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ABSTRACT 

This research is about computing the Green’s functions on simply connected regions by using the method of boundary integral equation. The method 
depends on solving a Dirichlet problem using a uniquely solvable Fredholm integral equation on the boundary of the region. The kernel of this integral 
equation is the generalized Neumann kernel. The numerical method for solving this integral equation is the Nystrӧm method with trapezoidal rule which 
leads to a system of linear equations. The linear system is then solved by the Gaussian elimination method. Mathematica plot of Green’s function for a 
test region is also presented. 
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1. INTRODUCTION 

The Green’s function is considered as one of the 
most important functions used to solve inhomogeneous 
differential equations subject to specific initial conditions or 
boundary conditions. It is also used in physics, specifically 
in quantum field theory, electrodynamics and statistical 
field theory. 

Several methods have been studied for computing 
Green’s function, such as the conformal mapping method 
and boundary integral equation methods. Embree and 
Trefethen (1999) have proposed a new method for the 
computation of the Green’s function in the complex plane 
corresponding to a set of K symmetrically placed polygons 
along the real axis. An important special case is a set of K
real intervals. The method is based on a Schwarz–
Christoffel conformal map of the part of the upper half-
plane exterior to the problem domain onto a semi-infinite 
strip whose end contains K − 1 slits. From the Green’s 
function one can obtain a great deal of information about 
polynomial approximations, with applications in digital 
filters and matrix iterations. By making the end of the strip 
jagged, the method can be generalized to weighted Green’s 
functions and weighted approximations.  

Crowdy and Marshall (2007) presented an analytical 
formula for the first-type Green’s function for Laplace’s 
equation in multiply connected circular domains. 

The method is constructive and relies on the use of a 
special function known as the Schottky–Klein prime 
function associated with simply and multiply connected 
circular domains.  

Another approach of computing Green’s function is 
through solving a related Dirichlet problem. Henrici (1986) 
shows a method for solving the Dirichlet problem that does 
not require any mapping function. The method reformulates 
the Dirichlet problem as a Fredholm integral equation. 
Nasser (2007) has proposed a new method for solving the 
interior and exterior Dirichlet problem in simply connected 
regions with smooth boundaries. His method is based on 
uniquely solvable Fredholm integral equation of the second 
kind with the generalized Neumann kernel. This paper aims 
at applying Nasser’s method to compute the Green’s 
function on simply connected region.  

2.   AUXILIARY MATERIALS 

Let Ω be a bounded simply connected region in the 
complex plane as shown in Figure 2.1. The boundary of Ω
is denoted by Γ which has positive orientation, i.e., in a 
clockwise direction 

Fig. 2.1 Bounded simply connected region. 
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We assume that Γ has a parameterization  ),(t  

],2,0[  It  which is a complex-valued periodic 

function with period 2π. The parameterization η also need 
to be twice continuously differentiable such that 
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Let u be a real function defined in the domain Ω and let 

 iyxx .In our research, for simplicity, we shall 

write u(z) instead of u(x, y). Let H  be the space of all real 
Hölder continuous function with exponent   on the 
boundary Γ. The interior and the exterior Dirichlet 
problems are defined as follows. 
 
Interior Dirichlet problem: 
Let  H  be a given function. Find the function u 

harmonic in  , Holder continuous on   and satisfies the 
boundary condition 
 
    

( ( )) ( ), ( ) . (2.2)u t t t      

 
The interior Dirichlet problem (2.2) is uniquely solvable 
(Atkinson, 1997). 

 
Exterior Dirichlet Problem: 

   Let  H  be a given function. Find the function u 

harmonic in  , Holder continuous on  , u(z) bounded 
when  z  and satisfies the boundary condition 

 
( ( )) ( ), ( ) . (2.3)u t t t     

 
The exterior Dirichlet problem (2.3) is uniquely solvable 
(Atkinson, 1997). 

Let A(t) be a continuously differentiable 2π-periodic 
function with A ≠ 0. We define two real functions N and M 
by (Wegmann et al. (2005), Nasser (2007)) 
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The kernel ),( tN   is called the generalized Neumann 

kernel formed with A and  (Wegmann et al., 2005). When 

A = 1, the kernel N is the Neumann kernel which arise 
frequently in the integral equations for potential theory and 
conformal mapping (Henrici, 1986). 
 
Theorem 2.1 (Wegmann et al., 2005) 
 

a) The kernel ),( tN   is continuous with  
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        b)  The kernel ),( tM   has the representation 
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with a continuous kernel 1M  which takes on the diagonal 

the values 
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Let N and M1 be the Fredholm integral operators associate 
with the continuous kernels N and M1, i.e., 
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Let also M and K be the singular integral operators 
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The integrals in (2.11) and (2.12) are principal value 
integrals. The operator K is known as the conjugation 
operator. It is also known as the Hilbert transform (Henrici, 

1986). The operators N, M, M1 and K are bounded in H  
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and map H  into H  (Wegmann et al., 2005).  It follows 
from )7.2(  that  

 

1  .                             (2.13)M M K   

 
In our study we consider only the generalized Neumann 
kernel with A . 

