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Abstract 
 
This work investigates the effect of supercritical carbon dioxide (SC-CO2) extraction conditions (pressure 
and temperature) on the oil yield and β-sitosterol content extracted from Swietenia mahagoni seeds by 
using response surface methodology (RSM). The experimental data obtained were fitted to a second-
order polynomial model and the obtained oil yields were 1.49-14.45%, while β-sitosterol content obtained 
were 3.12-9.20 mg/g. The best conditions within the ranges studied were 30 MPa and 40°C to extract β-
sitosterol in the highest amount. The present findings show that S. mahagoni seeds extract has a high 
concentration of β-sitosterol.  
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INTRODUCTION 
 

Swietenia mahagoni is also known as ‘tunjuk langit’ in Malaysia 

(Fig. 1) is used traditionally to treat various diseases such as diabetes 

and high blood pressure (Goh et al., 2010). Swietenia mahagoni tree is 

30 meters or taller (Eid et al., 2013) and the wood, usually being used 

for making furniture (Falah et al., 2008). Meanwhile, the bark can be 

used for natural colorant (Haque et al., 2013). The fruit of Swietenia 

mahagoni is woody and consisting of capsules containing winged seeds 

(Blundell et al., 2003). Whereas, the seed of Swietenia mahagoni can 

be obtained by removing the wing. In Malaysia, the raw seeds were 

used for treating hypertension and diabetes (Balijepalli et al., 2014). In 

addition, Swietenia mahagoni seeds have been reported to have various 

biological activities such as anti-inflammatory activity, anticancer and 

antitumor activity (Goh et al., 2011) and also antidiabetic activity 

(Maiti et al., 2009). Moreover, the seeds contain a number of bioactive 

compounds as has been noted by Hashim et al., (2013) and presented 

in Table 1. 

To date, no study was found on the quantification of β-sitosterol 

from Swietenia mahagoni seeds using high performance liquid 

chromatography (HPLC). Recently, attention on the importance of 

natural compounds from plants and herbs has been reassessing. As a 

matter of fact, bioactive compounds from plant sources are chemically 

sensitive and present in low concentration, hence supercritical carbon 

dioxide (SC-CO2) extraction is an appropriate extraction method to use. 

SC-CO2 is a separation process of matters by using supercritical carbon 

dioxide as a solvent. In this case, thermolabile and non-polar 

compounds can be extracted by using SC-CO2 extraction due to the low 

operating temperature of 30°C without any degradation. It cannot be 

used to extract polar compounds since SC-CO2 extraction is more 

appropriate to extract non-polar nature compounds (Vilegas et al., 

1997). Previously, β-sitosterol has been extracted from various plants 

using SC-CO2 since β-sitosterol is a non-polar compound. Therefore, 

no co-solvent is needed in the extraction of β-sitosterol by using SC-

CO2 extraction.  

 

 
(a) (b) (c) (d) 

 
Fig. 1  Swietenia mahagoni also known as ‘tunjuk langit’ in Malaysia (a) 
tree, (b) fruit, (c) winged seeds and (d) seeds.   
 

Moreover, carbon dioxide (CO2) is the most frequently solvent 

used because it is environmental friendly (fairly non-toxic), low cost 

and can be easily removed from the extract (Liza et al., 2010). The 

elimination of CO2 is easily achieved since CO2 is in a gas state at room 
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temperature. In addition, CO2 in the supercritical state is in a moderate 

critical temperature (31.3°C) and pressure (7.38 MPa). Supercritical 

state is when gas and liquid are indistinguishable where at this state it 

is compressible but possessing a density of a liquid. In a word, 

supercritical CO2 makes a good solvent because of the gas-like state 

that attributed the low viscosity and high diffusion coefficient and the 

liquid-like state that gave the solvating power (Aionicesei et al., 2008). 

Table 1  Primary compounds found in S. mahagoni seeds determined by 
gas chromatography-mass spectrometry (Hashim et al., (2013).   

