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ABSTRACT 

Metaheuristic algorithms are useful in solving complex optimization problems. Genetic algorithm (GA) is one of the well known and oldest 
metaheuristic algorithms. It was introduced in 1975 and has been used in many applications varying from engineering to management and many other 
fields as well. However, Prey-Predator algorithm (PPA) is one of recently introduced algorithm, in 2012, inspired by the interaction between preys and 
their predator. The motivation and the search mechanism for these two algorithms are different. In this paper the comparison of these two algorithms 
both from theoretical aspects and using simulation on selected benchmark problems is presented. According to the results, PPA performs better than GA 
in the selected test problems.   
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1. INTRODUCTION 

Metaheuristic algorithms are a non-deterministic 
solution method for optimization problems. Even though 
these solution methods don’t guarantee optimality of 
solutions they are used widely in many applications [1]. 
They have been used in transportation problems [2], 
engineering applications [3,4], decision making and many 
other applications [5-8]. The fact that they are not affected 
much by the behaviour of the problem makes them popular 
for being used in different disciplines.  

Genetic algorithm (GA) is one of the first 
metaheuristic algorithms introduced in mid 1970’s [9]. It is 
inspired by Darwin’s theory of survival of the fittest. After 
the introduction of GA many algorithms have been 
developed and used. Even though the use of the word 
heuristic can be tracked back to Alan Turing during the 
second world war (1939-1945), the word metaheuristic was 
first used by Glover 1986 [10]. Most of these algorithms are 
inspired by a natural phenomenon. Currently there are more 
than 25 metaheuristic algorithms. Perhaps Prey-Predator 
Algorithm is the most recent algorithm [11]. It mimics the 
interaction between a predator animal and its preys. 

In this paper genetic algorithm will be compared with 
Prey-Predator Algorithm. The comparison is done from the 
theoretical aspects as well as using simulation results. In the 
next section basic concepts will be discussed followed by a 
comparison section in section 3. The conclusion will be 
given in section 4. 

2. BASIC CONCEPTS  

2.1    Optimization Problems 
   

An optimization problem is a problem to find a value 
for the variables of a function which maximizes or 
minimizes the function. One can switch between 
minimization and maximization problems by multiplying 
the function by negative one, hence without loss of 
generality we consider a maximization problem.  

                            max ( )
nx S

f x
 

                          

   
The function, f(x), that needs to be maximized is 

called the objective function, the variables, x, are called 
decision variables and the set of possible values for the 
decision variables, S, is called feasible set. 

A solution for a maximization problem is a value 
from the feasible set which maximizes the objective 
function. 
  
2.2 Genetic Algorithm (GA) 

Genetic algorithm (GA) is one of the oldest and widely 
used metaheuristic algorithms. The algorithm is inspired by 
Darwin's theory of survival of the fittest. It gives less 
probability for the unfit solutions to pass to the next 
generation. In the algorithm, randomly generated solutions 
will be decoded using 0’s and 1’s, as they are called 
chromosomes. Their fitness will be computed depending on 
their performances in the objective function. By giving high 
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probability to the fittest solution members to be chosen 
crossover and mutation will be done. Crossover is one of 
the GA operators in which two parent solutions will switch 
part of their chromosomes whereas mutation is the other 
GA operator which changes a chromosome either from 0 to 
1 or 1 to 0. The fittest solutions will pass to the next 
generation and this iteration will continue until a 
termination criterion is fulfilled. The main steps of the 
algorithm are discussed as follows: 

 
1. Generate k random solutions 
2. Compute the fitness of each solutions. 
3. Choose parents for cross-over and mutation. 
4.  Perform cross-over and mutation. 
5.  Select the k fittest solutions from the parent and child 

solutions and construct a solution set. 
6. If a termination criterion is met stop else go to step 2. 
 

The algorithm has mainly three algorithm parameter, 
namely probability of cross-over, probability of mutation 
and chromosome size to represent the solution. 
  