 
Theorem 2.2 (Wegmann et al., 2005) 
 Let N be the generalized Neumann kernel formed with      A 
= η. Then 1  is not an eigenvalue N. Let )( zRw   

maps Ω conformally onto 1w and   

continuously onto 1w . Then, the Green function for Ω 

is given by (Henrici, 1986) 
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In general the Green’s function for Ω can be expressed by 
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where u is the unique solution of the interior Dirichlet 
problem 
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3. INTEGRAL EQUATION FOR THE INTERIOR 
DIRICHLET PROBLEM 

Suppose that u  is the unique solution of the interior 
Dirichlet problem (2.16). Since it is harmonic in , u  has 
a harmonic conjugate in  . We denote the boundary 
values of this harmonic conjugate by  . Then iu   are 

boundary values of a function f analytic in , i.e., 
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where the “ + “ sign in the subscript denotes the boundary 
values from inside  .  The function )(zf  is unique up to 

an additive imaginary constant which can be determined by 
assuming )0(f is real. The following theorem gives an 

integral equation for  .   

 
Theorem 3.3 (Wegmann et al., 2005) 
 
Let   be the unique solution of the integral equation 
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where the kernels of the operators N and M are formed with 
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value of an analytic function f in   with Im f(0)= 0. 

 
By the Cauchy integral formula, the interior value of the 
function )(zf  stated above is given by 
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By obtaining the unique analytic function f , the unique 

solution of the interior Dirichlet problem is given in 
 by
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4. NUMERICAL IMPLEMENTATION 
 

The integral equation (3.28) in parameterized form 
is  
 

2

0

( ) ( , ) ( )s N s t t dt


  
 

2

0

0

( , ) log ( ) (4.1)M s t t z dt


 
 

where the kernels N and M are formed with A . Let us 

denote the right-hand side of the equation (4.1) by ).(s  

Then (4.1) becomes 

  

 
2

0

( ) ( , ) ( ) ( ) 4.2s N s t t dt s


   
 
where 
 

1 ( ) ( )
Im , ,

( ) ( ) ( )

( , )

1 ( ) 1 ( )
Im Im , ,

2 ( ) ( )

s t
s t

t t s

N s t

t t
s t

t t

 
   

 
   

  
   

 
            

and 
 



Murid et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.3 (2013) 161-166 

 

 
| 164 | 

2

0

( ) ( , ) log ( )s M s t t dt


     

 

1

1
( , ) cot ( , )

2 2

s t
M s t M s t




    

 
where 
 

1 ( ) ( )
Im , ,

( ) ( ) ( )

( , )

1 ( ) 1 ( )
Im Im , ,

2 ( ) ( )

s t
s t

t t s

N s t

t t
s t

t t

 
   

 
   

  
   

 
            

 

 
Since the functions A and   are 2 - periodic, the integral 

operator N is discretized by the Nystrom method with 
trapezoidal rule (Atkinson, 1997). 
Let n be a given integer and define the n equidistant 
collocation points jt by 
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The first term of the right-hand side of (4.4) can be 
calculated directly by using MATHEMATICA package, 
i.e., Cauchy Principal Value. Define the matrix 
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Next, the equation (4.2) can be written as an n by n system 
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Then, using the Nyström method with the trapezoidal rule 
to discretize the integral in (4.10), we obtain the 
approximation 
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This has the advantage that the denominator in this formula 
compensates for the error in the numerator (Helsing and 

Ojala, 2008). Then, the real part of (4.11) )(zun  gives 
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Finally, by using )(zun  we can compute the Green’s 

function ),( 0zzgn  by the following formula  
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5. NUMERICAL IMPLEMENTATION 
 

In this example we consider oval of Cassini as 
simply connected region   as shown in Figure 4.1. The 
boundary of this region is parameterized by the function 
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Fig. 4.1  The test region   with 0.99  . 

The exact solution of this region   can be computed by 
using Riemann mapping function (Murid, 1997), i.e. 
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We describe the error by infinite-norm error 


 ),(),( 00 zzgzzg n ,where ),( 0zzgn  is the 

numerical approximation of ),( 0zzg . We choose nine test 

points with 00 z . The results are shown in Table 4.1. 
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The levels curves of ),( 0zzgn are shown in Figure 4.2, 

while the 3D plot of the surfaces of ),( 0zzgn  is shown in 

Figure 4.3. 
 

 
 

 
 
 
 
 

Fig. 4.2 Green’s function for
 
  in contours form. 
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Fig. 4.3 Green’s function for in 3D form. 

 
 
6. CONCLUSION 

This study has presented a method for computing the 
Green’s function on simply connected region by using a 
new approach based on boundary integral equation with 
generalized Neumann kernel. The idea for computing the 
Green’s function on   is to solve the Dirichlet problem 
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on that region by means of solving an integral equation 
numerically using Nyström method with the trapezoidal 
rule. Once we got the solution )(zu , the Green’s function 

of   can be computed by using the formula  
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The numerical example illustrates that the proposed method 
can be used to produce approximations of high accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For further research, we suggest the following: 
 
 The domain of the problem in this paper is 

restricted to bounded simply connected region 
with smooth boundaries. We propose extending 
our approach to multiply connected regions and 
also to nonsmooth boundaries. 

 In this paper, we have used MATHEMATICA 
package to calculate the first term of the right-hand 
side of the integral equation (4.6), which is a 
Cauchy principle value integral. Alternative 
approaches are the Fast Fourier Transform (FFT) 
or the Wittich’s method. 
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