Compounds 
Molecular  
formula 

Hexadecanoic acid, methyl ester C17H34O2 
n-Hexadecanoic acid C16H32O2 
9-Octadecenoic acid (Z)- methyl ester C19H36O2 
9,12-Octadecadienoic acid (Z,Z)-Linoleic acid C18H32O2 
Gamma-tocopherol C28H48O2 
Fucosterol C29H48O 
β- sitosterol C29H50O 

Furthermore, the extraction of β-sitosterol from various plants 

using SC-CO2 extraction have been reported in the extraction of saw 

palmetto berries (Catchpole et al., 2002), Vitex agnus castus fruit 

(Cossuta et al., 2008) and sea buckthorn seeds (Sajfrtová et al., 2010).  

Sajfrtová et al., (2010) has reported that low temperature in the 

extraction of β-sitosterol as low as 50°C didn’t cause the degradation 

of β-sitosterol since the degradation was occurred at temperature 

exceeding the temperature mentioned. Also, the yield of β-sitosterol 

increased slightly as pressure increased and the highest yield found 

from Vitex agnus castus fruit was 1.1 mg/g at a pressure of 45 MPa and 

a temperature of 40°C (Cossuta et al., 2008). In this context, the 

extraction of β-sitosterol can be manipulated or controlled by pressure 

and temperature. Pressure and temperature are the most relevant 

parameters in supercritical carbon dioxide (SC-CO2) extraction. In 

general, quantitative recovery of analytes influence by the increase in 

pressure lead to the increase in solvent power. Solvent power is 

described as the solvent density in any given conditions. Significantly, 

high pressure and moderate temperature favor the extraction of β-

sitosterol from plants using SC-CO2.   

Therefore, the aim of this work is to determine the effect of pressure 

and temperature of supercritical carbon dioxide (SC-CO2) extraction on 

the oil yield and β-sitosterol content from Swietenia mahagoni seeds by 

using response surface methodology (RSM).  

EXPERIMENTAL 

Materials 
Swietenia mahagoni seeds were bought in the local market of Johor, 

Malaysia. Commercial grade liquid carbon dioxide (purity 99.99%) 

used in SC-CO2 extraction was purchased from Kras, Instrument and 

Services, Johor, Malaysia.  Methanol grade HPLC and β-sitosterol 

standard were purchased from Sigma-Aldrich, Germany 

Sample preparation 
       The seeds were rinsed with tap water to remove any foreign 

particles and dirt prior to drying. Then, the cleaned seeds were cut into 

small pieces and dried by using oven at temperature of 50°C for a 

week to remove moistures. The seeds were ground by using a blender 

(Waring® Commercial blender) and sieved to approximately 0.50 mm 

of particle size. 

Supercritical carbon dioxide (SC-CO2) extraction 
Supercritical fluid extraction (SFE) machine in Center of Lipids 

Engineering and Applied Research (CLEAR), Universiti Teknologi 

Malaysia is consisted of CO2 gas cylinder, CO2 controller pump (Lab 

Alliance), co-solvent pump (Lab Alliance), oven (Memmert, 

Germany), 10 ml stainless steel extraction vessel, pressure gauge 

(Swagelockk, Germany), automatic back pressure regulator (Jasco BP 

2080- Plus) and restrictor valve. A schematic diagram of CLEAR SFE 

apparatus is illustrated in Fig. 2.   

Fig. 2  Schematic diagram of CLEAR supercritical fluid extraction (SFE) 
machine 

The parameters and constant parameters used in extraction process 

are presented in Table 2.  Five gram of sample was placed in 10 ml 

stainless steel extraction vessel and sealed tightly in the oven. All the 

parameters (temperature, pressure and flowrate of CO2) was fixed, and 

the extraction process was started after all the parameters were attained. 

The extract was collected by depressurizing the system. The oil yields 

were collected after 120 minute extraction time.   

Table 2  The process parameters for SC-CO2 extraction. 

Parameter Range/value 

Temperature (°C) 40-60 
Pressure (MPa) 20-30 

Flowrate of CO2 (ml/min) 2.00 
Particle size (mm) 0.50 
Mass of sample (g) 5.00 

Extraction time (min) 120 

The oil yield was calculated as percentage of oil yield using Eq. 

(1) as follow: 

                          Oil Yield (%) = (M0/ M1) × 100                               (1) 

where M0 is the mass of oil extract in gram and M1 is the mass of sample 

in gram. 

Design of experimental for response surface methodology 
(RSM) 

Response surface methodology (RSM) is a technique used to 

describe the behavior of a set of data. The main purpose is to optimize 

the variables so that the best system performance could be obtained. 

