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ABSTRACT 

Physically based models assimilate organ-specific material properties, thus they are suitable in developing a surgical simulation. This study uses mass 
spring model (MSM) to represent the human liver because MSM is a discrete model that is potentially more realistic than the finite element model 
(FEM). For a high-end computer aided medical technology such as the surgical simulator, the most important issues are to fulfil the basic requirement of 
a surgical simulator. Novice and experienced surgeons use surgical simulator for surgery training and planning. Therefore, surgical simulation must 
provide a realistic and fast responding virtual environment. This study focuses on fulfilling the time complexity and realistic of the surgical simulator. In 
order to have a fast responding simulation, the choice of numerical integration method is crucial. This study shows that MATLAB ode45 is the fastest 
method compared to 2nd ordered Euler, MATLAB ode113, MATLAB ode23s and MATLAB ode23t. However, the major issue is human liver consists 
of soft tissues. In modelling a soft tissue model, we need to understand the mechanical response of soft tissues to surgical manipulation. Any interaction 
between haptic device and the liver model may causes large deformation and topology change in the soft tissue model. Thus, this study investigates and 
presents the effect of varying mass, damping, stiffness coefficient on the nonlinear liver mass spring model. MATLAB performs and shows simulation 
results for each of the experiment. Additionally, the observed optimal dataset of liver behaviour is applied in SOFA (Simulation Open Framework 
Architecture) to visualize the major effect.  
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1. INTRODUCTION 

Surgical simulation is proposed for the needs to 
complement the traditional surgical training methods. With 
the advances in computer technology, virtual environment 
(VE) is introduced into entertainment, experiments, flight 
simulators, and health care. VE is crucial in surgical 
simulation as it combines a convincing representation of 
soft tissues where interaction between the end user and the 
virtual objects are allowed. VE increases the immersive of 
the end user by the generating realistic virtual objects. By 
applying virtual reality into the simulators, training in 
surgical operation will decrease the pressure of trainees as 
they are allowed to make mistakes. This realistic learning 
environment enhances the interest of the student learning 
enthusiasm. Meanwhile, this training system is much 
cheaper in terms of cost and time. However, surgical 
simulation is challenging [8]. Although the surgical 
simulation training is proven to be more useful than 
traditional surgical training, the accuracy assessment of the 
simulated surgical outcome is still difficult because soft 
tissues are complex, nonlinear, viscous-elastic, anisotropic 
and time-dependent [16]. Moreover, Bianchi et al [2] stated 
that typically to represent an organ geometrically, at least 
1500 nodes or roughly 3000 elements are needed. Human 
tissue modelling is one of the most demanding among the  

potential applications of deformable objects due to the 
complexity exhibited by the soft tissues [8, 12]. Therefore, 
a suitable deformable model is essential to represent the 
exact properties of the soft tissues.  

Surgical simulation is a physically-based simulation 
which involves the deformation of the modelled object. 
Therefore, physically-based modelling is suitable to 
represent the deformable objects by using techniques such 
as the Finite Element Model (FEM), Mass-Spring Model 
(MSM), Finite Difference Model (FDM), Boundary 
Element Model (BEM) and others. In this study, the human 
liver is chosen to model by nonlinear MSM. MSM is a 
discrete model, known as the particle system with special 
interaction forces. There are four steps toward the 
simulation based on MSM. Firstly, spatial discretization 
where the deformable object is sampled in mass points. 
Secondly, identify the forces interacting between the mass 
points in the deformable objects. The forces are represented 
by the Newton 2nd Law and the Hooke’s Law of the springs. 
Thirdly, govern a mathematical model which represents the 
dynamics in the deformation. Lastly, solve the temporal 
discretization in a system of ordinary differential equations 
(ODE) using the numerical integration solvers. There are 
several ODEs to solve the discretized system. However, it 
is crucial to solve the system with a fast converging ODE 
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solver in order to fulfil the requirement of realistic and real-
time interaction for a surgical simulation.  

