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ABSTRACT 
 
It has been known that Probabilistic Neural Networks as machine learning is very fast in it’s  computation time and  
give a better accuracy comparing to another type of neural networks, on solving a real-world application problem. In 
the recent years, Support Vector Machines has become a popular model over other machine learning. It can be 
analyzed theoretically and can achieve a good performance at same time. This paper will describe the use of those 
machines learning to solve pattern recognition problems with a preliminary case study in detecting the type of splice 
site on the DNA sequences, particularity on the accuracy level. The results obtained show that Support Vector 
Machines have a good accuracy level about  95 % comparing to  Probabilistic Neural Networks with  92 %  
approximately.   
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1. Introduction 
 

Neural Networks (NNs) and Support Vector Machines (SVMs) both are machine learning techniques that 
learn a model or pattern based on training data, and use the model to predict or to classify on future data. Both 
two machine learning models can be regarded as a tool in soft computing approach. By a soft computing 
technique, we try to understand  a system behavior in exchange for unnecessary precision for practical problem. 
In addition, there are no superposition are made about preexisting analytical model. This technique is rather 
different with hard computing approach which is always require a precisely stated analytical model.  

Among several model type of NNs, the Probabilistic Neural Networks (PNNs) introduced by Specht [1], has 
been known for speed advantage and the accuracy level comparing to other type of NNs.  SVMs are even more 
recent technology than NNs [4]. In about 1979 Vladimir Vapnik has had developed the theoretical foundation for 
SVMs based on statistical learning approach [3,5].  After this development, SVMs are now widely used and 
studied as a machine learning model [6,7,8]. 

In this paper, those two machines learning above will be used in the domain of pattern recognition 
problems, in particularity, splice site type detection on  the DNA sequences. This present paper is focused on the 
accuracy level (or generalization capability) which is regarded as one of machine performance measurement.     
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2. Theoretical Background 
 
2.1. Learning To Classify  
 

Let us start with a general notion of the learning problem that we consider in this paper. The task of 
classification is to find a rule, which based on external observation, assign an object to one of several classes. In 
the simplest case there are only two different classes. Possible formalization of this task is to estimate a function f 
: Rn → {1,-1}, using input-output data pairs generated independent identically distributed according to an 
unknown probability distribution function P(x,y), 

 
X x Y = {(x1,y1), ……, (xm,ym)}, with every xi ∈ Rn and yi ∈ {1,-1}, i =1, …, m.  

 
In the training stage, we estimate f, minimizing the expected error (risk) 
 

E(f) = ∫ ),()),(( yxdPyxfL   
 
where L denotes a suitably chosen loss function. 

The task of classification above is done by machine learning, is this paper we use PNNs and SVMs.  
 
 
2.1.1. Probabilistic Neural Networks 
 

PNNs is a one type of Neural Networks model using in supervised learning. This model is widely known in 
pattern recognition problems. The initial model was introduced by Specht [1], applying estimated Parzen non 
parametric probability function and Bayes classification rules. The architecture introduced consist of input layer, 
pattern layer, summation layer, and output layer (Figure 1).  
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Fig. 1  PNNs architecture, with input layer, pattern layer, summation layer, and output layer. 
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In estimation process, PNNs use two stages, learning stage and estimation stage [2]. In learning stage, input 
neurons (in input layer) distribute input vector according their weight and send it to pattern neurons (in pattern 
layer). Then, patterns neurons transmit it to summation neuron (in summation layer) for  summation purpose. In 
estimation stage, this summation results are connected with the decision, to verify whether the input vector is a 
member of any class given or not.   