2.3 Prey-Predator Algorithm (PPA) 

 
Prey-Predator algorithm (PPA) is a metaheuristic 

algorithm developed for optimization problems introduced 
by Tilahun and Ong [11]. It mimics how a predator runs 
after its preys and the preys run away to escape. In the 
algorithm randomly generated solutions will be assigned as 
a predator and preys depending on their performance in the 
objective function. A solution with least performance will 
be assigned as a predator and the others as preys. A prey 
with best performance in the objective function will be 
called best prey. After the assignment of predator and preys, 
the preys will run away from the predator and follow preys 
with better performance. The predator does the exploration 
by running randomly and chasing the prey with least 
performance. The best prey in the other hand does only a 
local search for exploitation purpose. The main steps of the 
algorithm are as follows: 

 
1. Generate k random solutions 
2. Assign predator, preys and the best prey; depending on 

measure of their performance on the objective function 
called survival value, SV. 

3. Move the best prey, the prey with best SV in local 
search using the randomly generated m directions. 

4.  If probability of follow-up is met move the preys by 
following the better preys and also with some local 
search. 

      If probability of follow-up is not met move the preys 
randomly away from the predator. 

5.  Move the predator towards the prey with least survival 
value and also randomly. 

6. Update list of preys, best prey and predator. 
7. If a termination criterion is met stop else go to step 3. 

 

The parameters for PPA are max and min as a jump 

for exploration and exploitation or for local search, 
respectively. Hence max min  . The probability of follow-

up, fp , which guides the intensity of exploration and 

exploitation. Higher value of probability of follow-up 
results in more exploitation than exploration. The other 
algorithm parameter is number of random directions for 
local search, m. 

 
 
3. COMPARISON OF GA AND PPA 
 
3.1     Theoretical Comparison 
 

 In both algorithms, GA and PPA, there is a concept 
of survival of the fittest. Apart from this similarity the two 
algorithms have completely different search mechanisms. 
For the purpose of updating solutions, GA uses crossover 
and mutation operators which are different from the 
distance operator used in PPA. For this, in GA the solutions 
need to be encoded using 0's and 1's. However in PPA there 
is no need for encoding and decoding of solutions using 0's 
and 1's. PPA uses the concept of following and exploring by 
running away from the predator. In GA, the mutation 
operator is the operator which helps the solutions not to be 
trapped in local optimal solutions, whereas in PPA the 
predator force other solution members to explore the 
solution space to avoid being trapped in a local optimal 
solution. The motivation for GA is also quite different from 
PPA. Furthermore, the solution with worst performance in 
the objective function doesn't play any role in GA, which is 
not the case in PPA. Furthermore, unlike PPA, GA works 
on a grid based space which depends on the chromosome 
size and is unable to attain some solutions in the solution 
space. 

 
 3.2     Comparison Based On Simulation Results 
 

A simulation comparison is done using two well 
known bench mark problems. For each problem the same 
30 randomly generated feasible initial solutions are used for 
both algorithms. Probability of follow-up, max and min  for 

PPA is taken to be 0.6, 4 and 1.2 with 20 number of random 
directions for local search. For GA the probability of cross-
over and mutation is taken to be 0.8 and 0.4 whereas the 
chromosome size was set to be 20 for each variable. A 
statistical analysis used to compare the result of the two 
algorithms with a trial number of 100. 
 
a) The first test problem 

A two dimensional stochastic unimodal function is 
the objective function of the first test problem. It has a noise 
parameter which makes the function to give the probability 
that it will not attain the same value at a point [12]. The 
problem is given as follows: 
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where ij  is a random number from a uniform distribution 

between 0 and 1. The optimal value is between 5 and 
5.0794 depending on the random number and is found at
( , )  . 

After running the PPA the average solution is found 
to be 5.0541 with a standard deviation of 0.0219, whereas 
the average best functional value and its standard deviation 
using GA is found to be 4.9675 and 0.0621, respectively. 

 
b) The second test problem 

The objective function of the second test problem is 
negative of Shubert's function [13]. It is given by: 

 
5 5
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It is a multimodal benchmark problem with optimum 
functional value of 186.73067 found in 18 points. It also has 
720 local solutions.  