In modelling the human liver structure in MSM, 
there are several important properties of the liver that we 
are concerned with. Human liver consists of certain 
properties such as absorption, scattering, anisotropy, 
penetration depth, nonlinear and viscous-elasticity. 
However, only two properties will be considered in this 
study. They are the nonlinearity and viscous-elasticity. 

This study focuses on time complexity against the 
CPU runtime of different MATLAB ODE solvers onto the 
specified material properties of the human liver which is 
modelled by MSM and performance of a MSM under 
various conditions. Furthermore, observation from different 
damping and stiffness coefficients which will be manually 
tuned in SOFA to visualize the effect caused by varying the 
damping and stiffness coefficients will be recorded. 

This paper is organized as follows; methodology of 
this study is presented in Section II. The described model is 
then applied to findings in Section III. Finally, conclusions, 
limitation and future work are discussed in Section IV.  

 
2. METHODOLOGY 
 
2.1    Mass Spring Model (MSM) 

   
MSM is the simplest model. It begins with a discrete 

model instead of with a system of partial differential 
equation that is complicated. This model consists of 
meshes of mass, spring and damper elements [11]. Each of 
the mass point links together by a network of zero mass 
springs. Since MSM is a discrete model, it is fast and 
computationally efficient. Therefore, it is useful in 
representing the nonlinear liver model and simulate in 
interactive speeds. MSM is one of the earliest models used 
in computer graphics. Waters [9] used a static MSM for 
facial modelling. Meanwhile, when real-time deformable 
model was first introduced into virtual surgical simulation, 
Cover et al [5] applied a simple mass spring model to 
simulate deformation of a gall bladder that is related to 
liver. However, the earlier works on MSM are mostly 
limited to 2D modelling and 3D rigid object modelling. 
Phannurat et al [13] presented a method of constraining 
physically based deformable objects where an object can be 
defined locally in terms of kinetic and dynamic (mass, 
position, velocity), and physical parameters 
(compressibility and elasticity). Christensen [4] on the 
other hand, presented the application of MSM for 
automatic motion synthesis, where there are no “flexion 
springs” considered for bending. A flexion spring is a 
spring that is in a state of being flexed as of a joint, a 
bodily function. Various researches efforts focused on 
improving the computational performance and accuracy of 
the MSM. Maciel et al [10] had used diagonal springs in 
applying the mass spring system for the computational 
method to simulate soft tissues. It is the generalized MSM, 
named molecular model which consists of mass points, and 
elastic forces established between the molecules by a 
spring-like connection. Diagonal springs were to avoid 

tetrahedral meshes. Even though it offers the desired results 
but it creates difficulty in terms of computing spring 
constants. Zhang et al [18] optimized the traditional mass-
spring system by adding a curvature force that intended to 
control the degree of bending and twisting of soft tissues. 
The angular springs produced curvature force. Meanwhile, 
Phannurat et al [13] applied MSM to the triangular meshes 
that represent the soft tissue model and each mass point 
linked to its neighbours by mass springs of non-zero 
natural length. This method benefits the real-time 
computation and deformation. 
  
2.2 Numerical Integration Method 

 
The two families of integration methods are explicit 

and implicit. They can be divided into multistep and unistep. 
In the calculation of multistep, it needs two or more 
previous values to compute the next system state. In this 
paper, the MATLAB ode113 is the only multistep explicit 
method. MATLAB ode45 and 2nd Ordered Euler are both 
unistep explicit. While MATLAB ode23s and MATLAB 
ode23t are both unistep implicit. Explicit integration is 
simple and straight forwarded. It computes the system state 
from the previous system state but demands on small step 
size thus makes it inefficient for stiff system. Meanwhile, 
implicit integration is more complicated than explicit 
integration. The next system state is calculated from the 
current system state and next system state itself. It allows 
large time steps therefore increases the stability of the 
system. However, it is not computationally efficient.  

