
Tilahun and Ong / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.4 (2013) 167-170

| 167 |

ISSN 1823-626X

Malaysian Journal of Fundamental and Applied Sciences
available online at http://mjfas.ibnusina.utm.my

Comparison between Genetic Algorithm and Prey-Predator Algorithm

Surafel Luleseged Tilahun1* and Hong Choon Ong2

1Interdeciplinary Program, Addis Ababa Science and Technology University, 16417, Addis Ababa, Ethiopia
2School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Received 16 February 2013, Revised 29 April 2013, Accepted 15 May 2013, Available online 20 May 2013

ABSTRACT

Metaheuristic algorithms are useful in solving complex optimization problems. Genetic algorithm (GA) is one of the well known and oldest
metaheuristic algorithms. It was introduced in 1975 and has been used in many applications varying from engineering to management and many other
fields as well. However, Prey-Predator algorithm (PPA) is one of recently introduced algorithm, in 2012, inspired by the interaction between preys and
their predator. The motivation and the search mechanism for these two algorithms are different. In this paper the comparison of these two algorithms
both from theoretical aspects and using simulation on selected benchmark problems is presented. According to the results, PPA performs better than GA
in the selected test problems.

| Genetic algorithm (GA) | Prey-Predator algorithm (PPA) | Metaheuristic algorithms | Optimization |

® 2013 Ibnu Sina Institute. All rights reserved.
 http://dx.doi.org/10.11113/mjfas.v9n4.104

1. INTRODUCTION

Metaheuristic algorithms are a non-deterministic
solution method for optimization problems. Even though
these solution methods don’t guarantee optimality of
solutions they are used widely in many applications [1].
They have been used in transportation problems [2],
engineering applications [3,4], decision making and many
other applications [5-8]. The fact that they are not affected
much by the behaviour of the problem makes them popular
for being used in different disciplines.

Genetic algorithm (GA) is one of the first
metaheuristic algorithms introduced in mid 1970’s [9]. It is
inspired by Darwin’s theory of survival of the fittest. After
the introduction of GA many algorithms have been
developed and used. Even though the use of the word
heuristic can be tracked back to Alan Turing during the
second world war (1939-1945), the word metaheuristic was
first used by Glover 1986 [10]. Most of these algorithms are
inspired by a natural phenomenon. Currently there are more
than 25 metaheuristic algorithms. Perhaps Prey-Predator
Algorithm is the most recent algorithm [11]. It mimics the
interaction between a predator animal and its preys.

In this paper genetic algorithm will be compared with
Prey-Predator Algorithm. The comparison is done from the
theoretical aspects as well as using simulation results. In the
next section basic concepts will be discussed followed by a
comparison section in section 3. The conclusion will be
given in section 4.

2. BASIC CONCEPTS

2.1 Optimization Problems

An optimization problem is a problem to find a value
for the variables of a function which maximizes or
minimizes the function. One can switch between
minimization and maximization problems by multiplying
the function by negative one, hence without loss of
generality we consider a maximization problem.

 max ()
nx S

f x
 

The function, f(x), that needs to be maximized is

called the objective function, the variables, x, are called
decision variables and the set of possible values for the
decision variables, S, is called feasible set.

A solution for a maximization problem is a value
from the feasible set which maximizes the objective
function.

2.2 Genetic Algorithm (GA)

Genetic algorithm (GA) is one of the oldest and widely
used metaheuristic algorithms. The algorithm is inspired by
Darwin's theory of survival of the fittest. It gives less
probability for the unfit solutions to pass to the next
generation. In the algorithm, randomly generated solutions
will be decoded using 0’s and 1’s, as they are called
chromosomes. Their fitness will be computed depending on
their performances in the objective function. By giving high

*Corresponding author. E-mail: surafelaau@yahoo.com

Malaysian Journal of Fundamental and Applied Sciences Vol.9, No.4 (2013) 167-170

http://www.foxitsoftware.com/shopping

Tilahun and Ong / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.4 (2013) 167-170

| 168 |

probability to the fittest solution members to be chosen
crossover and mutation will be done. Crossover is one of
the GA operators in which two parent solutions will switch
part of their chromosomes whereas mutation is the other
GA operator which changes a chromosome either from 0 to
1 or 1 to 0. The fittest solutions will pass to the next
generation and this iteration will continue until a
termination criterion is fulfilled. The main steps of the
algorithm are discussed as follows:

1. Generate k random solutions
2. Compute the fitness of each solutions.
3. Choose parents for cross-over and mutation.
4. Perform cross-over and mutation.
5. Select the k fittest solutions from the parent and child

solutions and construct a solution set.
6. If a termination criterion is met stop else go to step 2.

