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Abstract 
 
Propolis is a resinous substance produced by bees functioned to seal holes, exclude draught, protect 
against contamination and external intruders inside their hives has been substantially studied and 
reported to have numerous health properties such as antiseptic, antifungal, antibacterial, antiviral, 
anti-inflammatory and antioxidant characteristics. Propolis cannot be utilized as raw material, due to 
its complex mixture of compounds. Hence it must be separated by the extraction process. Extraction 
targets to removes the inert compounds in the propolis sample and preserves the flavonoids and 
polyphenolic fraction. The most common technique used in propolis extraction is solvent extraction 
that involves the use of solvents such as ethanol, water, hexane, ethyl-acetate and chloroform. 
However, this conventional technique has some drawbacks including strong residual flavour, 
possible adverse reactions, harmful to the environment, low quality of the extract and long process 
period requirement. Supercritical carbon dioxide (SC-CO2) is one of the alternative techniques to 
conventional extraction that was reported to be an excellent method to purify and fractionate 
bioactive compounds from natural sources. SC-CO2 extraction was first introduced for analytical 
application because of the demand to reduce organic solvent utilization in a laboratory environment. 
It has now become a favourite technique in extraction, fractionation, refinement, and deodorization of 
natural sample matrices in laboratory scale and industrial scale. Carbon dioxide is an ideal 
supercritical solvent due to its non-toxic, non-polluting, non-flammable, recoverable and 
environmentally benign properties. Therefore, this mini review aims to discuss the application of 
supercritical carbon dioxide extraction specifically on propolis sample starting with a brief introduction 
on propolis, methods of propolis extraction, the principle of SC-CO2 extraction, application of SC-CO2 
in propolis extraction, advantages of SC-CO2 extraction and lastly comparison between SC-CO2 and 
conventional extraction techniques. 
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INTRODUCTION 
 

      Propolis is one of the bee products which has gained the attention 

of researchers and consumers worldwide recently due to its numerous 

health benefits. It is a resinous substance collected by bees from 

exudates of surrounding plants, mixed with their saliva and waxes, 

gathered to their hive to protect against contamination and invaders, to 

seal holes, and to maintain the temperature inside the hives. This 

product consists of 50% of resins, 30% of waxes, 10% of essential oil, 

5% of pollen and 5% of organic compound and minerals (Almutairi et 

al., 2014). Propolis has been reported to possess various therapeutic 

activities, such as antitumoral, antifungal, anticancer, anti-

inflammatory, antiviral and antibacterial properties (Abu Mellal et la., 

2012). For this reason, it has been widely used in pharmacological, 

food and beverages industry to enhance human health and prevent 

diseases such as cancer, heart disease, inflammation and diabetes 

(Chen et al., 2009). 

      Propolis has been used for centuries as traditional medicine, 

especially in Europe and Japan (Biscaia & Ferreira, 2009). Thus, it 

has become a subject of intense interest in pharmacological and 

chemical studies for the last 30 years, searching for functional 

evidence to its diverse advantages. Many studies have proven 

therapeutic activities of propolis to be attributed to compounds such as 

flavonoids, phenolic acids, terpenes and sesquiterpenes (Marcucci et 

al., 2001, Kumazawa et al., 2004, Nagai et al., 2003, Lu et al., 2005).  

      Even though it consists vital health functional compounds, 

propolis cannot be used as raw material because it also contains an 

inert compound - waxes that comprises up to 30% of its total content 

(Almutairi et al., 2014). Wax is a complex mixture of organic 

compounds, predominantly monoesters, formed by moieties of 

carboxylic acid and alcohol with unbranched carbon chain, followed 

by hydrocarbons with odd numbers of carbon atom (Custodio et al., 

2003). To obtain propolis with a high concentration of functional 

compounds, it must be purified using extraction process which helps 

to remove the inert material and preserve the contributing fractions. 

Solvent extraction with ethanol is the most commonly used method to 

obtain dewaxed propolis extract with high functional compounds such 

as flavonoids and polyphenolic content (Pietta, 2000). 

      Extraction methods are constantly associated with product quality. 

Extraction techniques that can produce pure extract without solvent 

residue are considered as good methods (Manirazika et al., 2001). 

Among well-established conventional extraction methods 

encompasses hydro-distillation (HD) and organic solvent extraction 

which includes soxhlet and maceration process (Weinhold et al., 
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2008). On the other hand, modern techniques in relation to propolis 

extraction have been studied by many researchers, for example, 

ultrasound extraction, microwave-assisted extraction (Pellati et al., 

2007), lyophilization, nanofiltration (Tylkowski et al., 2010) and 

supercritical carbon dioxide extraction (Chen et al., 2009). 

      Supercritical CO2 extraction is an extraction technique that 

employs CO2 at its supercritical condition. Above its critical 

temperature of 31oC and critical pressure of 7.38MPa, supercritical 

CO2 acts as a solvent to separate targeted compounds from their 

natural matrixes (Herrero et al., 2010). CO2 is recognized as a green 

solvent due to its non-toxic, non-flammable, non-polluting properties 

and generally acknowledged to be a safe extracting agent by FDA 

(Food & Drug Administration) and EFSA (European Food Safety 

Authority) (Herrero et al., 2010). Its easily tuned solvent combined 

with high diffusivity properties makes supercritical CO2 a promising 

method for solute separation. In addition, analyte recovery for SC-

CO2 extraction is very simple and it is able to yield solvent-free 

analytes as the CO2 returns into gaseous form at room condition. This 

allows extraction to be carried out at low temperatures using a non-

oxidant medium which is important for food and natural products 

sample preparation that often involves thermally liable and easily 

oxidized compound extracts (Herrero et al., 2010).  