The studies of the numerical integration methods for 
the deformable objects simulation has begun since the 90’s 
when Terzopoulus et al [15] developed new ideas in the 
usage of elasticity properties to model deformable objects. 
He has used the implicit integration method to solve the 
resultant system of equations. Later, due to the ease of 
implementation and reduced computation per simulation 
time steps of the explicit integration method. Many 
researchers have selected explicit integration methods to 
create real-time simulations. Provot [14] in the research on 
deformation constraints of a mass-spring model to describe 
rigid cloth behaviour chose the explicit Euler integration 
methods. However, after the work of Baraff and Witkin [1] 
the popularity of implicit integration method increased 
again. The implementation of implicit integration for the 
mass-spring models in cloth simulation has avoided the 
instability of explicit integration method. Nevertheless, 
there exists contradiction in implicit integration method. 
That is, although implicit integration methods are 
unconditionally stable, at the same time, it is 
computationally expensive too. The issue of this implicit 
method is that the time steps have increased, accompanied 
with the requirement of larger storage space. In order to 
overcome this drawback of implicit integration method, 
implicit-explicit (IMEX) integration method is being 
developed by Eberhardt et al [6]. The specialty of this 
method is that the stiff parts of the system of equations are 
calculated by using implicit method while the non-stiff part 
is done by explicit method. Furthermore, Volino and 
Magnenat [17] compared different numerical integration 
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methods in cloth simulation. The main idea to compare the 
numerical integration methods is to enable user to choose 
the adequate method with complete knowledge of the 
advantages and drawbacks of the main techniques. 
Concurrently, with the demanding needs in surgical 
simulation, there have been many research works related to 
medical field. Hauth et al [7] introduced a stable integration 
method that combines the advantages of explicit methods 
with the enhanced stability of implicit methods. Meanwhile, 
Celine et al [3] adopted an explicit integration scheme in 
their model. Zhu et al [19] used the fourth-order Runge-
Kutta method as the numerical integrator of the mass-spring 
model. Apart from that, Liang et al [8], proposed a novel 
mixed numerical integral algorithm for the deformation 
simulation of soft tissues in virtual surgery system. A 
combination of Euler’s method and Runge-Kutta method 
are proposed in order to improve the performance of the 
simulation by balancing the complexity and accuracy. 
  
2.3 Modelling Nonlinear Liver MSM System 

 
In modelling the human liver, we assume that the 

MSM is free of damping. However, in actuality, all the 
deformation is damped to some degree by friction forces. 
These forces can be caused by fluid friction or internal 
friction between the molecules. The equation of motion for 
viscously damped free is as below: 

( )1 0 2.1mx cx k x+ + =    

m is the mass of the human liver, c  is the damping 
coefficient, 1k is the internal stiffness of the spring, x , x  
and x  are the position, velocity and acceleration of the 
corresponding mass point. Equation 1 is an unforced linear 
MSM. This model will be used as a case study 1. 

In order to represent the human liver which is 
nonlinear and viscous-elasticity, we need to form a 
nonlinear equation of motion. The equation is as below: 

( )3
1 3 0 2.2mx cx k x k x+ + + =    

Here, the nonlinear MSM consist of two kinds of stiffness, 
which are the internal stiffness, 1k  and 3k external stiffness. 
In this equation of motion, there is no force exerted. Hence, 
it is an unforced nonlinear liver model. This model will be 
used as a case study 2. 

To represent a dynamic forced nonlinear liver 
model, a periodic force P of magnitude P is added to the 
right hand side (RHS) of equation 2.2.  

 
( ) ( )3

1 3 cos 2.3mx cx k x k x P wt+ + + =    

where m  is the mass of the human liver, c is the damping 
coefficient, 1k and 3k are the internal and external stiffness 
of the spring, x , x and x are the position, velocity and 
acceleration of the corresponding mass point while 

( )cosP wt is the periodic force P . This model is the full 

nonlinear liver model where the springs and damping are all 
in nonlinear form. 
 