The mean final functional values after the 100 trials 
are found to be 186.5112 and 185.1899 with standard 
deviation of 0.0551 and 0.18 for PPA and GA respectively. 

 
c) The third test problem 

Negative of Michalewicz's function is the objective 
function of the third test problem [13]. The problem is a 
multimodal problem with k! local optimum solutions, for k 
number of dimension of the decision variable, here the 
dimension k is taken to be 5. Hence there are 120 solutions. 
And the optimal functional value is 4.687. The problem is 
given as in below: 

25
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After simulation the mean performance in terms of 
the final objective functional value is found to be 4.6954 
and 4.5984 with standard deviation of 0.0465 and 0.1328 
for PPA and GA respectively. 

The simulation results are summarized in table 1. 
 
 
 

Table 1 Simulation results 

 

 

 

 

 

 
 
 From the numerical results, PPA is efficient for 
solving the three test problems problem with smaller CPU 
time and also with better average functional values. 
Furthermore, GA has high variability than PPA as the 
standard deviation for GA is higher than PPA. This implies 
that at a random run of the algorithms PPA will achieve the 
average value with less deviation compared to GA.  
 
 
4. CONCLUSION  
 

In this paper a comparison is done between the well 
known genetic algorithm (GA) and the recently introduced 
Prey-Predator algorithm (PPA). The comparison is done 
both from theoretical aspects and using simulation results. 
From the theoretical comparison the main similarity and 
difference of the two algorithms are discussed. While in the 
simulation comparison three benchmark problems are used 
and a simulation is done 100 times. From the simulation 

results PPA is found to be efficient and fast with less 
variability compared to GA.  
 
 
ACKNOWLEDGEMENT 
  
 This work was supported in part by U.S.M. 
Fundamental Research Grant Scheme (FRGS) No. 
203/PMATHS/6711319. 
 
 
REFERENCES 
 
[1] S. Edelkamp and S. Schrodl, Heuristic Search: Theory and 

Applications. Morgan Kaufmann Publisher, MA, 2012 
[2] S. L. Tilahun and H. C. Ong, Promet – Traffic & Transportation 24 

(3)(2012) 183-191.  
[3] A. A. Adewuya, New Methods in Genetic Search with Real-Valued 

Chromosomes. B.s. thesis, Department of Mechanical Engineering, 
Mississippi State University, USA, 1993. 

Test problem 
Mean functional value Standard deviation  Average CPU time 

GA PPA GA PPA GA PPA 
f1 4.9675 5.0541 0.0621 0.0219 0.2496 0.2028 
f2 185.1899 186.5112 0.18 0.551 0.1105 0.0995 
f3 4.5984 4.6954 0.1328 0.0465 0.1564 0.1185 



Tilahun and Ong / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.4 (2013) 167-170 

 
| 170 | 

 

[4] Y. Tenne, and S. W. Armfield, Evolutionary Computation in 
Dynamic and Uncertain Environments Studies in Computational 
Intelligence, 51 (2007) 389-415 

[5] X. Luoa, Q.-Y. Wenc and G. Fieg., Computers & Chemical 
Engineering, 33 (6) (2009) 1169–1181 

[6] X. Wang, J.-J. Ma, S. Wang and D.-W. Bi, Sensors, 7 (2007) 628-
648   

[7] E. Piazza, Applications of Evolutionary Computing Lecture Notes 
in Computer Science, 2037 (2001) 248-256 

[8] E. W. Richards and E. A. Gunn, Canadian Journal of Forest 
Research, 33(6) (2003) 1126-1133 

[9] M. Negnevitsky, “Artificial Intelligence: A Guide to Intelligent 
System”, Henry Ling, Harlow, (2005). 

[10]  X.-S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver 
Press, Frome, UK, 2010 

[11]  S. L. Tilahun, Prey-Predator Algorithm: A new metaheuristic 
optimization approach, A PhD thesis submitted to School of 
Mathematical Sciences, Universiti Sains Malaysia, January 2013. 

[12] X.-S.Yang, Engineering optimization: An Introduction with 
Metaheuristic Applications (2nd. Edition),. John Wiley and Sons, 
2010. 

[13] M. Molga and C. Smutnicki, Test functions for optimization needs, 
Online accessed 3rd Feb 2012, from: 
http://www.bioinformaticslaboratory.nl/ twikidata/ pub/Education/ 
NBICResearchSchool/Optimization/VanKampen/BackgroundInfor
mation/TestFunctions-Optimization.pdf. (2005) 

 
 

 
 
 
 
 
 
 
 
  