       To our literature extend, SC-CO2 technology has been used 

mainly as a sample preparation technique for the analysis of target 

compounds from foods and natural product (Engelhardt et al., 1991). 

It is also used commonly in the process development area, in which 

target compounds are extracted from different sample matrices. SC-

CO2 has been regarded as a promising tool not only from a laboratory 

point of view, but also in the industrial scale (i.e., food and natural 

products industries) (Fiori, 2010). Several papers have been published 

in the evaluation of the industrial and economical practicality of some 

SC-CO2 developed processes, such as brewery spent grain 

management (Fernandez et al., 2008) and essential oil extraction from 

anise, fennel and rosemary (Pereira & Meireles, 2007). On the other 

hand, there are wide studies of SC-CO2 application in laboratory scale 

such as extraction of Lamiaceae herbs (Babovic et al., 2010), 

Strobilanthes crispus (Pecah Kaca) (Liza et al., 2010), aloe vera (El-

Shemy et al., 2010), chia seed oil (Ixtaina et al., 2010), microalgae 

(Dejoye et al., 2011) and many more.  

      Vast application and benefits of this assuring SC-CO2 technique 

have drawn current researchers to investigate the application of this 

process in propolis extraction. SC-CO2 appears to be an ideal solvent 

to extract bioactive compounds identified in propolis such as 

flavonoids and phenolic acids including p-coumaric acid, ferulic acid, 

cinnamic acids, pinobaskin, kaempferol, artepillin C, and others (Lee 

et al.,2007; Catchpole et al., 2004). A clear positive trend in propolis 

extraction using SC-CO2 technique is shown by several successful 

studies (Chen et al., 2009; Lee et al.,2007; Catchpole et al., 2004). 

      In recent available literature, the chemical, biological, and 

nutritional aspects of propolis as a source of functional compounds, as 

well as technological aspects of the SC-CO2 extraction have been 

reviewed. However, to date, there’s no reference available for a 

specific review of the application of SC-CO2 in propolis extraction. 

Hence, the intention of this mini review is to summarize the findings 

related to propolis extraction with an emphasis on using SC-CO2 

technology and related matter. 

 
 
PROPOLIS 
 

Propolis or sometimes also known as ‘bee glue' is defined by the 

United States Department of Agriculture, USDA as ‘a gum that is 

gathered by bees from various plants. It may vary in colour from light 

yellow to dark brown. It may cause staining of the comb or frame and 

may be found in extracted honey' (USDA, 1985). The word propolis 

was developed from a Greek name in which ‘pro' is meant by ‘police' 

and ‘polis' is meant by ‘city' that describe one of their function is to 

protect the entrance of beehives against intruders.   

The precise composition of raw propolis could vary among 

different places and source. It is been reported that propolis contains 

more than 160 constituents and varies significantly because of their 

different botanical and geographical sources (Choi et al., 2006). These 

constituents include polyphenols (flavonoids, phenolic acids and their 

ester, phenolic aldehydes, alcohol and ketones), amino acids, steroids, 

coumarins, sesquiterpene quinones and inorganic compounds. Due to 

this variation in their chemical compositions, it seems to be 

challenging to identify and standardized propolis profile from 

different places worldwide (Choi et al., 2006).  

The range of pharmacological activities by propolis sample such 

as antioxidant, antibacterial, antifungal and anti-inflammatory have 

been attributed to the presence of bioactive compounds. In addition, 

other pharmacological properties that have also been associated with 

propolis are immunomodulatory, hematostimulative, hepatoprotective, 

and cytotoxic activities.  

The study by Funakoshi-Tago et al., (2016) found that five types 

of flavonoids; isoliquiritigenin, chrysin, 3′,4′-dihydroxy-4-

methoxydalbergione, 4-methoxydalbergion, and cearoin was present 

in Nepalese propolis. These flavonoids have markedly inhibited 

inflammatory responses in iNOS (inducible nitric oxide synthase), 

TNFα (tumour necrosis factor) and CCL2 (monocyte chemoattractant 

protein-1) mRNA expression. They concluded that propolis’s 

inhibitory effects on inflammatory responses were significantly 

correlated with the intensities of these five types of flavonoids.  

Presence of formononetin, isoliquiritigenin, (3S)-neovestitol, and 

(3S)-vestitol were suggested to be responsible for antibacterial activity 

against Streptococcus mutans, Streptococcus sobrinus, 

Staphylococcus aureus and Actinomyces naeslundii in Brazilian 

propolis (Bueno-Silva et al., 2017). Meanwhile, luteolin and quercetin 

compound in Brazilian red propolis have been reported to be 

associated with antibacterial activity against Escherichia coli, 

Pseudomonas aeruginosa and Staphylococcus aureus (Regueira et al., 

2017). 

The most commonly known therapeutic properties of propolis was 

its antioxidant ability which is contributed by the phenolic 

compounds, particularly phenolic acids and their esters (Socha et al., 

2015). Phenolic compounds inhibit the free radical reactions, 

capturing the superoxide amino radicals and peroxy radicals, reducing 

transition metal ions and inhibits the formation of reactive oxygen 

species (Socha et al., 2015). P-coumaric acid and ferulic acid were the 

dominant phenolic acid found in Poland propolis, whereas, chrysine 

and galangine were dominant flavonoids found in the same sample. 

Socha et al., (2015) observed a significant linear correlation between 

these phenolic compounds with antioxidant activity and reducing 

power as measured by DPPH (free radical diphenylpicrylhydrazyl) 

and FRAP (ferric reducing ability of plasma) assay respectively. 