2.4 Linearization of Dynamic Equation of 
Nonlinear Liver Model 
 
 There are five methods selected to compare and 
show that ode45 is the fastest method in solving the 
ordinary differential equation. However, we first have to 
introduce linearization for the second order differential 
equation above in order for us to implement the chosen ode 
solvers using the pair of derived first order differential 
equation. 

Let equation 2.3 be the equation of motion that 
represents the nonlinear viscous-elasticity liver model.  

( ) ( )
2

3
1 32 cos 2.4d x dxm c k x k x P wt

dt dt
+ + + =   

Set the initial value for velocity equals to 1 and 
displacement equals to 0.5, with fixed values for damping 
coefficient of 2, internal stiffness of 0.7, external stiffness 
of 0.8, and Periodic force of 0.5 with the shearing angle of 
0.5, respectively. In addition, average mass of the human 
liver is 1.45kg. Substitute these initial values into equation 
2.4, we have: 

( ) ( )
2

3
21.45 2 0.7 0.8 0.5cos 0.5 2.5d x dx x x t

dt dt
+ + + =   

To linearize the second order ODE, let 
2

2

d x
dt

be the 

acceleration of x , dx
dt

be the velocity of x  and ( )x t be the 

displacement of x , then solve for 
2

2

d x
dt

, then we have: 

( ) ( )2.6dx v t
dt

=   

( )
( )

3
2

2

2 0.7 0.8 0.5cos 0.5
2.7

1.45

dx x x td x dt
dt

− − − +
=   

Since
2

2

d x dv
dtdt

= , thus by substituting this into equation 2.7, 

we will have a pair of first order ODE as below: 

( ) ( )2.6dx v t
dt

=   

( )
( )

32 0.7 0.8 0.5cos 0.5
2.8

1.45

dx x x tdv dt
dt

− − − +
=   

Since there is only first order Euler method available 
in MATLAB ode solvers, therefore in order to implement 
the nonlinear liver model by using second order Euler 
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Method, the equation of motion is discretized analytically 
as below: 
Let ( ) ( ) ( )0 0 0 0, , ; 0; 0x f t x x x t x x t u= = = = =   . The first 
order ODE would be: 
 

( )
,

, , ,
x u
u f t x u
=

=




 

 
with initial conditions of ( )0 0 0x t x= = and ( )0 0 0x t u= = , 
therefore the discretized form would as shown below: 

 

( )
( ) ( )

1

1

1

,
,

, , 2.9

i i

i i i

i i i i i

t t t
x x t u

u u t f t x u

+

+

+

= + ∆

= + ∆

= + ∆ ∗ 

 

 

Linearization of Second Order Euler Method is 
crucial as without linearization, the computational time for 
it would be higher and unstable. Thus, linearization is 
necessary.  

The pseudo code in MATLAB for this method would 
be: 

( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

_ , , ;

1 _ , ;

1 _ , , ;

1 _ , , ;

1;

f n f euler t n x n u n

t n t i t n h

x n x i x n h u n

u n u i u n h f n

n n

=

+ =

+ =

+ =

= +

 

As mentioned earlier, ode45 is actually similar to Runge-
Kutta method of order 4 (RK4). Thus it is an explicit 
integration method which has medium accuracy. In order to 
fulfil the first objective, we just need to implement the 
nonlinear liver model into MATLAB by keying-in this 
function, such that: 

( )45 1 ;tode n cputime+ =  

Meanwhile, MATLAB ode23s is based on Rosensbrock 
formula of order 2. It is an implicit integration method 
which has low accuracy but computationally more efficient 
than the Euler Method.  The coding is as follows: 

( )23 1 ;tode s n cputime+ =  

MATLAB ode23t is also an implicit integration method 
that implements the trapezoidal rule. This method is chosen 
because it can be used to solve the moderately stiff 
problem. The coding goes as follows: 

( )23 1 ;tode t n cputime+ =  

Lastly, MATLAB ode113 is an explicit integration method 
which is very accurate since it is the thirteenth order. 
Ode113 is also known as the variable order Adams-

