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ABSTRACT 

Consider an unsteady Newtonian blood flow coupled with mass transport in which flowing through an artery with the presence of an overlapping 
stenosis. The flowing blood is governed by nonlinear partial differential equations while the convection-diffusion equation to blood is employed to 
couple with the Newtonian equation in order to characterize the mass transport of blood-borne components such as low-density lipoprotein (LDL). This 
mass transport refers to the movement of blood-borne molecules from flowing blood into the artery wall, or vice versa. These coupled equations are 
solved numerically using finite-difference method with an appropriate prescribed initial and boundary conditions. The graphical results of velocity 
profiles and mass concentration of the solute are presented along the distributions over the entire considered arterial segment. These results show the 
important role of mass transport in stenosed artery.    
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1. INTRODUCTION 

Mass transport of blood-borne is referred to the 
movement of macromolecules, such as low-density 
lipoprotein (LDL) and oxygen, between the flowing blood 
and the arterial wall. It is claimed by [1] that the transport of 
these macromolecules has been linked to atherogenesis, the 
formation of subintimal plaques in the lining of arteries. As 
noted by [2], the occurrence of mass transfer between blood 
flow and arterial wall is caused by the pressure difference 
across the luminal surface. At certain sites in arterial 
system, the localization of atherosclerosis lesions is 
developed in human. Furthermore, the study by [3] showed 
that blood rheology could significantly affect the most parts 
of aorta with high luminal surface of LDL concentration. 
The mass transport on stenosed and non-stenotic artery has 
been investigated in [1], [4]-[7] and some researchers 
considered a fluid-wall multilayer model ([8]-[10]). 

The deposition of LDL is said to be one of the cause 
of atherosclerosis, a process of progressive thickening and 
hardening of the arterial wall due to the accumulation 
plaque (stenosis) on the inner linings of arteries. Over the 
time, the arteries become constricted, their elasticity 
disappears and it reduces the blood volume that travels 
through the arteries. This will lead to lack of oxygen and 
nutrients transportation to the peripheral organs. Most of the 
studies in mass transport so far have been focused in the 
presence of single stenosis ([1], [5]-[7]). In order to have a 
one step closer to the real situation, an overlapping stesosis 
is suggested to be considered subject to pulsatile pressure  

gradient. As reported by [11], the problem becomes more 
acute in the presence of an overlapping stenosis instead of 
single stenosis. The study has been extended by [12] 
considering the time-dependent geometry of an overlapping 
stenosis in tapered artery. While [13] gave special attention 
to multistenoses which appear in the artery.  

The goal of this study is to investigate the 
distribution of the velocity and mass concentration in an 
overlapping stenosed artery. The governing equations, 
together with the prescribed conditions, are solved using 
finite-difference scheme.  

2. MATHEMATICAL FORMULATION  

2.1 Governing Equations 
   

Let us consider (r, z, θ) be the coordinates of a 
material point in the cylindrical coordinates system where 
the z-axis is taken along the arterial segment while r and θ
are taken along the radial and the circumferential 
directions, respectively. The geometry is assumed to be 
axisymmetric ( )0θ∂ ∂ = and the azimuthal velocity 
component vanishes. In the absence of external forces, the 
dimensionless continuity and momentum equations which 
govern the blood flow in the cylindrical coordinates system 
may be written as: 

*Corresponding author. E-mail: ilyani@umt.edu.my 

Malaysian Journal of Fundamental and Applied Sciences Vol.9, No.3 (2013) 156-160

http://mjfas.ibnusina.utm.my/
http://www.foxitsoftware.com/shopping


Abdullah et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 9, No.3 (2013) 156-160 

 
| 157 | 

 

0u u w
r r z
∂ ∂

+ + =
∂ ∂

     (1) 

2 2

2 2 2

1 1
Re

u u u p u u u uu w
t r z r r r r r z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (2) 