 

 

METHODS OF PROPOLIS EXTRACTION 
 

Currently, there are two categories of extraction technique which 

are conventional and modern extraction method. Example of modern 

extraction methods includes supercritical fluid extraction (SFE), 

ultrasound-assisted extraction (UAE), microwave-assisted extraction 

(MAE), pressurized liquid extraction (PLE), and pressurized hot water 

extraction (PHWE) developed an alternative to conventional 

extraction method. The conventional extraction method of solid-liquid 

extraction (SLE) involves solvent application and leaching process 

which encompasses soxhlet extraction (SE), percolation and 

maceration extraction (ME) (Socha et al., 2015).  

Up until now, several conventional extraction methods such as the 

ones listed above have been employed in the extraction of bioactive 

compounds in propolis sample. Conventional extraction methods 

generally require a huge amount of solvents and it is time-consuming 

and complicated. Hence, there is a need to develop and establish a 

greener extraction method with higher efficiency in enriching 

bioactive compounds from propolis sample. In that regard, a number 

of researchers had investigated and improved these conventional 

propolis extraction technique by introducing a new distinct propolis 

extraction technique.   

Machado et al., (2016) had compared Brazilian propolis extract 

obtained by conventional extraction technique - ethanolic extraction 

(EtOH) with modern extraction technique - supercritical CO2 
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extraction. They found a higher concentration of Artepillin C and p-

coumaric acid in propolis extract obtained by supercritical CO2

extraction at 50°C, 350 bar, and 1% of ethanol addition as co-solvent 

as compared to conventional ethanolic extraction. Supercritical CO2

has a higher selectivity for extraction of these target compounds 

which were particularly related to antioxidant activities (DPPH & 

ABTS) and antibacterial activities of the propolis extract.  

Microwave-assisted extraction (MAE) is one of the modern 

extraction techniques which can reduce extraction time significantly 

by allowing rapid and homogenous distribution of energy throughout 

the solid matrix and solvent (Hamzah & Leo, 2015). A large amount 

of energy, in the form of heat, is utilized for extraction by 

microwaves. Moisture in the solid matrix adsorbs microwave energy 

and creates internal superheating that promotes the solid disruption, 

thus improving the recovery of bioactive compounds in a short 

duration (Destandau et al., 2013). Propolis extraction using MAE can 

be accomplished in a shorter time with less solvent degradation and 

without severe compound degradation as compared to conventional 

extraction method such as maceration (Hamzah & Leo, 2015). MAE 

carried out at 2 × 10 seconds of microwave irradiation exposure to the 

propolis sample resulted in 73% of extract yield. Meanwhile, 

maceration extraction had only resulted in 58% of extract yield after 

72 hours of extraction period.  

On the other hand, ultrasonic extraction had also been mentioned 

as a fast and efficient extraction method for propolis. Acoustic 

cavitation by ultrasonic energy inside the sample matrix allowed rapid 

extraction of bioactive compounds. This technology showed great 

potential in reducing extraction time and increased extraction yield. 

Ultrasonic extraction gave a higher percentage of phenolic compounds 

extracts than MAE. Ultrasonic extraction had resulted in total 

phenolic of 50% after 30 min extraction period, whilst, MAE had 

resulted in 40% of total phenolic after 2 × 10s of microwave 

irradiation exposure to the propolis sample. In addition, this method 

provided less operating hours and less labour (Trusheva et al., 2007).  

Application of membrane concentration process or specifically 

nanofiltration in propolis extraction has been growing because of 

several benefits, such as low energy consumption, the absence of 

phase transition, and operation at low temperature. This technique is 

based on the principle of solute selective permeation through semi-

permeable, inorganic or polymeric membranes. Mechanical pressure 

is used as the driving force for mass transfer across the membrane for 

most membrane processes, such as reverse osmosis, nanofiltration, 

ultrafiltration and microfiltration. Nanofiltration process reported 

having high efficiency in extraction and concentration of phenolic and 

flavonoids compounds up to 90% in aqueous and ethanolic propolis 

solution (Mello et al., 2010). Nanofiltration process had concentrated 

flavanoids compounds, 71.93 mg/g and phenolic compounds, 105.08 

mg/g in ethanolic solution of propolis sample. Meanwhile, the same 

process had concentrated flavanoids compounds, 96.76 mg/g and 

phenolic compounds, 104.74 mg/g from an aqueous solution of the 

propolis sample.   

Pressurized liquid extraction (PLE) is becoming an important 

sample preparation technique in food analysis and its application in 

the extraction process including propolis extraction process. It 

requires less solvent, favourable for environmental aspect and allows 

efficient analytes extraction in an inert and closed environment, thus 

enabling high-temperature extraction. Parameters such as temperature, 

pressure, solvent type, extraction time and cell size were stated to 

affect the performance of propolis extraction significantly. Study by 

Erdogan et al., (2011) had mentioned that 40oC, 1500 psi, 

Ethanol:water:hydrochloric acid; (70:25:5, v/v/v) containing 0.1% 

tert-butylhydroquinone (tBHQ) as solvent, three extraction cycles 

within 15 min, and a cell size of 11 mL was the most favorable PLE 

operating conditions for propolis extraction. A recovery rate ranging 

from 97-99% of polyphenol compounds in propolis which 

encompasses gallocatechin (GCT), catechin (CT), epicatechin, gallate 

(ECTG), caffeic acid (CA), chlorogenic acid (ChA), and myricetin 

(Myr), can be extracted by PLE (Erdogan et al., 2011).  