Bashforth-Moulton PECE solver. It might be more accurate 
than ode45. However, due to it characteristics as a multistep 
solver, where it normally needs the solutions at several 
preceding time points to compute the current solution, 
ode113 would be less computational efficient than the 
ode45. The coding is as follows: 

( )113 1 ;tode n cputime+ =  

 
2.5 Case Studies under Various Conditions 
 
Case Study 1: 
A second order viscously linear equation (2.1) will be 
tested under various conditions. There are three conditions, 
stated as below: 

• Condition 1: varying the value of mass, m 
• Condition 2: varying the value of internal stiffness, 

k 
• Condition 3: varying the value of damping, c 

Case Study 2: 
A second order fully nonlinear equation without forces 
(2.2) will be tested under various conditions. There are two 
conditions, stated as below: 

• Condition 1: varying the value of internal stiffness 
and external stiffness 

• Condition 2: varying the value of damping, c 

Case Study 3:  
A second order fully nonlinear equation with force (2.3) 
will be tested under various conditions. There are two 
conditions, stated as below: 

• Condition 1: varying the value of internal and 
external stiffness 

• Condition 2: varying the value of damping, c 
 
There will be a benchmark ideal liver model based 

on a set of parameters taken from the literature review of 
Colombo & Littlewood [20]. The set of parameters are 
given in Table 1.0. This benchmark liver model will be 
compared in which there will have force exerted onto the 
model and the other one without force. Each of the 
simulation results will be plotted in graph where there will 
be acceleration, velocity and phase plane plot. The phase 
plane plot is to check the stability of the model. The range 
of the human liver is standard and taken from Kerdok [21]. 

The experiment to compare the ODE solvers is 
conduct in three dimensional rigid bodies. The procedure to 
find the fastest CPU runtime against a range of time step 
(0.00005<h<2) is performed onto a nonlinear model. The 
MSM is loaded with five specific ODE solvers with 
damping constant of -2, internal stiffness of 0.8 and exerted 
force of 0.5N. The procedure starts with simulation time 
step of 2, 0.6, 0.2, 0.15, 0.05, 0.01, 0.005, 0.0005 and 
0.00005. The goal of this experiment is to find the optimal 
and fastest numerical integration method in solving 
nonlinear second order equation. 
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Table 1. Parameters of the benchmark liver model 
 
 
 

 
 
 

 

3. RESULTS & DISCUSSION 
 
3.1    Time Execution 

  
 The total CPU runtime used in simulation for the 

numerical integration methods from minimum to maximum 
were ode45, ode23s, ode113, 2nd order Euler and ode23t as 
shown in Figure 1.0 and Table 2.0. Ode45 and ode 113 are 
the built-in explicit integration methods of MATLAB. 
Ode23s and ode23t on the other hands are the built-in 
implicit integration methods of MATLAB. The second 
order Euler in this experiment is derived in Section 2 as the 
built-in ode15s of MATLAB is not suitable to solve second 
order of the nonlinear equation. Through this experiment, in 
Figure 1.0, ode45 (red line) is shown to be the fastest 
integration method in solving the nonlinear liver model. 
Ode45 is also known as the explicit fourth-order Runge-
Kutta. The total CPU runtime remain almost constant 
through the range of time step of 0.0005<h<2. When size of 
time step decreases to 0.00005, total CPU runtime per 
second increases drastically. Therefore, ode45 is said to 
have a medium accuracy as ode45 converges at large time 
steps (h>2) but become inaccurate as the time step 
decreases (h<0.0005). 

Ode23s is the second fastest among the five 
methods. It is also known as Rosensbrock method which is 
used to solve stiff differential equations. The graph of 
ode23s is quite similar to ode45 and ode113. Within the 
range of time step 0.0005<h<2, the total CPU runtime 
remains almost constant and increases as the time step 
decreases at 0.00005. However, ode23s is less accurate than 
the ode45 as it takes more computational time.  