Three-level factorial design was employed to optimize the oil yield and 

β-sitosterol content from Swietenia mahagoni seed. The number of 

experiments is calculated by expression of Eq. (2) (Bezerra et al., 2008) 

below : 

                                 N = 3k                                                               (2) 

where N is the number of experiment and k is the number of factor. 

Three-level factorial is suitable for second-order polynomial model 

of two factors. In supercritical fluid extraction, three level factorial 

usually been used to optimize the number of factors for obtaining the 

highest yield of extract (Sharif et al., 2014). The coded and un-coded 

values are shown in Table 3.  Moreover, the analysis of variance 

(ANOVA) and the regression analysis were all obtained by using 

Statistica software version 7.0 (STatSoft, EUA). ANOVA analysis was 

used to analyze the significance of the results at 95% of confidence 

level.   

Table 3  The extraction process variables in coded and un-coded levels. 

Coded 
factors level 

Un-coded factors level 

Pressure, X1  
(MPa) 

Temperature, X2  
(°C) 

Low (-1) 20 40 
Middle (0) 25 50 
High (+1) 30 60 

http://www.foxitsoftware.com/shopping
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High performance liquid chromatography (HPLC) analysis 
Identification of β-sitosterol was conducted by using a Waters 

HPLC system (Milford, MA, USA) consisting of a pump and system 

controller (Model Waters e2695) with photo-diode array detector 

(Model 2998).  The method of identification for β-sitosterol was 

referred to the previous method (Sánchez-Machado et al., 2004) with a 

slight modification. C18 reserved phase Kinetex Biphenyl column (5 

μm, 4.6 × 150 mm) with a flow rate of 1.0 ml/min was used for 

compound separation. The mobile phase was consisted of methanol 

(60%)/ acetonitrile (40%), in an isocratic program.  The injection 

volume of sample was 20 μL and all samples were filtered with 0.45 

μm nylon filters prior to injection.  The detection was monitored at 210 

nm and data were integrated by Empower 3 software (Waters) (Milford, 

MA, USA). 

RESULTS AND DISCUSSION 

β-sitosterol content 
The β-sitosterol content of Swietenia mahagoni seeds extract with 

different conditions in SC-CO2 extraction were identified and 

quantified.  The highest β-sitosterol content was 9.2 mg/g obtained at 

30 MPa and 40°C, meanwhile the lowest one (3.12 mg/g) was obtained 

at 20 MPa and 50°C.  Previous researches on the β-sitosterol content of 

other plants using SC-CO2 extraction were compared with the result in 

this study as shown in Table 4.  Notably, the temperature of 40°C shows 

better extraction of β-sitosterol from plants since low temperature can 

avoid the degradation of compound.  The temperature in SC-CO2

extraction influenced the yield of β-sitosterol because of the solvent 

density changed.  The solvent density increases with decreasing 

temperature, hence the solubility of β-sitosterol increases by increasing 

the solvating power. Moreover, high pressure also increased the solvent 

density.   

This finding is accordance with previous researches in the 

extraction of β-sitosterol by using SC-CO2 extraction (Catchpole et al., 

2002, Simandi et al., 2002, Andras et al., 2005, Cossuta et al., 2008).  

Catchpole et al., (2002) reported the extraction of β-sitosterol from saw 

palmetto berries using SC-CO2 at pressures of 25 and 28 MPa and 

temperature of 40°C.  The maximum β-sitosterol content was achieved 

at 28 MPa and 40°C.  It can be stated that high pressure and low 

temperature favor to be applied in the extraction of β-sitosterol from 

plants.  Fig. 3 and 4 shows the HPLC chromatograms of the standard 

(β-sitosterol) at a concentration of 80 ppm and β-sitosterol compound 

detected in Swietenia mahagoni oil extract, respectively.   

Fig. 3  HPLC chromatogram of the standard (β-sitosterol) at 
concentration of 80 ppm 

Fig. 4  HPLC chromatogram of β-sitosterol compound detected in S. 
mahagoni oil extracted at 30 MPa and 40°C 

Optimization of supercritical carbon dioxide (SC-CO2) 
extraction 

Optimization in experimental design for supercritical fluid 

extraction referred to as a separation performance to achieve high 

extraction efficiency by improving different operating conditions of 

various processes (Sharif et al., 2014). Experimental design for 

Swietenia mahagoni seed was based on three level factorial with 13 set 

of experiments with four repetition at middle point, as shown on Table 

5.  