Table 1 listed details of different extraction methods in propolis 

extraction encompass the propolis source, solvent, specific method, 

condition used and their results.   

Table 1  List of different extraction methods of propolis extracts. 

Propolis 
Source 

Solvent Method 
Condition Results 

Authors 

Brazil Water 
Ethanol 

Nanofiltration NF90 
membrane 
T – 20oC 
P – 6.0 bar 
t – 30 min 

Phenolic 
content 
– 53-
94% 
Flavanoi
d 
content 
– 90 –
99% 

Mello et 
al., 
(2010) 

Italy Ethanol 
Ethyl 

acetate 
Water 
HCl 

Methanol 
Acetone 

Pressurized 
liquid 
extraction 

T –
20,40,60,80
oC 
P – 500, 
1000, 1500, 
2000 psi 
t – 15, 30, 
40, 60, 90, 
120 min 
cell size –
11, 22ml 

Optimu
m 
condition 
– 40oC, 
1500 
psi, 15 
min, 
11ml cell 
size 

Erdogan 
et al. 
(2011) 

Bulgaria Ethanol Maceration 
extraction 

Propolis: 
solvent ratio 
– 1:20  

t – 72 hours  

Phenolic 
content 
– 44% 
Flavanoi
d 
content 
– 30% 
Total 
extract 
yield –
58% 

Trushev
a et al. 
(2007) 

Thailand Ethanol Ultrasonic 
extraction 

t – 15, 30, 
45, 60 min 

Optimu
m 
inhibitory 
effects –
15 & 30 
min 

Sanpa 
et al. 
(2012) 

Italy Ethanol 
Water 

Microwave-
assisted 
extraction 

Power –
300W 
Frequency 
– 2450 MHz 
EtOH: 
solvent ratio 
– 80:20 v/v 
T – 106oC 

Phenolic 
content 
– 5-
120.8 
mg/g 
Flavanoi
d 
content 
– 2.5 –
168.0 
mg/g 

Pellati et 
al.,
(2013) 

Brazil Ethanol Supercritical 
CO2 
extraction 

1% EtOH  
P – 350 bar 
T – 50oC 
CO2 flow 
rate –
6g/min 
t – 2 hours 
30 min 

Phenolic 
content 
– 157.43 
mg/g 
Flavanoi
d 
content 
– 25.46 
mg/g 
DPPH –
116.49 
IC50 
ABTS – 
87.60% 

Machad
o et al., 
(2016) 

Hot-pressurized water (HPW) technique is another modern 

extraction method that has been applied to extract bioactive 

compounds in propolis sample. This technique is based on the 

principle of water that has dielectric properties, viscosity, and surface 

tension that is close to organic solvents while offering more 

advantages compared to conventional organic solvent extraction. A 

study by Chen et al., (2007) found seven flavonoids, caffeic acid 

phenethyl ester and four phenolic acids compounds obtained from 

HPW extraction were 36% higher than that from hot water extraction 

at atmospheric pressure. Additionally, the addition of natural 

surfactant in the process had increased the mentioned compounds 

extraction to 44% higher as compared to without the addition of 

natural surfactant. This extract was also reported to have successfully 

suppressed the growth of leukemia, lung cancer and liver cancer cells 

(Chen et al., 2007).  

http://www.foxitsoftware.com/shopping
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PRINCIPLE OF SC-CO2 EXTRACTION 

A supercritical fluid has been applied in the extraction of the 

natural product since the end of the 1970s. However, for a long 

period, the applications have been limited only to a few products. 

Currently, the growth and improvement of supercritical fluid 

equipment’s as well as the processes have begun to pay off and gain 

much interest from the industries (Herrero et al., 2010). This interest 

is demonstrated by numerous recent scientific papers regarding the 

SFE technique. Furthermore, SFE application in industries has been 

growing tremendously, indicated by patents since the early 1990s 

(Herrero et al., 2010). Figure 1 illustrated a schematic diagram of the 

SC-CO2 extraction process.  

Figure 1  Schematic diagram of SC-CO2 extraction.  

Supercritical fluid extraction is one of the methods used in 

recovering bioactive compound from natural sources that have shown 

to be more advantageous and is more environmental friendly 

compared to conventional extraction methods. SFE technique appears 

to be a good extraction and fractionation process for industrial 

application, especially in pharmaceutical and food industries (Lang & 

Wai, 2001). Each fluid is identified by its critical point, which is 

described by its critical temperature and critical pressure. This fluid 

cannot be further liquefied above its critical temperature, despite any 

pressure applied, however, it may reach the density closer to the liquid 

state. A substance above its critical temperature and critical pressure 

is considered as a supercritical fluid. Supercritical fluid is a phase 

where a distinct gas and liquid phase does not exist (McHugh & 

Krukonis, 2013). Figure 2 below showed a pressure-temperature 

diagram of the supercritical fluid.   

Figure 2  Pressure-temperature diagram.  

High density provides better compound solubilization by SC-CO2, 

whilst low viscosity allows easier solid penetration and enables less 

friction flow. Solvating strength of SC-CO2 could be manipulated by 

adjusting its operating parameters, mainly temperature and pressure 

(Kalani & Yunus, 2011). Adjusting the critical temperature and 

critical pressure can alter SC-CO2 properties and enhance its 

efficiency to penetrate and subsequently extract targeted bioactive 

compound from the natural source. In addition, SC-CO2 is mentioned 

to be an excellent solvent to recover the high amount of lipid-soluble 

compounds (Sahena et al., 2009).  