Ode113 has the average speed among the five. It is 
known as the Adams-Bashforth-Moulton PECE method 
which is used to solve non-stiff differential equations. The 
graph of ode113 is quite similar to ode45 and ode23s. 
Within the range of time step 0.0005<h<2, the total CPU 
runtime remains almost constant and increases as the time 
step decreases at 0.00005. Ode113 is used to solve 
multistep intensive problems. It is very accurate compares 
to ode45 and ode23s. However, high computational time 
will cause the simulation fail to response in real-time.  

Second order Euler is the most constant and stable 
among the five. However, the computational time is higher 
than the aforementioned methods. Therefore, Second order 
Euler is not applicable in solving the nonlinear liver model 
as there is a trade-off between computational efficiency and 
realistic visualization.  

 Ode23t is the slowest among the five. It is basically 
an implementation of the trapezoidal rule. The total CPU 
runtime remains constant within the time step of 

0.0005<h<2. However, it slightly increases at time step of 
0.00005. Although in Figure 1.0, ode23t seems to be stable, 
the computational time per seconds is too high and not 
applicable in surgical simulation. 

 Based on the findings and analyses on the graph, it is 
obvious that ode45 is the most suitable to be implemented 
into the nonlinear liver simulation because the size of time 
step is directly proportional to the number of iterations. As 
the number of iterations increase, the time steps will 
increase. Aforementioned, ode45 has the medium accuracy 
but the total CPU runtime per seconds is the lowest among 
the five methods. Therefore, ode45 suit the best to 
overcome the trade-off between computational efficiency 
and accuracy.  

Even though ode23s is the second fastest method 
among the five, it is not the best for real-time surgical 
simulation because surgical simulation has to be fast and 
able to achieve a real-time interactive speed. Ode113 on the 
other hand is the most accurate method among the five. 
Unfortunately, a real-time surgical simulation requires for a 
fast interactive speed, thus, ode113 is not suitable for 
nonlinear liver simulation.  

The second order Euler is the most stable among the 
five. However, the drawback of this method is that it 
requires higher computational time than the ode113. 
Ode23t on the other hand is the slowest among the five 
methods through the implementation of trapezoidal rule.  
  

 
 

Fig. 1.  Computation time versus time step where h=2, 0.6, 
0.2, 0.15, 0.05, 0.01, 0.005, 0.0005, and 0.00005 
 
 Therefore, ode45 is the most suitable method to be 
implemented in the next finding of this study because the 
total CPU runtime per second is low and ode45 allows for 
large time steps. In each case, there is a trade-off of 
accuracy versus speed. Choosing a computationally 
intensive solver, increasing the number of nonlinear 
iterations, or reducing the step size increases accuracy and 
reduces idle time, raising the risk that the simulation will 

Gender 
Stiffness, k (kPa) Damping, c (N/m2) 

Mass (kg) 
Slim Normal Fat Slim Normal Fat 

Male 4.6 5.3 6.7 5 6 8 1.4 – 1.5 
Female 4.3 5.1 6.6 4.5 6 8 1.2 – 1.4 
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not run in real time. On the other hand, adjusting these 
settings in the opposite direction increases the amount of 
idle time but reduces accuracy. The challenge is to find 

settings that provide accurate results while permitting real-
time simulation. 
 

 
 

Table 2. The execution time for each numerical integration method with varied time steps 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2     Investigation of MSM Performance 
 

 The second purpose of this experiment is to 
investigate the performance of a MSM under various 
conditions. In modelling the human liver, we assume that 
the  MSM  is free  of damping. However,  in actuality, all 
deformation is damped to some degree of friction force 
especially for a liver where there exists the internal friction 
between the molecules. The investigations of this 
experiment are done as follows: 

 

• Case Study 1:  
 
A second order linear equation (3.1), tested by varying 
the value of mass, damping and internal stiffness of the 
springs.  
 

( )
2

12 0 3.1d x dxm c k x
dt dt

+ + =   

 
Where m is the mass, c is the damping coefficient and 
k as the stiffness of the spring. 
 