Suppose that the PNNs consist of two input neurons (Figure 1),  four pattern neurons, and two summation 
neurons.  Input vector x through input neurons, is sent to pattern neurons  ZA1, ZA2, ZB1, and ZB2.  This input to 
pattern neurons is denoted by z_inj  = xT.w, j=1,…,4, where  w is weighted vector obtained at the learning stage. 
The output from pattern neurons is  z_outj  which will be obtained by using activation function f as follows 

 

z_outj  = f(z_inj ) = exp 






 −
2

1_

σ
jinz

    (1) 

                              
z_outj  will be an input for corresponding summation neuron.  Hence, input to summation neuron  SA   is s_inA = 
z_outA1 +  z_outA2, and input to summation neurons  SB is s_inB =  z_outB1 +  z_outB2. Here, the connection 
weight between neurons input and summation neurons is 1,   between summation neuron SA  and output neurons 
is  vA , and between summation neuron SB  and output neurons is  vB. In this case 
 

vA=
A

ABA

m
hλ

 dan vB =
B

BAB

m
hλ

  

                                                                        
where, mA is the number of training data in class A,   mB is number of training data in class B,  m = mA +  mA is 

total training data.  Hence,  hA = 
m

mA  is probability  (a priori) of input data in class A. In the same manner,  hB  is 

probability (a priori) of input data in class B.    While   λAB is a cost function to represent the fact that it may be 
misclassify    input data is in class A instead of in class B.  Similarly with  λBA . 
For the classification into two classes, clearly that λAB = λBA = 1.  

Finally, input to neuron output Y represented by  y_in is {vA.SA_out ,  vB.SB_out }. By using a decision criteria 
will be decided whether input vector is in class A or in class B. Here,  x ∈ class A if   vA.SA_out  > vB.SB_out .  
Otherwise,  x  ∈ class B. That criteria is called Bayes criteria, that can be stated by 
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With further manipulation, we can state that if x ∈ class A, then   λBA hA )(ˆ xf A  >  λAB hB )(ˆ xf B , where 

)(ˆ xf A is approximated  probability density function (obtained in previous stage). Similarly, if x ∈ class B. 
 
 
2.1.2. Support Vector Machine 
 

As a machine learning model, SVMs  is a recently developed  which designed for efficient multidimensional 
function approximation. The basic idea is to determine a classifier minimizing the empirical risk (that is, training 
set error) which corresponds to the generalization or test set error [5,6,7,8]. The key to understanding SVMs is to 
see how they introduce an optimum hyperplane to separate classes of data in the classifiers. 

Given an input vector  X = {x1, x2 , …, xm}, each xi ∈ Rn  and a target vector Y=  {y1, y2 , …, ym},  each yi 
∈ {1,-1},   i=1,2, .., m. Let us consider (xi, yi) ∈ X x Y  as a pair of training data which is separable. 
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The main idea of  SVMs is to determine a hyperplane <w, x> + b = 0 (w ∈ Rn , b∈ R)  separating X into two 
classes  associated with the value of 1 or –1, with a maximum margin.  In this case, the margin is a distance 
between two parallel hyperplanes with the middle hyperplane (Figure 1). This middle hyperplane will be 
considered as a decision function for two class classification,  
 

f(x) = sign(<w, x> + b)  
 
where f(x) = 1 if <w, x> + b ≥ 0 and f(x) = -1 if <w, x> + b < 0. 

Based on Vapnik-Chervonenkis (VC) Theorem [3], the selection of maximum margin will give the best 
level of accuracy.  To determine hyperplane equation  <w, x> + b = 0, we must determine first the value of w and 
b. In this case, we use canonical hyperplanes,  
 

<w, x+> + b = +1   and   <w, x-> + b = -1  
 

where , x+ is data which is in the class of y = +1 and the nearest to hyperplane, and x- is data in the class of  y = -1 
and the nearest to hyperplane <w,x> + b = 1. 
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Fig. 2   Margin of hyperplane. 
 