SC-CO2 extraction parameters comprising extraction temperature, 

pressure, modifier, flow rate, process time, moisture content, and 

sample particle size has significant relation with extraction product 

quantitatively and qualitatively (Zuknik et al., 2012). Temperature as 

one of the important parameters in the SC-CO2 process could 

significantly affect the extraction yield. This had been reported by 

Favati et al. (1991), with an increase in temperature from 40 ºC to 50 

ºC at 20 MPa, the evening primrose oil yield dropped from 66.1% to 

59.6% with a further drop to 31.4% at 60 ºC. Meanwhile, they also 

found that the oil yield increased from 96.8% to 97.5% with 

increasing temperature from 40 ºC to 50 ºC and then slightly dropped 

to 97.2 % at 60 ºC. Increase in process temperature will increase the 

vapour pressure of the solute and reduce the possibility of mass 

transfer resistance between solute and the sample's matrix to happen. 

On the other hand, process pressure could also affect the 

extraction yield. An increase in process pressure does increase the 

extraction yield due to an increase in solvent density that enhances the 

solvating power of SC-CO2 solvent and risen the intermolecular 

interaction with the solutes. This phenomenon eases the dissolution of 

solutes and solvent, thus improving the extraction yield obtained 

(Machmudah et al., 2006). This has been reported by Tai & Kim 

(2014) where they found an increase of Gac oil recovery from 72.3% 

to 91.4% at an increase of pressure from 200 to 400 bar, with constant 

temperature 323K and flow rate 70 kgh-1kg-1.  

In addition, the SC-CO2 flow rate has also a strong influence on 

the extraction yield obtained. The optimum SC-CO2 flow rate must be 

sufficient for solvent-solute saturation. Unsaturated SC-CO2 could 

exit the extractor at lower flow rate due to mass transfer resistance 

that limits the amount of solute transported in the solvent. Meanwhile, 

as an increase of flow rates, the mass transfer resistance will be 

reduced until the exiting solvent is saturated and thus equilibrium is 

achieved and the maximum yield can be attained (Kumoro & Hasan, 

2007). SC-CO2 extraction of flaxseed oil had shown that at a lower 

flow rate of 1L/min required a longer extraction time to reach the 

maximum extraction yield, whilst the maximum extraction yield had 

increased at a higher flow rate of 3L/min from 66% to 74% (Bozan & 

Temelli, 2002).  

To summarize advantages of SC-CO2, i) it can dissolve non-polar 

to slightly polar compounds, ii) possess high solvating power towards 

low molecular weight compounds that decreases with bigger 

molecular weight compounds, iii) high affinity towards medium 

molecular weight oxygenated organic compounds, iv) low solubility 

towards water at temperature below 100oC, v) insoluble with protein, 

polysaccharides, sugars and mineral salts, and vi) is capable of 

isolating less volatile, higher molecular weight, more polar 

compounds as the pressure increases.  

The main disadvantage of SC-CO2 is its low polarity, which 

reduces the efficiency to extract polar compound in the natural 

sample. However, this drawback can be overcome by applying polar 

modifier (co-solvent) to alter the SC-CO2 polarity and help to increase 

its solvating power towards targeted polar compounds (Herrero et al., 

2006). For instance, application of methanol in a small percentage (1-

10%) to CO2 could extend SC-CO2 extraction range to extract more 

polar compounds (Herrero et al., 2006). The co-solvent can also 

reduce the interaction between polar compounds and its matrix, thus 

improving quality of the extract product.  

The design of SC-CO2 process is highly dependent on the scenario 

of equilibrium phase which is strongly sensitive to operating 

parameters and condition changes. Thus, equilibrium phase plays a 

significant role in the SC-CO2 extraction process.  

One of the vital areas of concern in SC-CO2 extraction processes 

is extraction optimization. The adjustment to obtain optimum values 

for different variables attributing to SC-CO2 extraction process could 

significantly increase extraction yield recovery, as well as the 

concentration of the targeted compound. The main optimization of 

SC-CO2 extraction process involves finding its optimum operating 

parameters. Response surface methodology (RSM) is one of the 

favoured methods in optimization process of SC-CO2 extraction. 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj_4Yr1y9nYAhWFrJQKHbc7AbMQjRwIBw&url=http://www.scimed.co.uk/supercritical-co2-extraction/&psig=AOvVaw0-fMBNtq77kkhL1miD6p-G&ust=1516092489569642
http://www.foxitsoftware.com/shopping
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Simultaneous optimization of different variables could be done by 

using RSM. Two variables that could be set as response variables are 

extraction yield and concentration of targeted compounds. RSM 

requires more experimental points to provides more information on 

how the extraction is working. Many researchers had studied 

optimization of SC-CO2 extraction process of various natural products 

employing RSM such as extraction of swietenia mahagoni seed 

(Hartati et al., 2016), palm oil mesocarp (Yunus et al., 2015), jatropha 

curcasl seed (Azizi & Ismail, 2008), piper betel linn leaves (Aziz et 

al., 2016) and castor oil (Danlami et al., 2015).  