• Case Study 2:  
 
A second order nonlinear equation without force (3.2) 
where the damping and stiffness coefficients are also 
nonlinear. Here, the tested only vary the stiffness and 
damping coefficient where mass is fixed at 1.45kg, but 
there are two different stiffness coefficients involved, 
one is the internal and the other one is the external 
stiffness. 

( )
2

3
1 32 0 3.2d x dxm c k x k x

dt dt
+ + + =   

 

• Case Study 3:  
 
A second order nonlinear equation (3.3) which is 
similar with (3.2), with a friction force on the RHS of 
the equation. 
 

( ) ( )

( ) ( )

2
3

1 32 cos 3.3

cos

d x dxm c k x k x P wt
dt dt

f t P wt

+ + + =

=


 

• Benchmark Ideal Model of A Liver:  
A second order nonlinear equation which is same as 
(3.3) but with an ideal set of parameter which is 
abstracted from Colombo [20]. The parameters are 
illustrated in Table 1.0. 
 

These case studies are then input into and solved by 
MATLAB R2009a. 
 
3.3    Simulation Results 
 
A. Case Study 1 
 

Figure 2.0 to Figure 4.0 show the simulation results 
of case study 1. From these graphs, it can be shown that for 
any linear MSM, no matter how large or small the value of 
the parameters, the system will always oscillate to a 
stabilized state. When the mass of the body is large, time 
taken to stop the oscillation is prolonged. Meanwhile, as the 
stiffness increases, the amplitude of the system decreases. 
Conversely, the larger the damping coefficient, the system 
will stop oscillating faster. As shown in Figure 4.0, the 
lowest damping coefficient (c=0.1) oscillated the most. The 
body seems to displace to-and-fro position and never reach a 
resting point. 
 

Time Step, h Execution time for each of the Numerical Integration Method 
2nd order Euler ode45 ode23s ode113 ode23t 

2 
0.6 
0.2 
0.15 
0.05 
0.01 
0.005 
0.0005 
0.00005 

 

1444.3 
1444.3 
1444.3 
1444.3 
1444.3 
1444.3 
1444.5 
1444.9 
1448.3 

 

588.155 
588.1706 
588.1706 
588.1862 
588.2174 
588.311 
588.5294 
591.8366 

963.587 
 

963.6 
963.6 
963.6 
963.6 
963.6 
963.8 
964 
967.3 
1335.6 

 

1335.6 
1335.6 
1335.6 
1335.7 
1335.7 
1335.8 
1336 
1339.4 
1699.9 

 

1700 
1700.1 
1700.2 
1700.2 
1700.3 
1700.5 
1700.7 
1702.7 
1738.1 
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Fig. 2. The graph of displacement versus time when the 
value of the mass is varied at m=1.2, 1.3, 1.4 and 1.5 
 
 

 
Fig. 3. The graph of displacement versus time when the 
value of stiffness is varied at k= 4.6, 5.3, 6.0 and 6.6 
 
 

 
Fig. 4. The graph of displacement versus time when the 
value of damping is varied at c= 0.1, 0.3, 0.8, 1.0 

 
B. Case Study 2 

 
From Figure 5.0, even though the system is either 

critically damped (red) or overdamped (blue), the system is 
still stable because the direction field shown that the phase 
plot for both of the situation is converging to zero in a clock-
wise direction turning into the equilibrium point at 0.  
 Meanwhile, Figure 6(i) shows that when c=-0.2, the 
direction field is diverged from zero. Hence, the damping 
coefficient is less than zero (c<0), the system is instable. 
When c= 0, as shown in Figure 6(ii) above, the system is 
unconditionally stable, however it is not pointing towards 
zero as there is no damping to stop the oscillation. In Figure 
6(iii) where c=2, the system is stable as the direction field 
shows that it is converging to zero. However, in Figure 6(iv) 
where c=10, the system is conditionally stable as indicated 
by direction field where direction is converging onto the 
curve lying on the x-axis where x and y are equal to 0. 
 