2 2

2 2

1 1
Re

w w w p w w wu w
t r z z r r r z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  (3) 

 
where u and w are the dimensionless radial and axial 
velocity components, respectively, t is the dimensionless 
time, p is the dimensionless pressure, Re is the Reynolds 
number which is defined by Re=r0U0ρ/μ, with r0 is the 
normal radius in the arterial segment, U0 is the cross-
sectional average velocity, ρ is the density of blood, and μ 
is the viscosity. The lumen radius, R, is assumed to be 
sufficiently smaller than the vessel segment, L, which stated 
as R≪L, then it is simply reduced to 0p r∂ ∂ = , which 
means that the pressure p in cross section in independent of 
radial coordinate. This assumption has been made by ([14] - 
[16]) and it is well supported by [17]. In eq. (3), the 
pressure gradient in the axial direction, p z∂ ∂  has been 
taken for human beings which is given by 
 

1 2 cos , for 0p A A t t
z

ω∂
− = + >
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     (4) 

 
 with A1 is the constant amplitude of the pressure gradient, 
A2 is the amplitude of the pulsatile component giving rise to 
systolic and diastolic pressure, and ω = 2πf, f is the pulse 
frequency. 
 

The dimensionless mass transport is governed by the 
convection-diffusion equation and is written as 
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where C is the concentration, and Sc is the Schmidt number 
which is defined by Sc = μ/(ρD), D is the coefficient of 
diffusion 
  
2.2 Initial and Boundary Conditions 

 
These are the assumptions that have been used to 

prescribe the boundary of the problem: 
 

a. Initially no flow takes place when the system is at 
rest (t=0), 
w(r, z, 0) = u(r, z, 0) = C(r, z, 0) = 0. 
 

b. Along the axis of symmetry (r=0), the axial 
velocity gradient, the normal component of the 
velocity and the mass concentration gradient 
vanish, 

( ) ( ) ( ), , , ,
, , 0

∂ ∂
= = =

∂ ∂
w r z t C r z t

u r z t
r r

. 

 

c. At the arterial wall (r=R), the axial velocity and the 
mass concentration vanish, while the radial 
velocity is prescribed by no-slip condition, 
w(r, z, t) = C(r, z, t) = 0,  ( ), , ∂

=
∂
Ru r z t
t

. 

 
d. The flow is assumed to be fully developed with 

parabolic profile of velocity at the inlet (z=0), and 
the mass concentration is assumed to be constant, 
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u(r, z, t) = 0, C(r, z, t) = 1. 
 
g is the dimensionless amplitude while α is the 
Womersley number, α = r0(ωρ/μ)1/2. 
 

e. At the outlet (z=L), L is the finite length of arterial 
segment, the velocity gradients and mass 
concentration gradient are taken to be traction-free 
conditions, 

( ) ( ) ( ), , , , , ,
0
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2.3 Geometry of Stenosis 

 
The geometry of an overlapping stenosed artery is 

given by  
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with R(z, t) denotes the dimensionless radius of the arterial 
segment in the constricted region. Meanwhile, R0 is the 
constant radius of the normal artery in the non-stenotic 
region, l0 is 2/3 of the length of the stenosis, d is the 
location of the stenosis onset and τm is taken to be the 
critical height of the stenosis. Figure 1 shows the schematic 
diagram of an overlapping stenosed artery. 

 
Fig. 1 Geometry of a stenosed artery with R0=0.152, 
τm=0.2R0, l0=1, d=0.5. 
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The time-variant parameter in (6) is given by 
 

a(t)=1-h(cos ωt-1)e-hωt 
 
where h is a constant and ω = 2πf. This time-dependent 
parameter is introduced to suit the flexible stenosis and it is 
relevant to the unsteady flow mechanism under stenotic 
conditions. The flexibility is known to be related in some 
manner to the amount of collagen, elastin and smooth 
muscle present at a particular point. 
 
2.4 Numerical Procedure 
    

In order to avoid difficulty of prescribed moving 
surface of boundary conditions, let us introduce the radial 
coordinate transformation, 

( )
.