Table 4  Extraction of β-sitosterol by SC-CO2 extraction. 

Raw material 

Extraction conditions 
β-sitosterol content  

(mg/g) 
Reference Pressure  

(MPa) 
Temperature 

(°C) 

Saw palmetto berries 28 40 2.3 [13] 
Vitex agnus castus fruit 45 40 1.1 [14] 
Sea Buckthorn seeds 15 40 5.0 [15] 

Swietenia mahagoni seeds 30 40 9.2 This study 

Table 5  Experimental matrix and values of the observed responses 

Run 
Pressure, 
X1 (MPa) 

Temperature, 
X2 (°C) 

Coded level 
Extraction yield (%) β-sitosterol concentration (%) 

Actual Predicted Actual Predicted 
1 20 40 -1 -1 6.56 7.28 0.35 0.35 
2 20 50 -1 0 3.68 3.31 0.31 0.27 
3 20 60 -1 +1 1.49 1.13 0.59 0.64 
4 25 40 0 -1 6.64 5.78 0.70 0.81 
5 25 50 0 0 4.79 4.93 0.56 0.61 
6 25 60 0 +1 4.56 5.87 0.87 0.86 
7 30 40 +1 -1 7.02 7.16 0.92 0.82 
8 30 50 +1 0 8.61 9.43 0.37 0.50 
9 30 60 +1 +1 14.45 13.50 0.67 0.63 

10 25 50 0 0 4.95 4.93 0.56 0.61 
11 25 50 0 0 6.03 4.93 0.69 0.61 
12 25 50 0 0 5.06 4.93 0.64 0.61 
13 25 50 0 0 4.28 4.93 0.67 0.61 

http://www.foxitsoftware.com/shopping


 Md Norodin et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 14, No. 3 (2018) 411-417  

 

414 

Fitting the response surface model 
The selection of a model for the experimental data was selected 

based on correlation coefficient (R2) and Fisher F-test (Rastogi et al., 

1999). In addition, R2 can be expressed as a proportion of variance in a 

set of data explained by a statistical model. When R2 value approaching 

or approximately 1, the model can be said well fitted to the actual data 

(Sin et al., 2006).  Typically, R2 value more than 0.75 is considered 

accurate in developing statistical model or equation (Henika., 1982).  

Fig. 5 and 6 are illustration of the experimental data (observed) and 

predicted values of oil yield and β-sitosterol content, respectively.  The 

R2 values for oil yield and β-sitosterol concentration at 95% confident 

level were 0.94 and 0.85, respectively.  
 

 
 

Fig. 5  Experimental data (observed) versus predicted values for S. 
mahagoni seeds oil yield 

 

 
 

Fig. 6  Experimental data (observed) versus predicted values for β-
sitosterol 
 

Furthermore, the F-calculated values from ANOVA for oil yield 

and β-sitosterol content were also considered in selecting an adequate 

model for the process.  Table 6 and 7 show the analysis of variance for 

oil yield and β-sitosterol, respectively, fitted in the second-order 

polynomial model.  The calculated F-value defined as the ratio of the 

mean square of model or regression to the mean square of residual.  The 

larger the F-value, the greater significance of the model or equation in 

the set of data (Vogel and Todaro., 1997).   

 
Table 6  Analysis of variance (ANOVA) for the response surface second-
order polynomial model for the yield of S. mahagoni seed obtained by 
SC-CO2 extraction  
 

Source Sum of 
squares 

Degree of 
freedom 

Mean 
square 

Fcalculated 

Due to 
Regression 

107.66 5 21.53  
23.08 

Residual 6.53 7 0.93 
Total 114.20 12   

 
Table 7  Analysis of variance (ANOVA) for the response surface second-
order polynomial model for β-sitosterol obtained by SC-CO2 extraction 

 