 

 

APPLICATION SC-CO2 IN PROPOLIS EXTRACTION 
 

      Supercritical carbon dioxide extraction of propolis yielded an 

extractant that has been proven to possess better biological activities 

as compared to conventional organic solvent extraction. Vast 

researches had been carried out to investigate SC-CO2 extraction on 

propolis sample from different origin worldwide. It has been reported 

that the optimum operating parameters to remove wax and extract rich 

fat-soluble flavonoids was at a pressure of 600 bar and temperature of 

313K (Catchpole et al., 2004). Application of co-solvent, for instance, 

ethanol and water, in SC-CO2 extraction of Brazilian and Taiwanese 

propolis have significantly enhanced water solubility and anti-cancer 

activity of the product (Wu et al., 2009). A patent had also described 

SC-CO2 extraction of propolis sample with the addition of co-solvent 

yielded different classes of bioactive compounds at increasing 

extraction pressure (Wu & Luyu, 2000). Propolis extract obtained 

from SC-CO2 extraction are sold as commercial products in Japan, 

specifically marketed for their anticancer properties. In other 

approaches, a fine particle consisting concentrated bioactive 

compounds from propolis extract could be produced through SC-CO2 

anti-solvent precipitation technique (Wu et al., 2009). Furthermore, 

SC-CO2 extraction technique had also been used in the fractionation 

of propolis sample mixture, and at the same time in the fractionation 

of lecithin with triglyceride oil, curcuminoid with triglyceride oil and 

essential oil with triglyceride oil mixtures (Teberikler et al., 2001).  

      Several bioactive compounds in propolis, such as flavonoids and 

cinnamic acid derivatives are categorized as a polar compound, hence 

they have minimal to zero solubility in SC-CO2. Therefore, 

incorporating a modifier or co-solvent in SC-CO2 extraction could 

help increase solubility strength between solvent and solute, thus 

improving the extraction efficiency. CO2 alone and CO2 with water 

were mentioned to be less effective for dissolving flavonoid 

compounds, whilst CO2 with ethanol was observed as a more effective 

solvent (Catchpole et al., 2004). Non-polar flavonoid derivatives, 

flavone, and 3-hydroxyflavone, were measured to be soluble in CO2 in 

range of 10-5 to 10-4 mole fraction (Catchpole et al., 2004). 

     Amount of flavonoids had increased in water-soluble propolis 

extracted by the SC-CO2 process as reported by You et al., (2002). 

Antioxidant compounds from propolis were favourably extracted 

using SC-CO2 fractionation technique (Wang et al., 2004). Ethyl-

acetate was used as a modifier in SC-CO2 extraction of Brazilian 

propolis and has obtained an anti-cancer associated compound, 

DHCA (Lee et al., 2007). 3,5-diprenyl-4-hydroxycinnamic acid, 

DHCA, also known as Artepillin C found in Brazilian propolis, 

exhibited anti-cancer properties by inhibiting effects of renal 

carcinogenesis through its oxy-radical scavenging characteristic (Ahn 

et al., 2007). Concurrently, Chen et al., (2009) reported that SC-CO2 

extract from Brazilian propolis contained 95% wt DHCA that can 

inhibit the growth of colon cancer and human leukemia (HL-60) 

effectively.  

      SC-CO2 extraction steps could be adjusted so that the process 

temperature and pressure are set in sequential steps. Through this 

approach, a different fraction of compounds can be extracted from one 

raw material as the supercritical fluid is at its moderate density which 

separates highly soluble components such as essential oil. Meanwhile, 

heavier substances such as antioxidant compounds are separated by 

the fluid which becomes a higher density compounds towards the end 

of the process. A mixture of Brazilian propolis extract had been 

fractionated using this technique and yielded a high concentration of 

interest compound in one fraction, with higher selectivity at a low 

solvent density (Paviani et al., 2010).  

      Considering the good relevance of SC-CO2 extraction technology 

as an alternative method for propolis extraction, in addition to 

promising and important health compounds present in propolis source, 

there is a need for more investigation regarding this subject. Recently, 

demand to establish a good and optimum condition for SC-CO2 

extraction of propolis extraction has increased among researchers 

(Revercon & De Marco, 2006). However, application of this 

technique was only slightly explored. Listed in Table 2 are all 

available literature reported on the extraction of propolis sample using 

SC-CO2 technology until 2017, hence, this may be used as a reference 

for future investigation and improvement. 

 

 

ADVANTAGES OF SC-CO2 EXTRACTION 
 

Raventos et al., (2002) had summarized advantages of SC-CO2 

extraction as follow; i) good quality and better purity of recovered 

product, ii) faster extraction and separation process, iii) extract are 

free from solvent residue, iv) able to fractionate specifically targeted 

compounds and v) low in production cost. Recently, direct 

applications of high-value product in pharmaceutical and food 

industries have demanded interest in extraction and fractionation of 

bioactive compounds from plant and animal sources. Awareness of 

the health, environmental and safety hazards related to the application 

of organic solvents and possible solvent contamination in food 

processing's final products among the public had risen. The need to 

search for excellent extraction techniques to recover natural bioactive 

health beneficial compounds in various natural material is increasing. 

The urgent needs for development and improvement of new 

separation technologies in food processing industries are contributed 

by the high cost of organic solvents, stricter environmental regulations 

and new requirement for ultra-pure and high value-added products in 

this area (Mohamed & Mansoori, 2002). Conventional extraction 

techniques can cause the destruction of valuable compounds due to 

the high-temperature application (Chemat & Khan, 2011). Moreover, 

the usage of organic solvents may also produce an extract with solvent 

residue, hence reducing the product quality.   