The algorithm has mainly three algorithm parameter,
namely probability of cross-over, probability of mutation
and chromosome size to represent the solution.

2.3 Prey-Predator Algorithm (PPA)

Prey-Predator algorithm (PPA) is a metaheuristic

algorithm developed for optimization problems introduced
by Tilahun and Ong [11]. It mimics how a predator runs
after its preys and the preys run away to escape. In the
algorithm randomly generated solutions will be assigned as
a predator and preys depending on their performance in the
objective function. A solution with least performance will
be assigned as a predator and the others as preys. A prey
with best performance in the objective function will be
called best prey. After the assignment of predator and preys,
the preys will run away from the predator and follow preys
with better performance. The predator does the exploration
by running randomly and chasing the prey with least
performance. The best prey in the other hand does only a
local search for exploitation purpose. The main steps of the
algorithm are as follows:

1. Generate k random solutions
2. Assign predator, preys and the best prey; depending on

measure of their performance on the objective function
called survival value, SV.

3. Move the best prey, the prey with best SV in local
search using the randomly generated m directions.

4. If probability of follow-up is met move the preys by
following the better preys and also with some local
search.

 If probability of follow-up is not met move the preys
randomly away from the predator.

5. Move the predator towards the prey with least survival
value and also randomly.

6. Update list of preys, best prey and predator.
7. If a termination criterion is met stop else go to step 3.

The parameters for PPA are max and min as a jump

for exploration and exploitation or for local search,
respectively. Hence max min  . The probability of follow-

up, fp , which guides the intensity of exploration and

exploitation. Higher value of probability of follow-up
results in more exploitation than exploration. The other
algorithm parameter is number of random directions for
local search, m.

3. COMPARISON OF GA AND PPA

3.1 Theoretical Comparison

 In both algorithms, GA and PPA, there is a concept
of survival of the fittest. Apart from this similarity the two
algorithms have completely different search mechanisms.
For the purpose of updating solutions, GA uses crossover
and mutation operators which are different from the
distance operator used in PPA. For this, in GA the solutions
need to be encoded using 0's and 1's. However in PPA there
is no need for encoding and decoding of solutions using 0's
and 1's. PPA uses the concept of following and exploring by
running away from the predator. In GA, the mutation
operator is the operator which helps the solutions not to be
trapped in local optimal solutions, whereas in PPA the
predator force other solution members to explore the
solution space to avoid being trapped in a local optimal
solution. The motivation for GA is also quite different from
PPA. Furthermore, the solution with worst performance in
the objective function doesn't play any role in GA, which is
not the case in PPA. Furthermore, unlike PPA, GA works
on a grid based space which depends on the chromosome
size and is unable to attain some solutions in the solution
space.

 3.2 Comparison Based On Simulation Results

A simulation comparison is done using two well
known bench mark problems. For each problem the same
30 randomly generated feasible initial solutions are used for
both algorithms. Probability of follow-up, max and min for

PPA is taken to be 0.6, 4 and 1.2 with 20 number of random
directions for local search. For GA the probability of cross-
over and mutation is taken to be 0.8 and 0.4 whereas the
chromosome size was set to be 20 for each variable. A
statistical analysis used to compare the result of the two
algorithms with a trial number of 100.

a) The first test problem

A two dimensional stochastic unimodal function is
the objective function of the first test problem. It has a noise
parameter which makes the function to give the probability
that it will not attain the same value at a point [12]. The
problem is given as follows:

Tilahun and Ong / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.4 (2013) 167-170

| 169 |

2 2 2 2
1 2 1 2

2 2
() () () ()

1 1 2
1 1

1 2

max (,) 5

 s.t. 0 , 10

x x x i x j
ij

j i

f x x e e

x x

         

 

 

 



where ij is a random number from a uniform distribution

between 0 and 1. The optimal value is between 5 and
5.0794 depending on the random number and is found at
(,)  .

After running the PPA the average solution is found
to be 5.0541 with a standard deviation of 0.0219, whereas
the average best functional value and its standard deviation
using GA is found to be 4.9675 and 0.0621, respectively.

b) The second test problem

The objective function of the second test problem is
negative of Shubert's function [13]. It is given by:

5 5

2 1 2 1 2
1 1

1 2

max (,) [cos((1))][cos((1))]

 s.t. -10 , 10
i i

f x x i i x i i i x i

x x
 

     

 

 

It is a multimodal benchmark problem with optimum
functional value of 186.73067 found in 18 points. It also has
720 local solutions.

