two aerodynamic quantities. In 

particular, from 0° to 12° yaw angle, both the Cd and Cl have decreased 

by about 22% and 43%, respectively. The decreasing trend suggests 

that the spoiler will actually function better at increasing yaw angle.   

However, since the values of the two force coefficients of the 

spoiler are relatively small compared to the other body parts of the 

model, thus it failed to alter the increasing trend of the overall Cd and 

Cl. In fact, the proportion contribution of the wing spoiler to the overall 

Cd was only 3.24% at 0° yaw. As the yaw angle increased to 12°, the 

proportion contribution of the spoiler has diminished to 2.17% due to 

higher increment rate of other body parts.  

Meanwhile, in regard to Cl, only the underbody and wing spoiler 

had generated the downforce, whereas the other body parts had 

generated positive lift. In addition, despite the spoiler’s positive 

influence to the overall Cl, its proportion is only about 4.1% of the 

overall downforce generated.  

Fig. 5 Effect of yaw angles on Cd and Cl of Ahmed model with wing 
spoiler. 

Fig. 6  Effect of yaw angles on Cd and Cl of rear wing.  

Fig. 7 and 8 respectively show the Cd and Cl of each body part as 

a function of yaw angle. In Fig. 7, it is apparent that the main 

contributors to the increasing Cd were the base and slant. On the other 

hand, the front has an opposite, desirable influence on the Cd value.  

In Fig. 8, the roof has appeared to be the main contributor to the 

increasing Cl tendency, whereas the underbody has exhibited an 

opposite influence.  

Fig. 7 Contributions of body parts to Cd with increasing yaw angles. 

Fig. 8 Contributions of body parts to Cl with increasing yaw angles. 

Effect of yaw angle on flow structures 
As shown in Fig. 9, at none-zero yaw angle, four longitudinal 

vortices (marked A, B, C and D) were developed from the four front 

corners of the model. This phenomenon is considered reasonable as the 

front corner edges are of angular shape. Note that the vortices A and D 

have the counter clockwise rotation whereas the vortices B and C have 

the clockwise rotation.  

As may be seen, the windward vortices A and B have each 

developed a path located on the top and bottom of the model 

respectively, near the windward side. On the other hand, the leeward 

vortices C and D have each developed a path locating away from the 

model surfaces. As a result of their closer distance to the model, at 

increasing yaw angle, the windward vortices A and B could have 

stronger influence on the surface pressure of the model due to the 

increasing vortex strength.  
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Fig. 9 Effect of yaw angle on body part contributions to Cd and Cl. 

Physical mechanism 
Fig. 10 compares the surface pressure distribution on the top and 

bottom parts of the model at different yaw angles. As illustrated, the 

model have shown the low surface pressure regions (regions in the red 

boxes) along its top and bottom side edges due to the windward 

vortices. On the top part of the model, a decrease in the pressure of the 

roof could cause an increase in the Cl. Hence, the roof of the model has 

shown the increasing Cl trend with increasing yaw angle. In fact, the 

result in section 3.1 shows that the roof is the main contributor to the 

increasing trend of the overall Cl with increasing yaw angles.  

Meanwhile, for the bottom part of the model, a decrease in the 

surface pressure will cause the Cl to decrease. Thus, the underbody has 

exhibited the favourable influence of increasing the downforce with 

increasing yaw angles.   

The reason for the reduction in the Cd of the front part is illustrated 

in Fig. 11. As may be seen, the low surface pressure region at the 

leeward side (i.e. left vertical edge) has become widen with increasing 

yaw angle. This phenomenon was caused by the flow acceleration near 

the leeward side corner at higher yaw angle as shown in Fig. 12. 

Fig. 10 Surface pressure distributions at different yaw angles (top view). 

Fig. 11 Surface pressure distribution of the front part at different yaw 
angles (front view). 

Fig. 12 Yaw angle effect on the velocity distribution near the front part of 
the model (top view; visualization plane at the mid height of the model). 

On the other hand, the surface pressure drop of the slant and base 

at higher yaw angles (see Fig. 10 and Fig. 13) is the reason why the two 

body parts had caused the increase in the model’s overall Cd at higher 

yaw angles. Their pressure drop is associated with the increase in the 

size of the separation bubbles at the back of the model at higher yaw 

angle (see Fig. 13).  

Fig. 13 Surface pressure distributions at different yaw angles (back 
view). 

Fig. 14 Separation bubbles formed at different yaw angles. 

 

http://www.foxitsoftware.com/shopping
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CONCLUSION 

In the present study, a RANS-based CFD modelling has been used 

to study the influence of varying the yaw angle on the aerodynamic 

characteristics of an idealized hatchback reference body fitted with a 

NACA 0018 wing spoiler. The results obtained indicate that both the 

Cd and Cl of the simplified vehicle model have increased with 

increasing yaw angle. This tendency is deemed unfavourable to fuel 

economy and drive safety. Although the Cd and Cl of the wing spoiler 

have shown decreasing trends, however, their contribution to the 

overall Cd and Cl are small, only with the averaged proportion 

contributions of 2.7% and 4.1% respectively. Hence, the main 

contributors to the increase of Cd and Cl had overshadowed the effects 

brought about by the wing spoiler. The main body parts that have 

contributed to the increase in Cd at higher yaw angle are the base and 

slant, while the rise in Cl is caused by the roof.  
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