,
=

rx
R z t

 

 
The value of x is from 0 to 1. This transformation has the 
effect of immobilizing the vessel wall in the transformed 
coordinate x and allows the difficulties stemming from 
some kinematic boundary conditions prescribed for a 
moving surface to be overcome. The transformed form of 
continuity, momentum and convection-diffusion equations 
are: 
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With the transformation, the initial and boundary conditions 
are transformed as follows: 
 
at t=0: w(x, z, 0) = u(x, z, 0) = C(x, z, 0) = 0 
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The radial velocity is obtained by solving Eq. (7) 

instead of Eq. (8), for the sake of simplicity. Some workout 
can be referred in [18]. Thus we have 
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The finite difference scheme for solving Eq. (9-11) is 

based on the central difference approximations for all the 
uniform spatial derivatives and the forward difference 
formula for time derivative. Thus we obtained the 
discretized form: 
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We have u(xj,zi,tk), w(xj,zi,tk) and C(xj,zi,tk) which are 
defined by 
xj = (j-1)Δx, j = 1, 2, …, N+1 such that x(N+1) = 1 
zi = (i-1)Δz, i = 1, 2, …, M+1 
tk = (k-1)Δt, k = 1, 2, … 

 
 
3. RESULTS & DISCUSSION 
 

The results are obtained using the following 
parameters values (which taken from ([1], [6], [7], [11], 
[18])): R0=0.152, l0=1, d=0.5, L=4, τm=0.1R0 (refers to a 
mild
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Fig. 2 The dimensionless axial velocity for different Re. 

 

 
Fig. 3 The dimensionless mass concentration for different Re. 

 

 
Fig. 4 The dimensionless axial velocity at different location. 
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stenosis), g=0.1, h=0.1, f=1.2, A1=3, A2=0.2A1, Sc=3; using 
these values, we obtained the numerical results for velocity 
and mass concentration. For computational domain, 
solutions are computed by the grid size 400x40 for z and x, 
respectively. Fig. 2 depicts the results for dimensionless 
axial velocity with different Re, where Re is defined by the 
ratio of the inertial forces to viscous forces. It quantifies the 
relative importance of these two types of forces for a given 
flow conditions. Higher value of Re defines as when the 
inertial forces dominates, it reduces the effect of viscous 
force thus becoming insignificant. The chosen values of Re 
are based on studies by [1]; [6] and [7]. From Fig. 2, when 
Re=100, the profile of velocity is more flat in shape. It 
shows that the convective term dominates where the term is 
driven by the inertial forces. When Re becomes smaller, the 
value of blood velocity reduces, as we assumed that the 
density and viscosity of blood are constant for Newtonian 
fluid.  
 Fig. 3 shows the distribution of dimensionless mass 
concentration along the radial axis with different Re. The 
mass concentration is gradually decrease from the axis 
towards the wall, which we have zero mass concentration 
on the arterial wall. This is due to the assumption that the 
diameter of LDLs is larger than the endothelial cellular 
gaps, thus the LDL diffusion to the arterial wall is 
negligible and convective-diffusive LDL mass balance 
between lumen and arterial wall. However, as stated in 
some studies in humans, pigeons and rabbits ([19]-[21]), the 
flux of LDL from plasma into the arterial wall depends on 
the plasma concentration of LDL and LDL permeability at 
the plasma-arterial wall interface. And [22] noted that even 
for a low plasma LDL concentration may experience a 
relatively high flux of LDL into the arterial wall if the LDL 
permeability of the arterial wall is high, which is not 
considered in the present study. This emphasizes that 
further understanding of permeability of the arterial wall is 
needed.   
 As in Fig. 4, the profiles of dimensionless axial 
velocity are shown at three distinct locations for Re=20. The 
chosen z which are z=79 and z=174 refer to the first and 
second critical heights of the overlapping stenosis, while 
z=125 is in the middle between the two critical points, with 
smaller height of stenosis (refer Fig.1). Both critical heights 
give the same value of velocity and velocity is greater at 
smaller height of stenosis. It is clearly shows that the 
presence of stenosis could significantly reduces the blood 
velocity. 
 
 
4. CONCLUSION  
 

A mathematical model of pulsatile blood flow, 
considering the mass transfer, through an overlapping 
stenosis has been studied. The convection-diffusion 
equation is coupled with Newtonian model represents the 

mass concentration in the vessel. Thus, we have another 
view of flow-field besides the velocity profile itself. It gives 
us understanding how the mass concentration is distributed 
along the radial axis. Furthermore, the presence of 
considered overlapping stenosis, which mimics the real 
situation, reduces the amount of velocity. It has been shown 
that the stenosis really affects the flowing blood. 
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