The mean final functional values after the 100 trials
are found to be 186.5112 and 185.1899 with standard
deviation of 0.0551 and 0.18 for PPA and GA respectively.

c) The third test problem

Negative of Michalewicz's function is the objective
function of the third test problem [13]. The problem is a
multimodal problem with k! local optimum solutions, for k
number of dimension of the decision variable, here the
dimension k is taken to be 5. Hence there are 120 solutions.
And the optimal functional value is 4.687. The problem is
given as in below:

25
20

3 1 2 3 4 5
1

1 2 3 4 5

max (, , , ,) sin (sin)

s.t -5.12 , , , , 5.12

i
i

i

ix
f x x x x x x

x x x x x





 



After simulation the mean performance in terms of
the final objective functional value is found to be 4.6954
and 4.5984 with standard deviation of 0.0465 and 0.1328
for PPA and GA respectively.

The simulation results are summarized in table 1.

Table 1 Simulation results

 From the numerical results, PPA is efficient for
solving the three test problems problem with smaller CPU
time and also with better average functional values.
Furthermore, GA has high variability than PPA as the
standard deviation for GA is higher than PPA. This implies
that at a random run of the algorithms PPA will achieve the
average value with less deviation compared to GA.

4. CONCLUSION

In this paper a comparison is done between the well
known genetic algorithm (GA) and the recently introduced
Prey-Predator algorithm (PPA). The comparison is done
both from theoretical aspects and using simulation results.
From the theoretical comparison the main similarity and
difference of the two algorithms are discussed. While in the
simulation comparison three benchmark problems are used
and a simulation is done 100 times. From the simulation

results PPA is found to be efficient and fast with less
variability compared to GA.

ACKNOWLEDGEMENT

 This work was supported in part by U.S.M.
Fundamental Research Grant Scheme (FRGS) No.
203/PMATHS/6711319.

REFERENCES

[1] S. Edelkamp and S. Schrodl, Heuristic Search: Theory and

Applications. Morgan Kaufmann Publisher, MA, 2012
[2] S. L. Tilahun and H. C. Ong, Promet – Traffic & Transportation 24

(3)(2012) 183-191.
[3] A. A. Adewuya, New Methods in Genetic Search with Real-Valued

Chromosomes. B.s. thesis, Department of Mechanical Engineering,
Mississippi State University, USA, 1993.

Test problem
Mean functional value Standard deviation Average CPU time

GA PPA GA PPA GA PPA
f1 4.9675 5.0541 0.0621 0.0219 0.2496 0.2028
f2 185.1899 186.5112 0.18 0.551 0.1105 0.0995
f3 4.5984 4.6954 0.1328 0.0465 0.1564 0.1185

Tilahun and Ong / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.4 (2013) 167-170

| 170 |

[4] Y. Tenne, and S. W. Armfield, Evolutionary Computation in
Dynamic and Uncertain Environments Studies in Computational
Intelligence, 51 (2007) 389-415

[5] X. Luoa, Q.-Y. Wenc and G. Fieg., Computers & Chemical
Engineering, 33 (6) (2009) 1169–1181

[6] X. Wang, J.-J. Ma, S. Wang and D.-W. Bi, Sensors, 7 (2007) 628-
648

[7] E. Piazza, Applications of Evolutionary Computing Lecture Notes
in Computer Science, 2037 (2001) 248-256

[8] E. W. Richards and E. A. Gunn, Canadian Journal of Forest
Research, 33(6) (2003) 1126-1133

[9] M. Negnevitsky, “Artificial Intelligence: A Guide to Intelligent
System”, Henry Ling, Harlow, (2005).

[10] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver
Press, Frome, UK, 2010

[11] S. L. Tilahun, Prey-Predator Algorithm: A new metaheuristic
optimization approach, A PhD thesis submitted to School of
Mathematical Sciences, Universiti Sains Malaysia, January 2013.

[12] X.-S.Yang, Engineering optimization: An Introduction with
Metaheuristic Applications (2nd. Edition),. John Wiley and Sons,
2010.

[13] M. Molga and C. Smutnicki, Test functions for optimization needs,
Online accessed 3rd Feb 2012, from:
http://www.bioinformaticslaboratory.nl/ twikidata/ pub/Education/
NBICResearchSchool/Optimization/VanKampen/BackgroundInfor
mation/TestFunctions-Optimization.pdf. (2005)