 
The width of margin γ is a distance from x+ (or x- ) to hyperplane,  
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This implies that the maximization of margin is equivalent to the minimization of ||w|| subject to <w, xi> + b ≥ +1 
if yi = 1 and <w, xi> + b ≤ -1 if yi = -1   which can be combined into one constraint  
 

yi (<w, xi> + b) ≥ 1 ∀i  
 
Hence, SVMs learning problem becomes the following quadratic programming problem (QP) as follows :  
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Minimize <w, w>                                      
subject to yi (<w, xi> + b) ≥ 1, i = 1, …, m.   (2) 

 
The solution of QP problem above (i.e. w, b) give the optimum hyperplane, with maximum margin γ = 1/||w||. 
We transform (2) into dual form by introducing Lagrange multiplier αi ≥ 0 (Karush-Kuhn-Tucker condition), 
 

( )[ ]∑ −+−=
=
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By equalizing zero the derivation of L with respect to w and b, will give 
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Substituting (4) into Lagrange function (3), will give 
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Hence, QP problem (2) becomes 
 

Maximize ∑ ∑−= = =
m
i

m
i jijijii xxyyW 1 1 ,

2
1)( αααα     (5) 

  

subject to      
mi

y

i

m
i ii

,...,1,0
01

=≥
=∑ =

α
α

  

             
The solution of (5) will give an optimum weight vector  w* = ∑ =

m
i iii xy1

*α which define a hyperplane with 
maximum margin,   γ = 1/||w||. 

The optimum value of b* can be determined from the constraints of   QP problem (2).  Before continuing, 
we consider the inequality in (2). We observe that for this inequality, there will be some training vectors only for 
which the equality yi (<w, wi> + b) = 1, i = 1, …, m,  holds true. Those training vectors are called support 
vectors. 

 
 

2.1.3. Linear Support Vector 
 

Learning technique described above will only work in linearly separable training data.  For some problems, 
sometimes we have non linearly separable training data. The classifier of this data is obtained by introducing a 
function which map the data space to finite dimensional space (we call feature space). By this mapping the 
nonlinear training data becomes linear (Figure 3) After then, we try to seek an optimal hyperplane as described 
above.   

By using the weight w obtained, decision function f(x) can be calculated as an inner product of training data 
and testing data,  
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If we denote the function which map the data to the feature space as φ, then the decision function above can be 
denoted as follows :   
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Fig. 3  Mapping to feature space by function φ. 
 
 

If  we want to determine inner product <φ(wi), φ(w)> directly, we have to know φ explicitly. But there is a way 
for computing the inner product without using φ in feature space. This effective trick is done by using kernel 
function,  K(xi, x)  =  <φ(xi), φ(x)> [8]. 

Hence, decision function (6) can be denoted as follows 
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There are many kernel function has been developed. In this paper we use a polynomial function,  
 

K(x, x’) = <x,x’>d, d ∈ Z+   (7) 
 
                              

2.1.4. SVMs with Soft Margin 
 

The main problem with the optimal hyperplane described  above is under assumption that there is no data 
training error, but normally there are errors happened. Such problem can be omitted  by using a soft margin 
technique. By this technique, we introduce slack variable ξ  in (2 ),    

 
Minimize <w, w> + C ∑ =

m
i i1

2ξ    (8) 
Subject to  yi (<w, xi> + b) ≥ 1 - ξi, i = 1, …, m 
  ξi ≥ 0, i = 1, …., m   
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By this technique, learning method would be a problem to determine an optimum hyperplane having minimum 
earning data error simultaneously. We call this technique by structural risk minimization. 

By using the same procedure as above, the dual form of (8) can be denoted as 

Maximize  ∑ ∑−= = =
m
i

m
i jijijii xxKyyW 1 1 ),(

2
1)( αααα  (9) 

Subject to     
miC
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m
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=∑ =

α
α

  

                              
Suppose the solution obtained is α*, the decision function is  ∑ += =

l
i iii bxxKyxf 1

** ),()( α , where b* is selected 
in such a way that  yif(xi) = 1 ∀ i with  C > α*

i > 0. Hence, decision function sign(f(x)) is a hyperplane in feature 
space which implicitly defined by using  K(xi, x), with  margin         
                

γ = (∑ ∈SVii jijiji xxKyy,
** ),(αα )-1/2  

 
 
3. Computer Simulation 
 

A computer simulation  has been executed by using Matlab 6.5.1 running in a PC   Pentium IV. In this 
simulation, PNNs and SVMs models are used to determine whether a DNA (Deoxyribo Nucleic Acid ) sequence 
is a donor type or not. This is  part of a process in splice site type detection on  DNA sequences (compose of 
nucleotide  Guanine (G), Adenine (A), Thymine (T), Cytosin (C).  This splice site detection will be used later in 
protein folding (introns removal and exons binding).     
 