SC-CO2 has several vital properties which are regarded as a 

promising alternative technology to current conventional solvent 

extraction methods. For example, SC-CO2 have lower viscosity and 

higher diffusivity as compare to liquid solvents, hence they can 

penetrate porous solid material better, resulting in faster extraction 

due to much faster mass transfer. In addition to comparable and better 

recoveries in SC-CO2 extraction, the process time could also be 

reduced to only a few minutes as compared to hours and days in 

conventional liquid-solid extraction. The continuous flow of SC-CO2 

through the sample in this extraction process provides complete or 

quantitative extraction. Solvation power of SC-CO2 can also be 

manipulated by adjusting their pressure and temperature which leads 

to a remarkably high selectivity. This advantage of tunable solvation 

power is specifically beneficial to the extraction of complex samples, 

such as plant material. For example, selective extraction of vindoline 

compounds from among other 100 alkaloid components from 

Catharanthus roseus leaves (Song et al., 1992). Moreover, the 

extracted solutes dissolved in SC-CO2 can be easily recovered by the 

depressurization process, which has replaced the time-consuming 

sample concentration process. The latter process often results in loss 

of targeted volatile compounds.  

SC-CO2 extraction method also requires only a little sample 

consumption, as small as 0.5 – 1.5 gram, as compared to conventional 

methods which need a bigger amount of sample up to 20 – 100 grams. 

It has been reported that more than 100 volatile and semi-volatile 

compounds could be extracted from only 1.5 gram of fresh plant 

sample as detected by GCMS, in which each of the components was 

sufficient for accurate quantifications (Lee & Markides, 1990). 

Furthermore, there is no application of environmentally harmful 

solvent in SC-CO2 extraction process while tens to hundreds of 

millilitres of organic solvents may be used in the conventional 

extraction process. 
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Table 2 Summary of studies on the application of SC-CO2 in propolis extraction. Where, T – temperature; P – Pressure; FR – Flow rate; SC – co-solvent concentration; t – time 

Propolis 
source 

Pre-treatment Solvent SC-CO2 condition Results Authors 

Brazil No Ethyl-acetate T – 40,50,60oC 

P - 13891 – 27681 kPa 

FR – 4L/min 

SC – 2,4,6 % 

SCCO2 extract at 50oC & 4% SC resulted in DHCA conc. 13.9% Lee et al., (2007) 

New Zealand Yes 

*Ethanol 

*Water 

Ethanol T – 333K 

P – 250 – 300bar 

FR ratio – 0.05 

SC – 10% 

SCCO2 extract resulted in flavonoid content – 20-35% Catchpole et al., (2004) 

Brazil  Yes 

*Ethyl-acetate 

Ethyl acetate 

Ethanol 

T – 308 – 328K 

P – 10 – 20MPa 

FR – 10.8 – 32.6 g/min 

SCCO2 extract at 20MPa & 328K resulted in DHCA conc. 300 mg/g 

Soxhlet ext – 204 mg/g 

Chen et al., (2009) 

Brazil No Ethanol T – 30,40,50oC 

P – 100 – 250bar 

FR – 3, 5 g/min 

SC – 2,5,7 % 

SCCO2 extract – total yield 24.8% 

Soxhlet extract – 73% 

Biscaia & Ferreira, (2009) 

Italian No No T – 35,40,45oC 

P – 130,200,270bar 

FR – 2L/min 

t – 2.5,4,5.5h 

SCCO2 extract at 317bar, 45oC, 6.5hrs, 2L/min CO2 FR resulted in total 

yield 14.3% 

De Zordi et al., (2014) 

Brazil Yes No T – 328K 

P – 20MPa 

FR – 10,15,20 L/min 

SCCO2 extract concentration 25-250mg/ml – inhibit human colon & 

breast cancer 

Wu et al., (2009) 

Brazil  No Ethyl-acetate T – 308 – 333K 

P – 13.8 – 27.6MPa 

FR – 10L/min 

SC – 0 – 6 % 

SCCO2 extract at 20.7MPa, 323K, 6wt% ethyl acetate resulted in DHCA 

conc. 41.2 wt% 

Soxhlet extract resulted in DHCA conc. 91.8 wt% 

Chen et al., (2007) 

Brazil Yes 

*Ethanol 

Ethanol T – 20,35,50oC 

P – 150,200,250bar 

FR – 1g/min 

SC – 0,5,10,15% 

SCCO2 extract without solvent – total yield 7.3% 

SCCO2 extract with solvent – total yield 51% 

Soxhlet extract – total yield 39.5% 

Paviani et al., (2012) 

Brazil Yes 

*Ethanol 

No T – 60oC 

P – 5,10,15,20 MPa 

SCCO2 extract – DPPH activity (27 – 93%), O2 scavenging activity 

(73%), OH scavenging activity (65%) 

Wang et al., (2004) 

http://www.foxitsoftware.com/shopping
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Brazil No Ethanol T – 40-50oC 

P – 250,350,400bar 

FR – 6 g/min 

SC – 1-2% 

SCCO2 extract at 50oC, 300 bar, 1% EtOH – Artepillin C conc 

(8.98g/100g) & p-coumaric acid (0.4g/100g) 

Machado et al., (2015) 

Brazil Yes 

*Ethanol 

No T – 60oC 

P –150,200,250,300bar 

FR – 1g/min 

SCCO2 extract at 60oC, 150-350 bar resulted in a total yield of 3.82 – 

13.07%  

Paviani et al., (2010) 

Brazil Yes 

*Ethanol 

No T – 60oC 

P – 5,10,15,20 MPa 

SCCO2 extract – suppress lipid peroxidation & increase in antioxidant 

enzyme activity 

Wang et al., (2006) 

Brazil No Ethanol 

Water 

T – 50oC 

P – 250 bar 

FR – 1.65 g/min 

SC – 0.79 g/min 

SCCO2 extract resulted in a total yield of 53.5%  

Soxhlet extract resulted in a total yield of 44.7%  

Monroy et al., (2017) 

http://www.foxitsoftware.com/shopping
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In recent decades, SC-CO2 extraction coupled with the 

chromatographic method has been introduced, which is useful in 

extraction and direct quantification of highly volatile compounds, 

which also helps to reduce the process time needed (Mendiola et al., 

2005).  