Source Sum of 
squares 

Degree of 
freedom 

Mean 
square 

Fcalculated 

Due to 
Regression 

0.35 5 0.069  
7.81 

Residual 0.062 7 0.009 
Total 0.41 12   

Based on the analysis of variance for both oil yield and β-sitosterol 

content fitted in the second-order polynomial model, the calculated F-

values are 23.08 and 7.81, respectively.  To determine the significant 

of the calculated F-values obtained, the tabulated F-values from the 

table of the critical value of F with 0.05 of significance level were 

compared.  Thereby, the calculated F-value obtained are greater than 

tabulated F (5, 7, 0.05) obtained which is 3.97. It indicates the significance 

between independent variables with the responses at 95% confidence 

level.  Hence, second-order polynomial model was chosen to depict the 

relationship between the oil yield and β-sitosterol content with the 

independent variables (temperature and pressure)  The second-order 

polynomial model equations for oil yield, Y1, and β-sitosterol content, 

Y2 (dependent variables), with pressure, X1, and temperature, X2, 

(independent variables) are shown in Eq. (3) and (4), respectively: 

 

Y1 = 125.7830 - 5.3882 X1 + 0.0575 X1
2 - 2.4506 X2 + 0.0089 X2

2 + 

0.0625 X1X2      (3) 

 

Y2 = - 3.0321 + 0.5881 X1 – 0.0088 X1
2 – 0.1628 X2 + 0.0023 X2

2 + 

0.0025 X1X2      (4) 

 

The multiple regression coefficients (individual linear, quadratic 

and interaction terms) of the oil yield and β-sitosterol content were 

determined and summarized in Figure 7 and 8, respectively, together 

with the Pareto charts.  Regression coefficients indicate the ability of 

any term(s) toward the response variable(s) (Mironeasa et al., 2016).  

All the terms in the polynomial were analyzed by the degree of 

significance (p-value) of each term. Thus, the term that is considered 

significant (p <0.05) has an influenced on the process (Cvjetko., 2012).   

Based on Fig. 7, the oil yield regression coefficients were 

significant except for temperature in quadratic (X2
2) and linear terms 

(X2) with p >0.05.  Therefore, the temperature has no influence on the 

oil extraction.  The pressure in a linear term (X1) showed a negative 

effect on the response (oil yield) with p <0.05.  While the pressure in 

the quadratic term (X1
2) and interaction of pressure and temperature 

term (X1X2) gave a positive effect on oil yield with p >0.05 and p >0.01, 

respectively. Hence, pressure is a dominant factor on the oil yield. The 

solvent density increases with increasing pressure hence the interaction 

of inter-molecules and solutes increase (Pereira and Meireles., 2009).   

 

 
 

Fig. 7  Multiple regression coefficients and Pareto chart of the oil yield   
 

Pareto chart in statistical analysis is used to demonstrate the effect 

of the factor to the response (Nei et al., 2009). When the bars that 

represent each independent variables exceeding the line at p =0.05 

indicate that the independent variables are significant at 95% 

confidence level (Rodriguez-Nogales et al., 2005). Based on the Pareto 

chart, the most influence independent variable is pressure in a linear 

term (X1), meanwhile to least influence is pressure in a quadratic term 

(X1
2). The temperature in a linear term (X2) is not significance to the 

response.   

Subsequently, the regression coefficients for β-sitosterol content in 

Fig. 8 also shows that all the terms were significant except for 

temperature in a linear term (X2) with p >0.05 and temperature in a 

quadratic term (X2
2) with p >0.01  . Thus, the temperature in linear and 

quadratic terms do not affect the β-sitosterol concentration.  The 

pressure in quadratic (X1
2) and interaction of pressure and temperature 

(X1X2) terms shows a positive effect on β-sitosterol concentration with 
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p >0.01 and p >0.05, respectively.  Inversely, the pressure in a linear 

term (X1) shows the negative effect on β-sitosterol content with p 

>0.05.  Hence, pressure in the recovery of β-sitosterol is crucial.   

 

 
 
Fig. 8  Multiple regression coefficients and Pareto chart of the β-sitosterol 
content 
 

Pressure is significant to the recovery of β-sitosterol.  Theoretically, 

by increasing the pressure, the density of solvent also increase (Pereira 

and Meireles., 2009, Liza et al., 2010).  This will also enhance the 

solvating power and increase the solute solubility (Pereira and 

Meireles., 2009) resulting in a higher recovery of β-sitosterol.  Based 

on the Pareto chart, the most influence independent variable is the 

pressure in a quadratic term (X1
2).  Whereas, the temperature in a linear 

term (X2) and temperature in a quadratic term (X2
2) are not significance 

to the response.   