 

 
 
Fig. 5. The phase plane plot of velocity versus displacement 
which showed the stability when the value of stiffness is 
varied 
 
 
C. Case Study 3 

 
Figure 7.0 displays the simulation result of case 

study 3 where the value of force, P is varied. The damping 
coefficient is fixed at 2, internal force of 0.7, external force 
of 0.8, mass of liver weight 1.45kg and shearing angle at 
0.5. When the external force of 0.1N (blue) is exerted onto 
the nonlinear liver, the system undergoes critical damping 
within 0-5 seconds. However, the body started to oscillate 
periodically after the critical damping. When the external 
force of 1.0N (red) is exerted onto the nonlinear liver, the 
system will undergoes critical damping and oscillated 
periodically again. As the exerted external force is large, 
the amplitude of the velocity and acceleration increases. 
Figure 8.0 indicates that forced nonlinear MSM is 
converging but it is conditionally stable.  
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Fig. 6.(i) Phase plane plot when damping, c=-0.2 

 

 
 

Fig. 6.(ii) Phase plane plot when damping, c=0 

 

 
 

Fig. 6.(iii): Phase plane plot when damping, c=2 

 

 
 

Fig. 6.(iv) Phase plane plot when damping, c=10 

 

 
Fig. 7. Phase plane plot which show the stability of case 
study 3 when the friction force is varied  

 

D. Benchmark Ideal Nonlinear Liver MSM 
 

The simulation result of the benchmark liver model 
which is based on the parameters given in Table 1 is 
displayed in Figure 8.0. As shown in Figure 8.0, regardless 
on the existence of the forces, each of the simulation result 
of the system undergoes critical damping within 0-1 
seconds. However, the unforced nonlinear liver model came 
to a rest state relatively fast. The forced nonlinear liver 
model on the other hand keep oscillate periodically. In 
Figure 8.0, the acceleration undergoes overdamped where 
unforced nonlinear liver model is more overdamped than 
the forced nonlinear liver model.  

 
 

 
Fig. 8. Phase plane plot of the benchmark model 

 
 

3.4    Simulation Result Implementation into SOFA  
 

Meanwhile Figure 9.0 shows the results of 
visualization of the observed parameters such as damping 
and stiffness coefficients into SOFA (Simulation Open 
Framework Architecture). The visualization was performed 
on liver deformation.  
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Fig. 9. The visualization of liver deformation implemented in 
SOFA 
 
 
4. CONCLUSION 
 

Simulating a simulation that is fast responsive with 
rapid interactive speed s is easy. We can tune any 
parameters until we have the desired visualization. 
However, surgical simulation is not computer animation. It 
does not allow any mistake in the virtual surgical. Surgical 
simulation has to be concise and there exist a compromise 
of accuracy and efficiency. Therefore, an adequate of 
accurate biomechanical information is important in 
developing an efficient computation strategy. A lack of 
understanding of the mechanical response of soft tissues to 
surgical manipulations is not tolerable. 
 In order to build a real-time surgical simulator, a 
trade-off between the computational speed and 
biomechanical accuracy has to be considered. The 
complexity of the soft tissue models is the limiting the 
computational resources. Calculation of internal forces, and 
inverting the mass and damping matrices, consume a large 
amount of memory. Thus a suitable numerical integration 
method is crucial so that the computational time will be 
shortened. 

There is still a wide improvement needed in the 
development of surgical simulation, especially in liver 
surgical simulation since liver is one of the most important 
organs in human body. Therefore, it is important to explore 
more on the stiffness of the liver. There are many situations 
that caused the liver to become stiff. One of the reasons is 
cirrhosis disease. This disease is one of the world killer 
diseases where the dead cells will eat the living cells and 
thus causing the liver to become stiff. Future works on 
surgical simulation can be focused on improving the 
realism of the liver biomechanical by adapting the exact 
parameters for benchmarking the differences and creating a 
simulation with nonlinear viscous-elasticity liver model. 
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