 

 
 

Fig. 4  Splice sites and protein folding. 
 
 
 
3.1. Data Used For Experiment 
 

Data in form of  DNA sequences existed in  Splice-junction Gene Sequences Data Base, which is part of 
Molecular Biology Data Bases available in [10]. Each sequence has 60 base-pair length,  and each nucleotide is 
represented in four bits,  A: 1000, T: 0100, G: 0010 and  C: 0001. Hence, the input data dimension is 60 x 4 = 240 
bit. Meanwhile, the output (placed in the beginning of DNA sequence) consist of 1 bit, with the value of 1 if the 
splice site is donor type and 0 otherwise. 
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Tabel 1  The  accuracy level  (%),  (i) PNNs (ii) Linear SVMs  (iii) Nonlinear SVMs. 

 

 
 
 
In the experiment have been done, the data above is divided into three groups, called learning (or training) 

data L, validation data V, and testing data T. Those three groups of data is used sequentially. The member of each 
group is selected randomly with cross validation technique  from total data given (we used 3175 sequences). This 
selection technique is nearly similar to technique used by  Bolat et al. [8].  

In the application with PNNs model,  L is used to obtain the weight of PNNs,  V is used to determine the 
best parameter σ in (1).  In the application with SVMs (here we used linear SVMs, and Non linear SVMs), L and 
V are used to obtain the parameter values of C  in (9), d in polynomial function  (7),  in a similar way. 
 
 
3.2. Test of Accuracy Level 
 

In this paper we define  the accuracy level (sometimes called generalization capability) as follows:  with the 
set of testing data T = {(x1,y1), ……, (xk,yk)}, we verify whether output iy) = f(xi) is equal or not to yi as the 
target.  The accuracy level is :    [(the number of xi where iy) = yi) / |T| ] x 100 %. 

By using a various size of testing data T that have been prepared before, we determine the  accuracy level of 
PNNs and SVMs. Here, 2nd bit until 241th bit from each DNA sequences are processed  by PNNs and SVMs, and 
the result is verified with 1st bit of the sequences, whether equal or not. The verification result gives the level of 
accuracy of the PNNs and SVMs 
 
 
4. Results Analysis and Discussion 
 

The implementation results are given in Table 1 below. Figure 5 shows  the accuracy level of PNNs, Linear 
SVMs, Non Linear SVMs, for learning data size |L|=600, validation data size |V|=250, with various testing data 
size |T|.   

From Table 1, roughly we can see that the increasing of testing data size will decrease the  accuracy level. 
In the case of increasing of learning data, the accuracy level will increase also. Intuitively, this phenomena is 
quite similar to the meaning of learning. 
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Fig. 5  Accuracy Level of PNNs, Linear SVMs, Non Linear SVMs, for |L|= |600|, |V|=250. 
 
Table 1 shows also that SVMs have a better accuracy level than PNNs. But, there are no significant 

different between Linear SVMs and Nonlinear SVMs in their accuracy level. It shows that the data is linearly 
separable. Finally, we can see that there are slightly decreasing of accuracy level, in case of testing data size 
getting bigger  (|T| > 400), perhaps it is caused by the computer limitation.  

Roughly, those results show that SVMs have accuracy level about 95.7 % and PNNs have about  92.8 %. 
 

 
5. Conclusion 
 

Based on the result discussed above, in the case of splice site detection of DNA sequences problem, SVMs 
has better accuracy level than PNNs. There is no significant different between Nonlinear SVMs and Linear 
SVMs on their accuracy level. 
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