 

Analysis of response surface 
Fig. 9 show the surface plot for the response of the oil yield. When 

the temperature decreases from 60-40°C, the oil yield slightly 

increases, while as pressure increases from 20-30 MPa, the oil yield 

increases. It concluded that pressure is a dominant factor for the 

extraction of oil yield from Swietenia mahagoni seeds, whereas 

temperature has a minimal effect on the oil yield.  According to Qiuhui 

et al., (2007), the extraction of Chlorella pyrenoidosa resulted in the 

increase of oil yield as pressure increase from 25 to 40 MPa due to the 

change in solubility of oil in SC-CO2. The increase in solubility of oil 

in the solvent will increase the extraction rate because of the solvating 

power. De-Castro et al., (1994) stated solvating power is the interaction 

of intermolecular solvent and solute.   

 

 
 

Fig. 9  Surface plot of oil yield from S. mahagoni as a function of pressure 
and temperature 
 

In addition, Mustapa et al., (2009) reported that the increase in 

intermolecular interactions of solvent and solute resulted in the increase 

of solvent density, thereby the extraction rate increases.  Similar finding 

was reported by de Azevedo et al., (2008), the extraction of green 

coffee oil ranging pressures from 15.2 to 35.2 MPa found that the 

extraction rate correlates with the increase in solvent density.  The 

authors added that pressure also attributed to the increase in solvating 

power and the intermolecular physical interactions between solvent and 

solute.   

Moreover, similar trends were reported in the extraction of Vitex 

agnus castus (Cossuta et al., 2008) and virgin coconut oil (Nik 

Norulaini et al., 2009) where the extraction rate increases as pressure 

increases due to the solvent power.  In the extraction of Vitex agnus 

castus fruit at the pressure of 10 to 45 MPa increased the extraction 

rate.  The authors also related the solubility parameter in the study with 

the solvent power of SC-CO2 that increased significantly as the pressure 

increased from 10 to 27.5 MPa. Meanwhile, the effect of pressure in the 

extraction of virgin coconut oil found that yield obtained also depended 

on the pressure, where a 100% oil yield was obtained at the highest 

pressure.   

The study of the extraction of bottle gourd seed oil by Said et al., 

(2014) reported that the direct relationship of pressure and SC-CO2 

gave the dominant effect of pressure toward the mass transfer rate as 

well as the extraction rate.  Viganó et al., (2016) stated that the recovery 

of extraction yield is related to the solvent power where the increase in 

pressure at constant temperature resulted in the increase of extraction 

yield due to the increase of CO2 density as well as solvent power.   

Subsequently, the minimal effect of temperature in the extraction 

of Swietenia mahagoni seeds as the drop of temperature from 60-40°C, 

increases the extraction yield. This phenomena can be related to the 

study of Lee et al., (1991), where the solvent solubility increased at the 

lower temperature due to the changes in density. Jerry et al., (2001) also 

reported that the maximum oil yield was extracted at lower temperature 

in the extraction of Vernonia galamensis seeds.  This is due to the 

increase in density of extraction fluid (SC-CO2) when the temperature 

decreases from 100-40°C.   

Azizi et al., (2007) reported the similar result in the extraction of 

Parkia Speciosa seeds using SC-CO2.  The oil yield decreased as the 

temperature increased due to the retrograde vaporization behavior.  

This behavior referred to the increase in the solvent solubility at lower 

temperature up to cross over pressure zone as the density increases.  

Meanwhile, in the extraction of Vitex agnus castus fruit by Cossuta et 

al., (2008) found that as temperature increases, the solubility parameter 

also decreases as well as the extraction yield.  Solubility parameter in 

the author’s study refer to the relative solvency behavior of SC-CO2.  

This finding can be related to the study in the extraction of passion fruit 

bagasse by Viganó et al., (2016), where the reduction in oil yield as 

temperature increase because of the density of CO2 decrease.   

Fig. 10 shows the response surface plot of β-sitosterol content as a 

function of pressure and temperature.  The effect of pressure on the 

extraction of β-sitosterol shows a positive quadratic effect.  As pressure 

increases from 20 to 25 MPa, the β-sitosterol content in extract 

increases as the solubility of β-sitosterol in the solvent but decreases as 

it reaches 30 MPa, which shows the interaction of repulsive solute-

solvent increases (Liu et al., 2009).  This may be due to the compressed 

solvent at high pressure in the extractor.   