CO2 used in this extraction process can also be recycled or reused, 

hence minimizing the waste production, particularly in the large-scale 

SC-CO2 extraction process. SC-CO2 extraction can be applied in 

different scales of production, starting from the analytical scale which 

requires only less than a gram of sample, to preparative scales which 

needs several hundred grams of sample, and lastly to large industrial 

scale which can use tonnes of the sample to operate (Sahena et al., 

2009). The SC-CO2 extraction process can also provide important 

information regarding the extraction process and mechanisms which 

provide vital information for scientists to quantitatively assess, 

evaluate and optimize the efficiency of whole extraction process 

(Sahena et al., 2009).  

SC-CO2 VS CONVENTIONAL EXTRACTION 

      In food and natural product area, comparison on the performance 

of SC-CO2 extraction and conventional extraction techniques were 

widely studied by many researchers. SC-CO2 extraction has been 

particularly evaluated in comparison with solid-liquid extraction, 

hydrodistillation, soxhlet extraction, solvent extraction and ultrasound 

assisted extraction. SC-CO2 extraction has been reported to have 

faster extraction time and higher recovery as compared to 

hydrodistillation for extraction of essential oil of V.officinalis. 

However, contrarily hydrodistillation method yielded a better number 

of volatile compounds extracted as compare to SC-CO2 extraction 

method which may due to loss of several volatile compounds during 

depressurization step in the process (Safaralie et al., 2008). 

       Additionally, SC-CO2 extraction had produced more enriched 

phenolic compounds as compared to solid-liquid extraction in the 

extraction of grape pomace (Pinelo et al., 2007). However, the 

composition of the extracts reported was not similar. SC-CO2

extraction yielded simpler phenolics while solid-liquid extraction 

resulted in the higher amount of proanthocyanidins content. 

Moreover, SC-CO2 extract demonstrated higher antiradical and 

antimicrobial activity compared to that in conventional techniques 

extract (Liu et al., 2009). 

       Furthermore, SC-CO2 extraction resulted in similar yield as 

compared to hot hexane extraction (Wang et al., 2007). SC-CO2

extraction method can reach a 97 – 100% recoveries for a wide range 

of food products extract, for instance, puff-dried product, potato chips 

and seeds. There was no significant difference in fatty acids 

composition of beef sample extract yielded from SC-CO2 compared to 

that of conventional extraction method as per the nutritional labelling 

and education act (NLEA) procedure (King et al., 1996). Comparable 

results of fatty acid contents in beef and bakery samples extract were 

reportedly obtained from acid hydrolysis solvent extraction and SC-

CO2 extraction method. However, SC-CO2 have recovered 

significantly higher concentration of lipids and fatty acids in seaweed 

sample as compared to chloroform and methanol soxhlet extraction 

(Eller & King, 1998).  

      Satisfactory results were recorded for fat content and fatty acid 

profile in dairy product extracted with SC-CO2, which recovery was 

between 83.1% and 96.4%. Similarly, the extraction yield of some 

bakery products using SC-CO2 was similar to that of the conventional 

extraction method (Wu et al., 2009). To conclude, various researches 

mentioned above had demonstrated SC-CO2 extraction could be a 

better alternative or replacement for conventional extraction methods 

for a large variety of natural samples (Wu et al., 2009).  Although the 

method has slight drawback with cost-effectiveness for low volume 

products, a various study has been carried out to overcome the 

mentioned disadvantages.   

      Notably, SC-CO2 extraction of propolis sample has also been 

compared to several other extraction techniques such as Soxhlet 

extraction, maceration, and ultrasound extraction. Lee et al., (2007) 

has reported that the SC-CO2 extraction method resulted in better 

recovery at 40% wt. as compared to soxhlet ethyl-acetate extraction 

only at 16.9% wt. The report also mentioned that the SC-CO2 method 

has produced the extract purity twice as high the compared to Soxhlet 

extraction methods. SC-CO2 extraction was compared to Soxhlet 

extraction and maceration process in a study by Biscaia & Ferreira 

(2009) which has recorded the highest yield for SC-CO2 extraction at 

24.8% w/w, while for Soxhlet extraction, at 73% w/w. De Zordi et al., 

(2014) stated that extraction pressure and time affect the extraction of 

lipophilic components from propolis sample most significantly, while 

temperature has less effect. They obtained the highest yield of 14.3% 

using SC-CO2 extraction at 317 bar, 45◦C and 6.5 h of experimental 

time (with a gas flow of 2 L/min at room conditions of T and P). 

There was a different composition of flavones and phenolic 

components observed between both SC-CO2 and conventional 

extraction products. The study suggested that SC-CO2 extraction 

process can be utilized as pre-treatment of crude propolis for further 

ethanolic extraction and as a method to yield new kind of lipophilic-

enriched propolis extract.  

CONCLUSION 

      In this mini review, the interest in the application of SC-CO2 

extraction for propolis sample has been discussed. Apparently, 

researches on SC-CO2 extraction of propolis is growing enormously 

around the globe. The aim of this review is to summarize all available 

literature on the application of this advanced, green and promising 

technique to extract propolis sample which is known to contain 

various beneficial health compounds as well as to discuss related 

matters including principle and advantages of SC-CO2 extraction. 

Information presented in this short review may provide current 

information and insightful details regarding SC-CO2 propolis 

extraction for future development and improvement. 
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