 

 
 
Fig. 10  Surface plot of β-sitosterol content from S. mahagoni as a 
function of pressure and temperature 
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Similar finding reported by Hartati et al., (2014) in the extraction 

of Swietenia mahagoni seeds.  The negative quadratic effect at high 

pressure is resulted from the highly compressed CO2 that facilitates 

solute-solvent repulsion.  The authors suggested that high pressure is 

not always recommended because it can potentially induce the complex 

extraction.  Catchpole et al., (2002) performed the extraction of β-

sitosterol from saw palmetto berries at the pressure of 25 and 28 MPa 

and at the temperature of 40°C. The highest concentration of β-

sitosterol found in the extract was at 28 MPa and 40°C.   

According to Cossuta et al., (2008), the increase of the pressure 

slightly increased the yield of the β-sitosterol.  Pressure had the 

strongest effect on the concentration of phytostreol in roselle seed 

(Nyam et al., 2010).  At high pressure, the CO2 density increases hence 

the solvent power to dissolve the analyte also increases (Machmudah et 

al., 2007). On the other hand, at higher temperature, the concentration 

of β-sitosterol decrease in both studies. Similarly, the concentration of 

β-sitosterol decreased with an increase in temperature of 40-80°C in 

Kalahari melon seed oil (Nyam et al., 2010).   

The evaluation of the effect of temperature toward the extraction of 

β-sitosterol is much more complex due to the dual effects.  In the Fig. 

10, it shows the negative quadratic effect of temperature.  Dual effects 

of temperature are when the temperature at 40°C to 50°C, the decrease 

in β-sitosterol content due to the reduce in the solubility of β-sitosterol 

in the solvent but as temperature further increasing to 60°C, the β-

sitosterol content in the extract increases.  This is because of the mass 

transfer of β-sitosterol in the solvent as the solubility of mentioned 

analyte increases. 

Fig. 11  The correlation of oil yield and β-sitosterol content in the extracts 

Correlation of oil yield and β-sitosterol  
Moreover, several studies had suggested the act of oil as co-solvent 

in the extraction of compound (Vasapollo et al., 2004, Sun et al., 2006, 

Krichnavaruk et al., 2008, Viganó et al., 2016).  Thus, the correlation 

of oil yield and β-sitosterol content of extracts was examined as shown 

in Fig. 11.  At the constant pressure of 25 and 30 MPa, it shows no 

correlation between extraction of oil yield and β-sitosterol content since 

r value is nearer to zero.  On the contrary, at the constant pressure of 20 

MPa it shows a negative correlation. A negative correlation means that 

the oil yield decreases, while the β-sitosterol content increases.  This 

result is the opposite as the other studies mentioned. This may be due 

to the low pressure of extraction led to the decrease in the density of the 

fluid due to the distance between the molecules, that resulted in reduce 

in the solubility of β -sitosterol content.   

Meanwhile, at the constant temperature of 50°C and 60°C it shows 

no correlation between extraction of the oil yield and the β-sitosterol 

content, however at the constant temperature of 40°C, the r value is 0.88 

that shows a positive correlation.  A positive correlation means that the 

oil yield increases, and the β-sitosterol content also increases.  This 

shows that the domination of solute vapor pressure at low temperature 

(Kawahito et al., 2008).  Hence, it is proven that the influence of 

extracted oil as co-solvent in SC-CO2 was influenced by pressure and 

temperature in the extraction of the compound.   

CONCLUSION 

Supercritical carbon dioxide (SC-CO2) extraction applied to extract 

β-sitosterol from Swietenia mahagoni seeds shows that pressure and 

temperature influenced the extraction of β-sitosterol.  The maximum 

yield of the extract was 14.45% obtained at 30 MPa and 60°C, and the 

maximum of β-sitosterol content was 0.9204% obtained at 30 MPa and 

40°C.  This work is the first to report the quantification of β-sitosterol 

from Swietenia mahagoni seeds and had succedded in obtaining the 

optimized parameters for obtaining highest valued of β-sitosterol from 

Swietenia mahagoni seeds.   
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